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This paper proposes a distributed anchor node selection algorithm based on error analysis for trilateration localization (EATL).
The influence of distance measurement error on localization accuracy is discussed from two aspects: condition number of triangle
formed by the three anchor nodes and the relative position between the unknown node and the three anchor nodes. Based on the
error analysis, three principles for optimizing the selection of anchor nodes are given and then an algorithm for selecting anchor
nodes on the ring is proposed.

1. Introduction

In a distributed sensor network, for most applications, such
as target tracking, environmental monitoring [1], the geo-
graphical information of sensor nodes needs to be known.
Estimation of node position is a fundamental requirement
in distributed sensor networks. One possible solution is
to install GPS receiver for each sensor node (or similar
system, such as BeiDou Navigation Satellite System), but
this scheme is limited by the characteristics of distributed
sensor network itself. On the one hand, the cost of node
with GPS system will be two orders of magnitude higher
than that of ordinary node [2]. On the other hand, accord-
ing to the different applications, sensor nodes are often
deployed in the interior, city buildings, or even forest
environment, and satellite signals are easily affected by
many factors such as multipath interference and occlusion
[3]. The localization accuracy is poor or even affecting its
usability.

Cooperative localization [4, 5] is a new idea to realize
high accuracy positioning in GPS denied environments.
The basic idea is to use the following information to assist
node localization, such as the distance information obtained

from the communication between sensor nodes, the relative
velocity information via Doppler shift measurement in the
dynamic network. In large-scale distributed networks, due
to the limited communication capability, nodes only can
interact with their neighbors. All nodes will form a connected
multihop network. According to the different application
scenarios, coordinates here can be standard coordinates,
such as latitude and longitude, or relative coordinate system.
On the one hand, arranging a large number of anchor
nodes is expensive. On the other hand, in some applications
such as battlefield environments, anchor nodes only can be
deployed around the network. This does not guarantee that
all unknown nodes are adjacent to anchor nodes and obtain
enough localization information. Consider an application in
a two-dimensional network as shown in Figure 1; anchor
nodes are arranged around the network, and unknown nodes
are arranged in the network. Initially, anchor nodes broadcast
the coordinate information. Due to the limitation of the
communication radius, only a few unknown nodes can
obtain enough localization information to estimate their own
coordinates.Theunknownnodewhich has completed its own
location will be an anchor node to assist other unknown
nodes to be located. Through this kind of information
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Figure 1: Cooperative localization.

interaction between nodes, cooperative localization of the
whole network will be completed.

Localization techniques of the distributed sensor network
can be divided into two categories: range-based localiza-
tion algorithm and range-free localization algorithm. This
paper only considers range-based localization algorithm.This
technique includes three main categories: Trilateration-based
algorithm [6], Maximum Likelihood-based algorithm [7],
and Multidimensional Scaling (MDS)-based algorithm. In
Trilateration-based algorithm, unknown nodes measure the
distances to three neighbor anchor nodes and then use this
information to estimate their locations. The specific mathe-
matical model will be given in the next section. When there
are more than three neighbor anchor nodes, the unknown
node should choose three to estimate its location. Maximum
Likelihood-based algorithm is different from Trilateration-
based algorithm. When the unknown node has more than
three neighbor anchor nodes, it will utilize the information
of all anchor nodes to construct an overdetermined equation
and find the least square solution. TheMDS algorithm based
on distance measurement is divided into twomain categories.
The first category is classical MDS [8, 9]. This algorithm
provides relative coordinate to a seemingly nonconvex local-
ization problem, using only singular value decomposition.
Within the classical MDS framework, the complete Euclidean
distance matrix is needed, but this matrix is often very
difficult to be obtained. The second category is to construct
a pressure function [10–12] and use SMACOF [13] algorithm
to minimize the pressure function and get the relative coor-
dinate estimate. SMACOF algorithm is an iterative solution
which will lead to high computational complexity. Although
Trilateration- based algorithm and Maximum Likelihood-
based algorithmneed a certain number of anchor nodes, their
computational complexity is low and they are suitable for
cooperative localization of large-scale distributed networks.

The main distance measurement techniques of range-
based localization algorithm are Received Signal Strength
Indication (RSSI) [14], Time-of-Arrival (TOA) [15], and
Ultrawideband (UWB) [16]. There is also a tradeoff between
device cost and range accuracy. Using RSSI technique is
cheap but the accuracy of measurement may be low, using
TOA technique needs to guarantee time synchronization, and
using UWB technique can achieve accuracies on the order
of centimeters, but at the expense of high device and energy
costs.
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Figure 2: The ideal model of Trilateration.

It should be noted that even in idealized setups with
no obstacles or other external factors, relatively small error
from noisy sensor measurements can induce much larger
errors in node position estimate [17]. In Trilateration-based
algorithms, effect of rangemeasurement error on localization
accuracy is mainly related to the selection of anchor node. In
[6], an anchor node selection scheme based on the minimum
condition number is proposed to improve the localization
accuracy. However, this scheme only considers the influence
of the distribution of three anchor nodes on localization accu-
racy. Actually, the relative position between the unknown
node and the three anchor nodes will also have a great impact
on localization accuracy. In Trilateration-based algorithms,
when the unknown node completes the estimation of its
location, it will become an anchor node to assist other
unknown nodes to be located. In this process, the iterative
error will be produced. Accumulation of measurement error
will increase rapidly if the anchor nodes are not selected
properly. Therefore, the selection of anchor nodes will have
an important influence on localization accuracy.

The main contributions of this paper are as follows:
(1)The influence of distance measurement error on local-

ization accuracy is discussed from two aspects: condition
number of triangle formed by the three anchor nodes and the
relative position between the unknown node and the three
anchor nodes.

(2) Based on error analysis, an anchor nodes selection
scheme (EATL) is proposed, which can effectively improve
the localization accuracy.

The rest of the paper is organized as follows. The math-
ematical model of Trilateration localization is provided in
Section 2 and error analysis is provide in Section 3. Based on
the analysis in Section 3, an anchor nodes selection algorithm
is given in Section 4. Simulation analysis is provided in
Section 5, while Section 6 concludes the paper.

2. Mathematical Model of
Trilateration Localization

We use 𝑃(𝑥, 𝑦) to represent the unknown node as shown
in Figure 2; three anchor nodes within the communication
radius of 𝑃 are 𝑎1(𝑥1, 𝑦1), 𝑎2(𝑥2, 𝑦2), and 𝑎3(𝑥3, 𝑦3), respec-
tively.
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Figure 3: Distance measurement error of Trilateration.
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Figure 4: The actual model of Trilateration.

The exact Euclidean distances without any noise between𝑃 and 𝑎1, 𝑃 and 𝑎2, 𝑃 and 𝑎3 are 𝑑1, 𝑑2, and 𝑑3, respectively.
The coordinates of 𝑃 can be obtained by solving (1).

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 = 𝑑12
(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 = 𝑑22
(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 = 𝑑32

(1)

We get (2) by using the third formula minus the first
formula and the third formula minus the second formula in
(1).

2 (𝑥3 − 𝑥1) 𝑥 + 2 (𝑦3 − 𝑦1) 𝑦 = . . .
𝑑12 − 𝑑32 + 𝑥32 − 𝑥12 + 𝑦32 − 𝑦12
2 (𝑥3 − 𝑥2) 𝑥 + 2 (𝑦3 − 𝑦2) 𝑦 = . . .
𝑑12 − 𝑑32 + 𝑥32 − 𝑥12 + 𝑦32 − 𝑦12

(2)

In practice, themeasured distances aremodeled as a noisy
version of the actual node distances. For example, the actual
distance between anchor node 𝑎2 and 𝑃 is 𝑑2, the measured
distance is 𝑑2󸀠, and Δ𝑑2 denotes the distance measurement
error. In this case, the three circles intersect to form an area𝐷 as the shaded area shown in Figure 3. In Figure 4, the
three circles intersect with one another. From elementary
geometry, we know that the lines 𝑎𝑏, 𝑐𝑑, and 𝑒𝑓 will intersect
at one point. When we solve (2), we get the coordinates of the
intersection point actually.

Table 1: An example of ill-conditioned equation.

(x, y) Actual Distance Measurement
Distance

Anchor 1 (815.83,10.60) 149.220 149.215
Anchor 2 (836.01,13.08) 151.560 151.500
Anchor 3 (869.17,17.28) 160.724 160.761

3. Error Analysis

When the distance measurement error Δ𝑑 exists, the coor-
dinates of the unknown node 𝑃 obtained by solving (2) will
also be inaccurate. Even if Δ𝑑 is small, the coordinates of𝑃 obtained by inappropriate anchor node combination may
also have great errors. See the example in Table 1; (𝑥, 𝑦) refers
to the coordinates of the three anchor nodes, the third column
is the actual distance between the unknown node and the
anchor node, and the fourth column is the measurement
distance with errors.

Based on actual distances, we can get the exact coordi-
nates of 𝑃 as (790, 157) by solving (2). But frommeasurement
distances, the solution is (760, 402). It can be seen from
Table 1 that the differences between actual distances and
measurement distances are negligible, but the differences of
solutions, especially ordinates, are several hundred meters.
Therefore, it is very important to study which factors will
affect the solution of (2). To simplify the analysis, we rewrite
(2) as follows:

𝐴𝑋 = 𝑏 (3)

where 𝐴 is a coefficient matrix, 𝑋 denotes the coordinates of𝑃, and 𝑏 is a column vector. We have

𝐴 = [2 (𝑥3 − 𝑥1) 2 (𝑦3 − 𝑦1)2 (𝑥3 − 𝑥2) 2 (𝑦3 − 𝑦2)] ,
𝑋 = [𝑥𝑦]

and 𝑏 = [𝑑12 − 𝑑32 + 𝑥32 − 𝑥12 + 𝑦32 − 𝑦12𝑑12 − 𝑑32 + 𝑥32 − 𝑥12 + 𝑦32 − 𝑦12] .
(4)

𝐴 is completely described by the coordinates of the three
anchor nodes and can also be understood as the distribution
of the three anchor nodes in the two-dimensional space. The
elements in 𝑏 are completely determined by the coordinates of
the three anchor nodes and the distances from the unknown
node to the anchor nodes. That is, the relative position of
the unknown node and the three anchor nodes will have
a decisive influence on 𝑏. In this paper, the error analysis
will be made from the distribution of three anchor nodes
and the relative positions of the unknown nodes and the
three anchor nodes. In Section 3.1.1 we discuss the situation
when there is only distance measurement error; that is, we
assume that the coordinates of the three anchor nodes 𝑎1,𝑎2, and 𝑎3 are accurate. In Section 3.1.2 we will discuss the
situation when both the anchor nodes position error and
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the distance measurement error exist. We assume that the
distance measurement error Δ𝑑 is a random variable which
obeys uniform distribution, Δ𝑑 ∼ 𝑈(−𝜀, 𝜀).
3.1. The Influence of the Distribution of Anchor Nodes on

Localization Accuracy

3.1.1. The Influence of Distance Measurement Error. In this
paper, we always assume that a matrix norm ‖ ⋅ ‖ is 2-norm;
that is to say, ‖ ⋅ ‖2 = √𝜆max(𝐴𝑇𝐴). According to the property
of matrix norm, we have ‖𝐴𝐵‖ ≤ ‖𝐴‖ ⋅ ‖𝐵‖.

When the distance measurement error exists, the error
is mainly reflected on the column vector 𝑏 in (3); 𝑏 can be
rewritten as follows:

𝑏󸀠
= [[

(𝑑1 + Δ𝑑1)2 − (𝑑3 + Δ𝑑3)2 + 𝑥32 − 𝑥12 + 𝑦32 − 𝑦12(𝑑1 + Δ𝑑2)2 − (𝑑3 + Δ𝑑3)2 + 𝑥32 − 𝑥12 + 𝑦32 − 𝑦12]] ,
(5)

and, thus, using 𝑏󸀠, it follows that
𝐴 (𝑋 + Δ𝑋) = 𝑏 + Δ𝑏 (6)

where Δ𝑋 is the error of solution and

Δ𝑏 = 𝑏󸀠 − 𝑏
= [[

(2Δ𝑑1 ⋅ 𝑑1 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑12 − Δ𝑑32)(2Δ𝑑2 ⋅ 𝑑2 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑22 − Δ𝑑32)]] .
(7)

Here we assume that the matrix 𝐴 is nonsingular and we
can obtain the following.

Δ𝑋 = 𝐴−1 (Δ𝑏) (8)

From (3) and (8), we can get 1/‖𝑋‖ ≤ ‖𝐴‖/‖𝑏‖ and‖Δ𝑋‖ ≤ ‖𝐴−1‖ ∗ ‖Δ𝑏‖. Then

‖Δ𝑋‖‖𝑋‖ ≤ 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩 ∗ ‖𝐴‖ ‖Δ𝑏‖‖𝑏‖ (9)

where ‖Δ𝑋‖/𝑋 denotes relative error of solution,‖Δ𝑏‖/‖𝑏‖ denotes relative error of column vector 𝑏, and‖𝐴−1‖ ∗ ‖𝐴‖ denotes the condition number of coefficient
matrix 𝐴, where

𝑐𝑜𝑛𝑑 (𝐴) = 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩 ∗ ‖𝐴‖ (10)

‖𝐴−1‖∗‖𝐴‖ and ‖Δ𝑏‖/‖𝑏‖will determine the upper bound
of ‖Δ𝑋‖/‖𝑋‖.
3.1.2.The Influence ofDistanceMeasurement Error andAnchor
Nodes Position Error. When both the anchor nodes position
error and the distance measurement error exist, the error is
mainly reflected in the coefficient matrix 𝐴 and the column
vector 𝑏. Equation (6) should be rewritten as follows.

(𝐴 + Δ𝐴) (𝑋 + Δ𝑋) = 𝑏 + Δ𝑏 (11)

Here Δ𝑏 is expressed as follows.

Δ𝑏
= [[

(2Δ𝑑1 ⋅ 𝑑1 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑12 − Δ𝑑32) + (2Δ𝑥3 ⋅ 𝑥3 − 2Δ𝑥1 ⋅ 𝑥1) + (Δ𝑥32 − Δ𝑥12) + (2Δ𝑦3 ⋅ 𝑦3 − 2Δ𝑦1 ⋅ 𝑦1) + (Δ𝑦32 − Δ𝑦12)(2Δ𝑑2 ⋅ 𝑑2 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑22 − Δ𝑑32) + (2Δ𝑥3 ⋅ 𝑥3 − 2Δ𝑥2 ⋅ 𝑥2) + (Δ𝑥32 − Δ𝑥22) + (2Δ𝑦3 ⋅ 𝑦3 − 2Δ𝑦2 ⋅ 𝑦2) + (Δ𝑦32 − Δ𝑦22)]]
(12)

We assume that ‖Δ𝐴‖ is small and can satisfy ‖𝐴−1‖ ⋅‖Δ𝐴‖ < 1. If ‖Δ𝐴‖ is very large, the coordinates error of the
anchor node itself is very large. Substituting (3) in (11) yields

Δ𝑋 = 𝐴−1 [Δ𝑏 − Δ𝐴 ⋅ 𝑋 − Δ𝐴 ⋅ Δ𝑋] . (13)

Computing the norm we have

‖Δ𝑋‖ ≤ 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩󵄩Δ𝑏󵄩󵄩󵄩󵄩󵄩 + ‖Δ𝐴‖ ⋅ ‖𝑋‖ + ‖Δ𝐴‖ ⋅ ‖Δ𝑋‖) . (14)

And then

(1 − 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩 ⋅ ‖Δ𝐴‖) ‖Δ𝑋‖
≤ 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩󵄩Δ𝑏󵄩󵄩󵄩󵄩󵄩 + ‖Δ𝐴‖ ⋅ ‖𝑋‖) . (15)

So we have the following.

(1 − 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩 ⋅ ‖Δ𝐴‖) ‖Δ𝑋‖‖𝑋‖
≤ 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩(‖𝐴‖ ⋅

󵄩󵄩󵄩󵄩󵄩Δ𝑏󵄩󵄩󵄩󵄩󵄩‖𝑏‖ + ‖Δ𝐴‖) (16)

From inequality (16), we obtain the following.

‖Δ𝑋‖‖𝑋‖
≤ ‖𝐴‖ ⋅ 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩1 − ‖𝐴‖ ⋅ 󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩 (‖Δ𝐴‖ / ‖𝐴‖) (

󵄩󵄩󵄩󵄩󵄩Δ𝑏󵄩󵄩󵄩󵄩󵄩‖𝑏‖ + ‖Δ𝐴‖‖𝐴‖ )
(17)

In (17), ‖Δ𝑏‖/‖𝑏‖ denotes relative error of column vector𝑏 and ‖Δ𝐴‖/‖𝐴‖ denotes relative error of coefficient matrix
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Figure 5: The distribution of three anchor nodes.

𝐴. When ‖Δ𝐴‖ is small, inequality (17) is similar to (9), and
the upper bound of ‖Δ𝑋‖/‖𝑋‖ is determined by the condition
number of coefficient matrix 𝐴 and ‖Δ𝑏‖/‖𝑏‖.
3.1.3. The Influence of 𝑐𝑜𝑛𝑑(𝐴) on Localization Accuracy.
From (9) and (17), the upper bound of ‖Δ𝑋‖/‖𝑋‖ is depen-
dent on ‖𝐴−1‖ ∗ ‖𝐴‖. In (1), we use the third formula minus
the first and the second formula, respectively, and then get the
coefficient matrix

𝐴𝑎1 = [2 (𝑥1 − 𝑥2) 2 (𝑦1 − 𝑦2)2 (𝑥1 − 𝑥3) 2 (𝑦1 − 𝑦3)] . (18)

Similarly, we can also use the first formula minus the second
and the third formula, respectively. Then we will get

𝐴𝑎2 = [2 (𝑥2 − 𝑥1) 2 (𝑦2 − 𝑦1)2 (𝑥2 − 𝑥3) 2 (𝑦2 − 𝑦3)]
and 𝐴𝑎3 = [2 (𝑥3 − 𝑥1) 2 (𝑦3 − 𝑦1)2 (𝑥3 − 𝑥2) 2 (𝑦3 − 𝑦2)] .

(19)

𝑐𝑜𝑛𝑑(𝐴𝑎1)+𝑐𝑜𝑛𝑑(𝐴𝑎2)+𝑐𝑜𝑛𝑑(𝐴𝑎3) indicates the collinear
degree of three anchor nodes. From the theory of ill-
conditioned matrix, the greater the condition number of𝐴 is,
the more sensitive the linear equation with coefficient matrix𝐴 is to Δ𝐴 and Δ𝑏. When three anchor nodes constitute an
equilateral triangle, the sum of the condition numbers will
obtain a minimal value 5.1963.

But in most cases, it is difficult to find three anchor nodes
that just form an equilateral triangle. In order to illustrate the
influence of the condition number on localization accuracy,
we do the experiment as follows. As shown in Figure 5, 600
unknownnodes are randomly deployed in a two-dimensional
area of size 100∗100.The coordinates of anchor nodes 𝑎1 and𝑎2 are (25, 25) and (75, 25), respectively. The x-coordinate of𝑎3 is 50, and the y-coordinate starts from 27, sampling every
0.5 meters, sampling 100 times, and observing the influence
of the condition number of triangles formed by the three
anchor nodes on localization accuracy. We assume that each
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unknown node can communicate directly with any anchor
node and distance measurement error Δ𝑑 obeys the uniform
distribution 𝑈(−2, 2).

The MAE of the location estimates is given by

Δ 𝑖 = √(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − 𝑦𝑖)2,
Δ = ∑𝑁𝑖=1 Δ 𝑖𝑁 , (20)

where 𝑁 is the number of unknown nodes, (𝑥𝑖, 𝑦𝑖) are
the exact coordinates of unknown node 𝑖, and (𝑥𝑖, 𝑦𝑖) are the
estimation coordinates. Δ 𝑖 denotes the distance between the
estimated position and the real position of unknown node 𝑖.Δ denotes MAE.

To give a dimensionless form, we define Δ 𝑖󸀠 as follows:
Δ 𝑖󸀠 = Δ 𝑖(1/3)∑31 󵄨󵄨󵄨󵄨󵄨Δ𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ,
Δ󸀠 = ∑𝑁𝑖=1 Δ 𝑖󸀠𝑁 ,

(21)

where Δ𝑑𝑖𝑗 denotes the distance measurement error between
unknownnode 𝑖 and anchor node 𝑗.The relationship betweenΔ󸀠 and the condition number is shown in Figure 6.

As shown in Figure 6, Δ󸀠 has an increased trend with
the increase of condition number, but it is not a completely
monotonically increasing relationship. This shows that Δ󸀠
is not completely determined by condition number of the
triangle formed by the anchor nodes. When the condition
number is less than 18, Δ󸀠 is less than 3.6. In the process
of computer simulation, we find that the condition number
of the triangle formed by the three anchor nodes has the
following function relationship with the degree of inner
angles (𝛼1, 𝛼2, 𝛼3) of the triangle.

𝑐𝑜𝑛𝑑 (𝐴𝑎1) + 𝑐𝑜𝑛𝑑 (𝐴𝑎2) + 𝑐𝑜𝑛𝑑 (𝐴𝑎3)
= cot(𝛼12 ) + cot(𝛼22 ) + cot (𝛼32 )

(22)
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Figure 7: The condition numbers of two isosceles right-angle
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From this equation, when the condition number is 18, the
minimum interior angle is 13∘.

When the shape of a triangle is determined, its condition
number is also determined. As shown in Figure 7, the
condition number of isosceles right-angle triangle formed by𝑎1, 𝑎2, and 𝑎3 is 6.2361 and the condition number of isosceles
right-angle triangle formed by 𝑎1󸀠, 𝑎2󸀠, and 𝑎3󸀠 is also 6.2361.

Although condition numbers of the two triangles are the
same, their influences on error Δ𝑋 are different.

From

𝐴𝑎1 = [2 (𝑥1 − 𝑥2) 2 (𝑦1 − 𝑦2)2 (𝑥1 − 𝑥3) 2 (𝑦1 − 𝑦3)] , (23)

we obtain the following.

𝐴𝑎1−1
= 12 (𝑥3 − 𝑥1) (𝑦3 − 𝑦1) − 2 (𝑥3 − 𝑥2) (𝑦3 − 𝑦2)
⋅ [ (𝑦3 − 𝑦2) − (𝑦3 − 𝑦1)− (𝑥3 − 𝑥2) (𝑥3 − 𝑥1) ]

(24)

Substituting 𝑎1(0, 0), 𝑎2(2, 0), and 𝑎3(1, 1) in (24) yields𝐴𝑎1−1 = [ 0.2500 −0.25000.2500 0.2500 ], but when we use 𝑎󸀠1(0, 0), 𝑎󸀠2(20, 0),
and 𝑎󸀠3(10, 10), it follows that (𝐴󸀠𝑎1 )−1 = [ 0.0250 −0.02500.0250 0.0250 ] =(1/10)𝐴𝑎1−1. In the triangle formed by three anchor nodes,
the larger the shortest edge, the smaller the elements in 𝐴−1.

Using the data in Table 1, we will get 𝐴 = [ 106.686 13.351866.3182 8.3877 ]
and 𝑐𝑜𝑛𝑑(𝐴) = 1709.6.

The large condition number indicates that the matrix is
ill-conditioned and very sensitive to disturbances. Further we
can obtain 𝐴−1 = [ 0.8946 −1.4241−7.0733 11.3787 ]. The large elements in 𝐴−1
will lead to a large error of location estimate.

3.2. Influence of the Relative Positions of the Unknown Nodes
and Anchor Nodes on Localization Accuracy. In this section,
we only discuss the situation in Section 3.1.1; that is, the
coordinates of the anchor nodes are precise, and only distance
measurement error exists. According to the expression of Δ𝑏
in Section 3.1.2, when ‖Δ𝐴‖ is small, the elements in Δ𝑏 are

p

a3


a1


a1 a2

a3

a3

Figure 8: Two isosceles right-angle triangles.

mainly affected by the relative position of unknown node and
the three anchor nodes. This is similar to the case of Δ𝑏.

When estimating the coordinates of 𝑝, there are two
groups of anchor nodes: 𝑎1, 𝑎2, 𝑎3 and 𝑎1󸀠, 𝑎2󸀠, 𝑎3󸀠 as shown in
Figure 8.The triangle 𝑎1󸀠𝑎2󸀠𝑎3󸀠 is the expansion of the triangle𝑎1𝑎2𝑎3. We assume that line 𝑎1󸀠𝑎2󸀠 is 𝑁 times as long as line𝑎1𝑎2.

In the case of fixed distance measurement error Δ𝑑, for
triangle 𝑎1𝑎2𝑎3, we have
Δ𝑏 = [[

(2Δ𝑑1 ⋅ 𝑑1 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑12 − Δ𝑑32)(2Δ𝑑2 ⋅ 𝑑2 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑22 − Δ𝑑32)]]
and Δ𝑋
= 𝐴−1
⋅ [[
(2Δ𝑑1 ⋅ 𝑑1 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑12 − Δ𝑑32)(2Δ𝑑2 ⋅ 𝑑2 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑22 − Δ𝑑32)]] .

(25)

For triangle 𝑎1󸀠𝑎2󸀠𝑎3󸀠, we have
Δ𝑏󸀠
= [[

𝑁 ⋅ (2Δ𝑑1 ⋅ 𝑑1 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑12 − Δ𝑑32)𝑁 ⋅ (2Δ𝑑2 ⋅ 𝑑2 − 2Δ𝑑3 ⋅ 𝑑3) + (Δ𝑑22 − Δ𝑑32)]]
and Δ𝑋󸀠
= 𝐴−1
⋅ [[[
(2Δ𝑑1 ⋅ 𝑑1 − 2Δ𝑑3 ⋅ 𝑑3) + 1𝑁 (Δ𝑑12 − Δ𝑑32)
(2Δ𝑑2 ⋅ 𝑑2 − 2Δ𝑑3 ⋅ 𝑑3) + 1𝑁 (Δ𝑑22 − Δ𝑑32)

]]]
.

(26)

As Δ𝑑 ∼ 𝑈(−𝜀, 𝜀), the expectation and variance of Δ𝑑
are 𝐸(Δ𝑑) = 0 and 𝐷(Δ𝑑) = 𝜀2/3. The expectation of the
elements in Δ𝑋 and Δ𝑋󸀠 is 0. To compare the variance of the
elements in Δ𝑋 and Δ𝑋󸀠, we just need to compare 𝐷(Δ𝑑12 −Δ𝑑32) and 𝐷((1/𝑁)(Δ𝑑12 − Δ𝑑32)). As 𝐷(Δ𝑑12 − Δ𝑑32) =(8/45)𝜀4 and 𝐷((1/𝑁)(Δ𝑑12 − Δ𝑑32)) = (8/(45 ⋅ 𝑁2))𝜀4, the
variance of the elements in Δ𝑋󸀠 is smaller than Δ𝑋; we select
triangle 𝑎1󸀠𝑎2󸀠𝑎3󸀠 to estimate the coordinates of 𝑝.
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In fact, when the positions of the three anchor nodes are
determined (that is, matrix 𝐴−1 is determined), the elements
in Δ𝑏 are mainly determined by the relative positions of the
unknown nodes and the three anchor nodes. In geometry, the
Fermat point of a triangle, also called the Torricelli point or
Fermat–Torricelli point, is a point such that the total distance
from the three vertices of the triangle to the point is the
minimum possible. 𝑑1, 𝑑2, and 𝑑3 must be satisfied: 𝑑1 + 𝑑2 +𝑑3 ≥ 𝑑min. 𝑑min is the minimum total distance.

Since the value of Δ𝑑12 − Δ𝑑32 is small, we assume

Δ𝑏𝑎3 = [2Δ𝑑1 ⋅ 𝑑1 − 2Δ𝑑3 ⋅ 𝑑32Δ𝑑2 ⋅ 𝑑2 − 2Δ𝑑3 ⋅ 𝑑3] , (27)

and in the same way we have

Δ𝑏𝑎1 = [2Δ𝑑2 ⋅ 𝑑2 − 2Δ𝑑1 ⋅ 𝑑12Δ𝑑3 ⋅ 𝑑3 − 2Δ𝑑1 ⋅ 𝑑1]
and Δ𝑏𝑎2 = [2Δ𝑑1 ⋅ 𝑑1 − 2Δ𝑑2 ⋅ 𝑑22Δ𝑑3 ⋅ 𝑑3 − 2Δ𝑑2 ⋅ 𝑑2] .

(28)

From Δ𝑏𝑎3 we have ‖Δ𝑏𝑎3/2‖22 = (Δ𝑑1 ⋅ 𝑑1 − Δ𝑑3 ⋅ 𝑑3)2 +(Δ𝑑2 ⋅ 𝑑2−Δ𝑑3 ⋅ 𝑑3)2. In the same way we have ‖Δ𝑏𝑎1/2‖22 and‖Δ𝑏𝑎2/2‖22.
Then we obtain the following.

𝐸(󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Δ𝑏𝑎12
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
2) + 𝐸(󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Δ𝑏𝑎22

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
2) + 𝐸(󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Δ𝑏𝑎32

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
2)

= 43𝜀2 (𝑑12 + 𝑑22 + 𝑑32)
(29)

To get the minimum value of (29), the problem can be
transformed into the following optimization problem.

min 𝑑12 + 𝑑22 + 𝑑32𝑠.𝑡. 𝑑1 + 𝑑2 + 𝑑3 − 𝑑min ≥ 0,𝑑1 ≥ 0,𝑑2 ≥ 0,𝑑3 ≥ 0
(30)

The objective function of (30) is a convex function, and
the inequality constraints are all linear functions, so the K-T
point of (30) must be the global optimal solution. The K-T
point can be obtained as 𝑑1 = 𝑑2 = 𝑑3 = 𝑑min/3.

According to the above analysis, the distances between
the three anchor nodes and the unknown node should be as
similar as possible.

4. Anchor Node Selection Algorithm Based on
Error Analysis

4.1. Design Principle. The algorithm presented in this paper
(EATL) abides by the following three principles:

p

R
r

Figure 9: Selection of anchor nodes.

(1)Theminimum internal angle of the triangle formed by
the three anchor nodes should be larger than 13∘.

(2) The shortest edge of the triangle formed by the three
anchor nodes should be as long as possible.

(3)The distances between the three anchor nodes and the
unknown node should be as similar as possible.

Based on the above principles, we can select the anchor
nodes on the ring centered on the unknown node. As shown
in Figure 9, 𝑝 is the unknown node, nodes marked in red are
anchor nodes, 𝑅 is communication radius, and 𝑟 is the inner
radius of the ring.

We only select anchor nodes on the ring shown in
Figure 9. On the one hand, it reduces the complexity of
the algorithm. In Trilateration algorithms, if unknown node
selects the optimal combination among all neighbor anchor
nodes, 𝐶3𝑁 calculations will be performed, where 𝑁 is the
average number of neighbor anchor nodes. If the unknown
node only selects anchor nodes on the ring, then 𝑁 will be
reduced to𝑁󸀠 = 𝑁⋅(𝑅2−𝑟2)/𝑅2. On the other hand, it ensures
that the distances between the unknown node and the three
anchor nodes are as similar as possible, which also satisfies
principle (3).

The six anchor nodes marked with black circle are
available for 𝑝 in Figure 9. Thus, 6 anchor nodes will have𝐶36 = 20 combinations. After narrowing down the selection
range of anchor nodes, we will select 3 among these 6 anchor
nodes according to principle (1) and principle (2).

For principle (1), the minimum internal angle of the
triangle formed by the three anchor nodes should be larger
than 13∘. This principle is to reduce the collinearity of the
three anchor nodes. In order to guarantee principle (2), we
set the shortest side length threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎, as shown
in Table 2. Among all combinations satisfying the threshold,
we select the maximum 𝑑min(𝑙), as shown in Table 2.

It should be noted that the inner radiuses 𝑟 and𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎 are given in Section 5 through simulation exper-
iments, where 𝑟 = 0.6𝑅, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎 = 0.8𝑅.
4.2. Symbol Description. The main parameters and variables
used in the algorithm are shown in Table 2.
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Table 2: Explanation of parameters and variables.

Notation Description𝑛𝑜𝑑𝑒1(𝑖) Unknown node 𝑖𝑅 Communication radius𝑟 ring The ring shown in Figure 9𝑛𝑜𝑑𝑒1(𝑖).𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 Neighbor anchor nodes set of unknown node 𝑖 on 𝑟 ring, recording distance and location information of anchor nodes𝑁(𝑖) The number of neighbor anchor nodes of unknown node 𝑖𝑛𝑜𝑑𝑒1(𝑖).𝑓𝑙𝑎𝑔1 Localization flag of unknown node 𝑖. The initial value is 0, update to 1 after localization𝑛𝑜𝑑𝑒1(𝑖).𝑓𝑙𝑎𝑔2 Record the time when the unknown node 𝑖 is located𝜃min(𝑙) Minimum internal angle of the 𝑙th combination of anchor node, 𝑙 = 1 ⋅ ⋅ ⋅ 𝐶3𝑁(𝑖)𝑑min(𝑙) The shortest edge of the 𝑙th combination of anchor node, 𝑙 = 1 ⋅ ⋅ ⋅ 𝐶3𝑁(𝑖)𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎 The shortest edge threshold𝑡 Waiting time threshold

Start: set r and 

k = 1

Update node1(i).neighbor 

End

Yes

No
If N(i) ≥ 3 ?

combination of anchor nodes

If exist combinations with

to solve the coordinates of node1(i)
Update node1(i).flag2 = k and

node1(i).flag1 = 1
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No

threshold_a

k = k + 1 k = k + 1

Calculate ＧＣＨ and dＧＣＨ for every

ＧＣＨ ≥13∘ and dＧＣＨ ≥ tℎresℎold_a

Select the combination with maximum dＧＣＨ

Figure 10: Algorithm flowchart.

4.3. Algorithm Procedure. In the beginning, initial anchor
nodes broadcast their location information, and unknown
nodes collect the information of neighbor anchor nodes and
measure the distance.

The unknown node starts executing the anchor nodes
selection algorithm. The algorithm flowchart is shown

in Figure 10. After completing localization procedure, the
unknown node updates 𝑛𝑜𝑑𝑒1(𝑖).𝑓𝑙𝑎𝑔1 = 1 and becomes
an anchor node. Then, it will broadcast its own location
information. If the unknown node fails to complete the local-
ization procedure, for example, no anchor node information
is collected, or the anchor node information does not satisfy
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Figure 11: Two kinds of anchor nodes arrangement. (a) Around the square area. (b) In the square area.

requirement of the flowchart, then it will enter the waiting
state and wait for receiving enough information to complete
the localization procedure.

In a relatively sparse network, some unknown nodes may
wait for a long time to find the anchor node information
which can satisfy the requirement of the flowchart.Therefore,
according to different applications, a waiting time threshold 𝑡
maybe set.When reaching thewaiting time threshold and the
localization procedure is still not completed, the conditions in
the flowchart can be properly relaxed. For example, the value
of 𝑟 can be reduced. Of course this may reduce localization
accuracy.

5. Performance Evaluation

5.1. Simulation Setup. Our experiments are run on various
topologies of networks in Matlab R2017a. The 200 unknown
nodes are placed randomly with a uniform distribution
within a 1000∗1000 square area. The 𝑚 anchor nodes are
placed (a) randomly with a uniform distribution around the
square area as shown in Figure 11(a), or (b) randomly with
a uniform distribution within the square area as shown in
Figure 11(b). In order to observe the influence of network
average connectivity on localization accuracy, we change
communication radius 𝑅 between 200 and 300. We assume
that Δ𝑑 ∼ 𝑈(−1%𝑅, 1%𝑅). The performance of different
algorithms is compared using mean absolute error (MAE) of
the location estimates. We also calculate error bar defined by
standard deviation to compare the stability of the algorithms.
The standard deviation is given as follows.

𝜎 = √ 1𝑁
𝑁∑
𝑖=1

(Δ 𝑖 − Δ)2 (31)

The performance of the proposed algorithm (EATL) is
compared with that of the Maximum Likelihood-based (ML)
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Figure 12: MAE varies with 𝑟 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎.
localization algorithm and the minimum condition number-
based (FMMC) localization algorithm [6]. In ML approach,
the unknownnode to be located requires aminimumof seven
neighbor anchor nodes. When comparing the performance
of the three algorithms, we mainly do simulation on the
network topology shown in Figure 11(a). For this type of
network topology, the anchor nodes are placed around the
network, the inside unknown nodes require more iterations
to complete location which may result in greater iteration
error. In many application scenarios, the anchor nodes can
only be randomly placed around the network, such as the
battlefield environment. It is more practical to simulate the
network topology in Figure 11(a).

5.2. 𝑟 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎. We set 𝑚 = 75, 𝑅 = 200, and Δ𝑑 ∼𝑈(−2, 2). The network topology is shown in Figure 11(a).
We change 𝑟 from 0.5𝑅 to 0.75𝑅, sampling every 0.05𝑅,
sampling 6 times. Similarly, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎 is changed from 0.6𝑅
to 0.8𝑅, sampling every 0.05𝑅, sampling 5 times. Thus, There
are a total of 30 combinations of 𝑟 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎. We do
experiment to solve theMAEof every combination.Thevalue
of MAE varies with 𝑟 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎 is shown in Figure 12.
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Figure 13: MAE for different iteration times.

From Figure 12, with the increase of 𝑟 and 𝑡ℎ𝑒𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎,
that is, the constraints becoming more and more stringent,
the MAE is generally on a downward trend. For example,
when 𝑟 = 0.5𝑅 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎 = 0.6𝑅, 𝑀𝐴𝐸 = 19.47.
When 𝑟 = 0.6𝑅 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎 = 0.8𝑅, 𝑀𝐴𝐸 = 3.62.
However, as 𝑟 increases, the areawhere unknownnodes select
anchor nodes continuously decreases, which lead to a long
waiting time of the unknown nodes to be located. The entire
network requires more iteration times. When 𝑟 = 0.7𝑅, it
takes more than 10 iteration times to complete the entire
network localization. The increase in the number of iterations
means the accumulation of iteration errors. From Figure 12,
it can also be seen that when 𝑟 increases to 0.65𝑅, continued
increase of 𝑟 does not significantly reduce the MAE, but the
entire network localization time increases significantly. After
balancing the localization time and localization accuracy, in
the following simulations, if there are no special instructions,
we take 𝑟 = 0.6𝑅 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎 = 0.8𝑅.
5.3. MAE Performance. We set 𝑚 = 75 and 𝑅 =200 to observe that MAE varies with iteration times of
the three algorithms. The network topology is shown in
Figure 11(a).

As shown in Figure 13, The MAE of all three algorithms
tends to increase with the number of iterations, which is
due to the accumulation of errors. According to the error
bar of each iteration, the standard deviation of the proposed
algorithm is smaller than that of ML and FMMC, and the
proposed algorithm is more stable.

Overall, ML algorithm requires 4 iteration times to
complete the localization and the MAE is 5.07. FMMC
algorithm requires 5 iteration times and the MAE is 4.12.The
proposed algorithm requires 6 iteration times and theMAE is
3.62. Compared with ML and FMMC, the MAE of proposed
algorithm decreased by 28.6% and 12.1%, respectively.

5.4. Impact of Network Connectivity. We set 𝑚 = 75 and the
values of 𝑅 are 200, 225, 250, 275, and 300, respectively. The
network topology is shown in Figure 11(a). Figure 14(a) shows

that, with the increase of the communication radius of nodes,
the network connectivity increases. FromFigure 14(b), we can
see that, under different communication radius, theMAE and
standard deviation of the proposed algorithm are lower than
that of ML algorithm and FMMC algorithm. This shows that
the proposed algorithm has good stability and scalability.

5.5. Impact of Different Number of Anchor Nodes. We set𝑅 = 200 and the values of 𝑚 are 20, 25, 30, 35, 40,
45, and 50, respectively. The network topology is shown
in Figure 11(b). From Figure 15, with the increase in the
number of anchor nodes, the MAE and standard deviation
are gradually reduced. When the number of anchor nodes
exceeds 30, the increase in the number of anchor nodes has no
obvious effect on improving the localization accuracy of the
network. When the number of anchor nodes in the network
is less than 20, the process takes too long and the localization
accuracy is low.

6. Conclusion

This paper proposes an anchor selection algorithm based on
error analysis, starting from an example of ill-conditioned
linear equation to show that selecting the right anchor
nodes combination will make a big difference in localization
accuracy. The influence of distance measurement error on
localization accuracy is discussed from two aspects: condi-
tion number of triangle formed by the three anchor nodes
and the relative position between the unknown node and the
three anchor nodes. Then an algorithm of selecting anchor
nodes on a ring is proposed.The values of 𝑟 and 𝑡ℎ𝑒𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎
are given through simulation experiments. Simulation also
shows that the performance of the proposed algorithm in
MAE and standard deviation are better than those of ML
algorithm and FMMC algorithm.
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Figure 14: Impact of network connectivity. (a) Network connectivity for different communication radius. (b) MAE for different network
connectivity.
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