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To track multiple extended targets for the nonlinear system, this paper employs the idea of the particle filter to track kinematic
states and shape formation of extended targets. First, the Bayesian framework is proposed for multiple extended targets to jointly
estimate multiple extended target state and association hypothesis. Furthermore, a joint proposal distribution is defined for the
multiple extended target state and association hypothesis. Then, the Bayesian framework of multiple extended target tracking is
implemented by the particle filtering which could release the high computational burden caused by the increase in the number of
extended targets and measurements. Simulation results show that the proposed multiple extended target particle filter has superior
performance in shape estimation and improves the performance of the position estimation in the situation that there are spatially
closed extended targets.

1. Introduction

In most multitarget tracking applications it is assumed that
each target produces at most one measurement per time step.
This is reasonable when their extension is assumed to be
neglected in comparison with sensor resolution and error.
However, with increasing sensor resolution capabilities this
assumption is no longer valid, e.g., in short-range applica-
tions or for maritime surveillance where different scattering
centers of the object under consideration may give rise to
several distinct detection varying from scan to scan, both in
its number and the relative origin location.

Extended target tracking has attracted much attention in
the last decade. Gilholm et al. [1, 2] present an approach for
tracking the extended target under the assumption that the
target extent is modeled by a spatial probability distribution
and each target-related measurement is randomly and inde-
pendently drawn from this spatial distribution. However, in
real application the spatial probability is difficult to obtain.
Baum andHanebeck present the randomhypersurfacemodel
[3], which describes the distribution ofmeasurement sources,
used to track elliptic targets [4] and more general shapes [5]

as well. Another approach to elliptic target modeling is the
random matrix framework in [6], where the measurement
noise is assumed to be a zero-mean normally distributed
randomvector with variance depending on the current object
extension and the Bayesian recursion is derived for the target
extension and kinematical states of extended target. The
target kinematical states are modeled using a Gaussian distri-
bution, while the ellipsoidal target extension ismodeled using
an inverse Wishart distribution. In [7], Koch and Feldmann
track group targets under kinematical constraints by making
use of randommatrices. Modifications and improvements to
the Gaussian-inverse Wishart model of [6] are suggested in
[8]. Measurements of target downrange extent are used to
aid track retention in [9]. Zea et al. track elongated extended
objects using splines in [10].

Those above-mentioned methods are to track single
extended target. There are two kinds of approaches for
tracking multiple extended targets. One is based on random
finite sets. For example, in [11], Mahler presents an extension
of the probability hypothesis density (PHD) filter [12] to han-
dle extended targets. Orguner et al. propose a cardinalized
probability hypothesis density (CPHD) filter for extended
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targets [13], and Lian et al. propose unified CPHD filters for
extended targets and unresolved targets [14]. Based on the
Gaussian-mixture PHD filter [15], Granstrom presents the
extended target GMPHD (ET-GMPHD) filter for extended
target tracking in [16] and in [17] describesmuchmore details
and extensive investigations of the methodology. The ET-
GMPHD filter still has the problem that its performance
would obviously descend in the situation where two or more
extended targets are spatially close [16, 17]. PHD implemen-
tations such as the sequential Monte Carlo PHD (SMCPHD)
filter and the GMPHD filter do not include object identities.
In some cases, we need to know the track continuity of objects
in order for postprocessing, such as behavior of objects and
activity recognition. There have been studies on the track
continuity in PHD implementations [18–21]. The Gaussian
process measurement model is integrated in the recently
developed labeled multi-Bernoulli filter for extended objects
in [22]. However, in theory this kind of methods needs to
consider all possible partitions of the measurement set and
thus is computation-intensive though some algorithms have
been proposed to consider only a subset of all possible parti-
tions [16, 17].The other is those approaches which extend the
data association algorithm applied in tracking point targets
to track multiple extended targets. In [23, 24], the random
matrixmodel [6] and the randomhypersurfacemodel [3] are,
respectively, integrated into a Probabilistic Multi-Hypothesis
Tracking (PMHT) framework to track multiple extended
targets. In [25] combinedwith the partitioningmeasurements
algorithm, the JPDA (joint probabilistic data association) is
applied to describe the association between measurement
clusters and extended targets, and then the algorithm to track
multiple extended targets is formed. However, thosemethods
only consider the linear Gaussian dynamic system.

There are already single extended target trackingmethods
for nonlinear systems. In [26], a Rao-Blackwellised particle
filter, which estimates the linear part of the state space with a
Kalman filter and the nonlinear states using a particle filter, is
proposed for single target tracking. Lan and Rong Li linearize
the nonlinear measurement function to utilize the effective-
ness and efficiency of the random matrix approach [27].
To the best of our knowledge, almost all existing multiple
extended target trackingmethods are not specifically for non-
linear system, and to solve nonlinear system some of those
methods apply approximations; for example, in [28] the
ET-GMPHD filter applies UKF to handle nonlinear mea-
surement model. But, the performance of those algorithms
degrades rapidly as the nonlinearities become more severe.
Sequential Monte Carlo, i.e., particle filtering, has become a
practical numerical technique to approximate the Bayesian
tracking recursions for nonlinear and/or non-Gaussianmod-
els, due to its efficiency, simplicity, flexibility, ease of imple-
mentation, and modeling success over a wide range of
challenging applications [29]. Vermaak et al. solve the data
association problem within the context of particle filtering
in tracking an extended target [30] where extended target is
modeled as a set of fixed point features, and inmultiple points
target tracking [31].

To track multiple extended targets for the nonlinear
system, this paper employs the idea of the particle filtering

to jointly estimate the measurement-target data association
and states of extended targets and then proposes a multiple
extended target tracking algorithm. To do this, first, the
Bayesian framework is proposed for multiple extended tar-
gets. Furthermore, the joint proposal distribution is defined
for the multiple extended target combined state and asso-
ciation hypothesis, which could be obtained by the mea-
surement model and the extended target dynamic evolution
model.

The rest of the paper is organized as follows. We briefly
describe the multiple extended target tracking problem in
Section 2. Section 3 presents the proposed particle filter
for multiple extended targets. The Bayesian framework of
multiple extended targets and the joint proposal distribution
are also discussed in this section. In Section 4, simulation
results are given to demonstrate the performance of the
proposed filter. Section 5 presents concluding remarks and
outlines future research directions.

2. Model Description and
Problem Formulation

Considering a nonlinear system, the state evolution of the
extended target 𝑡 could be modeled by

x𝑡𝑘+1 = f𝑘 (x𝑡𝑘, ^𝑡𝑘) , (1)

where x𝑡𝑘 is the state of the extended target 𝑡 at the current
moment 𝑘, f𝑘 is the target state evolution function, and ^𝑡𝑘 is
the process noise. The measurement model of the extended
target 𝑡 could be expressed by

z𝑘 = h𝑘 (x𝑡𝑘,𝜔𝑘) , (2)

where h𝑘 is the measurement generation function and 𝜔𝑘 is
the measurement noise.

One extended target could generate multiple measure-
ments which contain the shape information of the extended
target, and thus the extended target tracking is usually to
estimate the kinematic state and shape parameters. In this
paper, the extended target state xk consists of the kinematic
state x𝐹𝑘 and the shape parameters x𝐸𝑘 at the current moment
𝑘; i.e., x𝑘 = [(x𝐹𝑘 )T, (x𝐸𝑘 )T]T.

The combined state is defined as the composition of the
individual extended target state and is denoted by 𝑋𝑈𝑘 =
[(x1𝑘)T, (x2𝑘)T, . . . , (x𝑁𝑡𝑘 )T]T at the current moment. Assume
that there are 𝑁𝑡 extended targets over the surveillance
region, and individual extended targets evolve independently
according to Markovian dynamic models (1) [17, 31]; the
dynamics of the combined state can be decomposed into a
product of the individual extended targets dynamics:

𝑝 (𝑋𝑈𝑘 | 𝑋𝑈𝑘−1) =
𝑁𝑡

∏
𝑡=1

𝑝 (x𝑡𝑘 | x𝑡𝑘−1) , (3)

where 𝑝(x𝑡𝑘 | x𝑡𝑘−1) is the probability density function of the
extended target 𝑡 state transition.

At the current moment, the measurement set 𝑍𝑘 consists
of the measurements from extended targets and clutter
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measurements, and each extended target can generate more
than onemeasurement at each time step. To deal with the data
association problem, we introduce the association hypothesis
denoted by

𝜆𝑘 = [a𝑘,𝑀𝑐,𝑀𝑡] , (4)

where 𝑀𝑐 is the number of clutter measurements, 𝑀𝑡 is the
number ofmeasurements from extended targets, and a𝑘 is the
association vector. The association vector a𝑘 is given by

a𝑘 = [𝑎1𝑘 , . . . , 𝑎𝑀𝑘 ] , (5)

where 𝑀 is the number of measurements at the current
moment (note that 𝑀 = 𝑀𝑐 + 𝑀𝑡); 𝑎𝑖𝑘 belongs to [0 𝑁𝑡].
𝑎𝑖𝑘 = 0means that the measurement 𝑖 generates from clutter,
and 𝑎𝑖𝑘 = 𝑡 ̸= 0means that the measurement 𝑖 stems from the
extended target 𝑡.

The association hypothesis 𝜆𝑘 is unknown in most prac-
tical applications. Nevertheless, a likelihood model for the
measurements, which is conditional on a known association
hypothesis, could be obtained, and then the marginal like-
lihood model for measurements could be derived through
marginalising over the association hypothesis uncertainty.
Assume that the measurement is generated independently
[2], the likelihoodmodel conditional on a known association
hypothesis could be given by

𝑝 (𝑍𝑘 | 𝑋𝑈𝑘 ,𝜆𝑘) = ∏
𝑖∈I0

𝑝𝐶 (z𝑖𝑘)∏
𝑖∈I

𝑝 (z𝑖𝑘 | x𝑡𝑘) , (6)

where I0 = {𝑖 ∈ [1, . . . ,𝑀] : 𝑎𝑖𝑘 = 0} is the subset of clutter
measurements, and I = {𝑖 ∈ [1, . . . ,𝑀] : 𝑎𝑖𝑘 = 𝑡 ̸= 0}
is the subset of measurements from extended targets. 𝑝𝐶 is
the clutter likelihood model, which is normally assumed to
be uniform over the surveillance region. 𝑝(z𝑖𝑘 | x𝑡𝑘) is the
likelihood of the measurement 𝑖 associated with the target 𝑡.

For a given number of measurements originating from
extended targets 𝑀𝑡, the number of ways of choosing a
subset of 𝑀𝑡 measurements from 𝑀 measurements is 𝑀!/
𝑀𝑡!(𝑀 −𝑀𝑡)!. The number of possible associations between
a measurement and 𝑁𝑡 extended targets is 𝑁𝑡 since each
measurement may originate from any extended target, and
thus that of between𝑀𝑡 measurements and𝑁𝑡 extended tar-
gets is 𝑁𝑀𝑡𝑡 . Therefore, for a given number of measurements
from extended targets 𝑀𝑡 the total number of association
hypotheses is shown as follows:

𝑁𝜆 (𝑀𝑡,𝑀𝑐) = 𝑀!
𝑀𝑡! (𝑀 −𝑀𝑡)!𝑁

𝑀𝑡
𝑡 (7)

However, the number of measurements from extended tar-
gets𝑀𝑡 is unknown, and thus the total number of association
hypotheses is given by

𝑁𝜆 =
𝑀

∑
𝑀𝑡=0

𝑁𝜆 (𝑀𝑡,𝑀𝑐) (8)

If the total number of association hypotheses 𝑁𝜆 is not
large, the marginal likelihood could be obtained through

marginalising over the association uncertainty, as shown
below

𝑝 (𝑍𝑘 | 𝑋𝑈𝑘 ) = ∑
𝜆𝑘

𝑝 (𝜆𝑘 | 𝑋𝑈𝑘 ) 𝑝 (𝑍𝑘 | 𝑋𝑈𝑘 ,𝜆𝑘) , (9)

where 𝑝(𝜆𝑘 | 𝑋𝑈𝑘 ) is the prior distribution of the association
hypothesis, which is assumed to be of the form

𝑝 (𝜆𝑘 | 𝑋𝑈𝑘 ) = 𝑝 (a𝑘 | 𝑀𝑡,𝑀𝑐) 𝑝 (𝑀𝑐) 𝑝 (𝑀𝑡 | 𝑋𝑈𝑘 ) (10)

For a known number of measurements from extended
targets𝑀𝑡, the prior probability of each association vector is
assumed to be the same and thus could be given by

𝑝 (a𝑘 | 𝑀𝑡,𝑀𝑐) = (𝑁𝜆 (𝑀𝑡,𝑀𝑐))−1 (11)

The number of cluttermeasurements is assumed to follow
a Poisson distribution, with the expected number 𝛾𝑐:

𝑝 (𝑀𝑐) = (𝛾𝑐)𝑀𝑐 𝑒(−𝛾𝑐)
𝑀𝑐!

(12)

Since each of the extended targets can generatemore than
one measurement at each time step,𝑀𝑡 measurements could
stem fromone extended target ormore than one.Thenumber
of measurements generated by the extended target 𝑡 at each
time step is assumed to be a Poisson distributed random
variable with rate 𝛾𝑡 measurements per scan. The probability
of the extended target 𝑡 generating at least one measurement
is 1 − 𝑒−𝛾𝑡 . Each target is detected with probability 𝑃𝑡𝐷, giving
the effective probability of detection (1 − 𝑒−𝛾𝑡)𝑃𝑡𝐷. If the
detected probability of each extended target is the same,
denoted by 𝑃𝐷, and the mean number of measurements
from each extended target is 𝛾, the prior probability for 𝑀𝑡
measurements from𝑁𝑡 extended targets is given by

𝑝 (𝑀𝑡 | 𝑋𝑈𝑘 ) =
min(𝑀𝑡 ,𝑁𝑡)

∑
𝑛=1

𝐶𝑛𝑁𝑡 (1 − (1 − 𝑒−𝛾) 𝑃𝐷)
𝑁𝑡−𝑛

⋅ 𝑝 (𝑀𝑡 | 𝑛, 𝑋𝑈𝑘 ) ,
(13)

where 𝐶𝑛𝑁𝑡 is the number of ways of choosing a subset of 𝑛
elements from𝑁𝑡 and 𝑝(𝑀𝑡 | 𝑛, 𝑋𝑈𝑘 ) is the probability of𝑀𝑡
measurements generating from 𝑛 extended targets. Since the
number of measurements from each extended target is not
the same and not fixed in the case of 𝑛 > 1, the form of 𝑝(𝑀𝑡 |𝑛, 𝑋𝑈𝑘 ) is complicated and consists of 𝐶𝑛−1𝑀𝑡−1 components.

The computational complexity for the conditional like-
lihood in (6) and the prior distribution of the association
hypothesis in (10) is𝑂(𝑀) and𝑂(min(𝑀𝑡, 𝑁𝑡)), respectively,
and thus the computational complexity for the marginal
likelihood in (9) is 𝑂(𝑁𝜆(𝑀 + min(𝑁𝑡,𝑀𝑡))). The number
of association hypotheses increases exponentially with the
increase in the number of measurements and extended
targets. Thus, in many practical applications, the number of
feasible association hypotheses𝑁𝜆 is prohibitively large, and
the marginalisation cannot be performed explicitly.
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3. The Multiple Extended Target Particle Filter

In the condition that the combined state evolution 𝑝(𝑋𝑈𝑘 |
𝑋𝑈𝑘−1) and the marginal likelihood 𝑝(𝑍𝑘 | 𝑋𝑈𝑘 ) have been
known, and a suitable proposal distribution is given, the idea
of the particle filter could be applied in tracking multiple
extended targets. However, the computational complexity
is 𝑂(𝑁𝑁𝜆(𝑀 + min(𝑁𝑡,𝑀𝑡))) at each time step (𝑁 is the
number of particles per step) and quickly becomes infeasible
for the numbers of extended targets and measurements.

The most of computational burden is generated by
marginalising over the association uncertainty in computing
the marginal likelihood. To avoid the expensive marginalisa-
tion computation, we apply the idea of the particle filtering
to jointly estimate the multiple extended target combined
state 𝑋𝑈𝑘 and the data association 𝜆 and define the joint
proposal distribution for the combined state and association
hypothesis 𝑞(𝑋𝑈𝑘 , 𝜆𝑘 | 𝑋𝑈𝑘−1, 𝜆𝑘−1, 𝑍𝑘), from which the
combined state and the association hypotheses are sampled.

3.1. The Framework of the Multiple Extended Target Particle
Filter. In the Bayesian framework, each update of the joint
probability density𝑝(𝑋𝑈𝑘 , 𝜆𝑘 | 𝑍𝑘) is preceded by a prediction
step and a filtering step.Thepredicted joint density𝑝(𝑋𝑈𝑘 ,𝜆𝑘 |
𝑍𝑘−1) is calculated by integration

𝑝 (𝑋𝑈𝑘 ,𝜆𝑘 | 𝑍𝑘−1) = 𝑝 (𝜆𝑘 | 𝑋𝑈𝑘 ) × ∫𝑝 (𝑋𝑈𝑘 | 𝑋𝑈𝑘−1)

⋅ ∑
𝜆𝑘−1

𝑝 (𝑋𝑈𝑘−1,𝜆𝑘−1 | 𝑍𝑘−1) 𝑑𝑋𝑈𝑘−1,
(14)

where 𝑝(𝜆𝑘 | 𝑋𝑈𝑘 ) is the prior distribution of the association
hypothesis and 𝑝(𝑋𝑈𝑘 | 𝑋𝑈𝑘−1) is the transition density of the
combined state, which describes the state evolution dynamic
model. According to Bayes’ rule, the joint probability density
function 𝑝(𝑋𝑈𝑘 ,𝜆𝑘 | 𝑍𝑘) is given by

𝑝 (𝑋𝑈𝑘 ,𝜆𝑘 | 𝑍𝑘)

= 𝑝 (𝑍𝑘 | 𝑋𝑈𝑘 ,𝜆𝑘) 𝑝 (𝑋𝑈𝑘 ,𝜆𝑘 | 𝑍𝑘−1)
∑
𝜆𝑘
∫𝑝 (𝑍𝑘 | 𝑋𝑈𝑘 ,𝜆𝑘) 𝑝 (𝑋𝑈𝑘 ,𝜆𝑘 | 𝑍𝑘−1) 𝑑𝑋𝑈𝑘

,
(15)

where 𝑝(𝑍𝑘 | 𝑋𝑈𝑘 , 𝜆𝑘) is the conditional likelihood as in (6).
The Monte Carlo implementation of the formulas (14)

and (15) could be described as follows: assuming that a set
of samples with weights {𝑋𝑈,(𝑖)

𝑘−1
,𝜆(𝑖)
𝑘−1

, 𝑤(𝑖)
𝑘−1

}𝑁𝑖=1 is available,
approximately distributed according to the marginal filtering
distribution at the previous time step 𝑝(𝑋𝑈𝑘−1, 𝜆𝑘−1 | 𝑍𝑘−1), at
the current time step, the set of new samples for the multiple
extended target combined state and association hypothesis
are generated from a suitably joint proposal distribution

(𝑋𝑈,(𝑖)𝑘 ,𝜆(𝑖)𝑘 ) ∼ 𝑞 (𝑋𝑈𝑘 , 𝜆𝑘 | 𝑋𝑈,(𝑖)𝑘−1 ,𝜆(𝑖)𝑘−1, 𝑍𝑘) (16)

The particle weights are given by

𝑤(𝑖)𝑘 ∝ 𝑤(𝑖)𝑘−1

× 𝑝 (𝑍𝑘 | 𝑋𝑈,(𝑖)𝑘 ,𝜆(𝑖)
𝑘
) 𝑝 (𝜆(𝑖)

𝑘
| 𝑋𝑈,(𝑖)
𝑘

) 𝑝 (𝑋𝑈,(𝑖)
𝑘

| 𝑋𝑈,(𝑖)
𝑘−1

)
𝑞 (𝑋𝑈,(𝑖)
𝑘

, 𝜆(𝑖)
𝑘
| 𝑋𝑈,(𝑖)
𝑘−1

,𝜆(𝑖)
𝑘−1

, 𝑍𝑘)
(17)

The resulting sample set {𝑋𝑈,(𝑖)
𝑘

, 𝜆(𝑖)
𝑘
, 𝑤(𝑖)
𝑘
}𝑁𝑖=1 is approximately

distributed by the joint posterior probability distribution at
the current time step 𝑝(𝑋𝑈𝑘 ,𝜆𝑘 | 𝑍𝑘), and resampling could
be applied to avoid degeneracy of the particle sets.

3.2. The Joint Proposal Distribution. According to the mul-
tiplication theorem on probability, the joint proposal distri-
bution for the multiple extended target combined state and
association hypothesis can be written as

𝑞 (𝑋𝑈𝑘 ,𝜆𝑘 | 𝑋𝑈𝑘−1,𝜆𝑘−1, 𝑍𝑘)
= 𝑞 (𝜆𝑘 | 𝑋𝑈𝑘 , 𝑋𝑈𝑘−1,𝜆𝑘−1, 𝑍𝑘)
⋅ 𝑞 (𝑋𝑈𝑘 | 𝑋𝑈𝑘−1, 𝜆𝑘−1, 𝑍𝑘)

(18)

We assume that the combined state and the association
hypothesis at the current time step are independent of the
association hypothesis at the previous time step.This assump-
tion is reasonable due to only a weak temporal dependence
between the association hypotheses. Thus the joint proposal
distribution can be written as a product of the proposal for
the association hypothesis and the proposal for the combined
state

𝑞 (𝑋𝑈𝑘 ,𝜆𝑘 | 𝑋𝑈𝑘−1,𝜆𝑘−1, 𝑍𝑘)
= 𝑞 (𝜆𝑘 | 𝑋𝑈𝑘 , 𝑍𝑘) 𝑞 (𝑋𝑈𝑘 | 𝑋𝑈𝑘−1, 𝑍𝑘)

(19)

3.2.1. The Proposal Distribution for the Association Vector.
If the association vector a has been generated from the
proposal distribution, the number of clutter measurements
𝑀𝑐 and measurements from extended target 𝑀𝑡 could be
calculated, and thus we define the proposal distribution for
the association vector instead of the association hypothesis.
Based on the notion of a soft-gating of measurements, the
proposal for the association vector is assumed to take a
form that factorises sequentially over the individual target
associations, which is similar in spirit to the single extended
target tracking developed in [30], as shown below

𝑞 (a𝑘 | 𝑋𝑈𝑘 , 𝑍𝑘) =
𝑀

∏
𝑖=1

𝑞 (𝑎𝑖𝑘 | 𝑎1:𝑖−1𝑘 , 𝑋𝑈𝑘 , z𝑖𝑘) , (20)

where 𝑀 is the number of measurements and 𝑞(𝑎𝑖𝑘 | 𝑎1:𝑖−1𝑘 ,
𝑋𝑈𝑘 , z𝑖𝑘) is the proposal distribution for the 𝑖th component of
the association vector, the probability of which should be high
if the measurement is close to the associated extended target
and becomes low as the distance between the measurement
and the associated extended target increases. To meet this
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requirement, we define the proposal distribution for the 𝑖th
component using Bayes’ rule

𝑞 (𝑎𝑖𝑘 | 𝑎1:𝑖−1𝑘 , 𝑋𝑈𝑘 , z𝑖𝑘)

= 𝑝 (z𝑖𝑘 | x𝑡𝑘, 𝑎𝑖𝑘 = 𝑡) 𝑞 (𝑎𝑖𝑘 = 𝑡 | 𝑎1:𝑖−1𝑘 , x𝑡𝑘)
∑𝑁𝑡
𝑙=1

𝑝 (z𝑖
𝑘
| x𝑙
𝑘
, 𝑎𝑖
𝑘
= 𝑙) 𝑞 (𝑎𝑖

𝑘
= 𝑙 | 𝑎1:𝑖−1

𝑘
, x𝑙
𝑘
) ,

(21)

where 𝑞(𝑎𝑖𝑘 = 𝑡 | 𝑎1:𝑖−1𝑘 , x𝑡𝑘) is defined by the prior probability
distribution of the 𝑖th component as

𝑞 (𝑎𝑖𝑘 = 𝑡 | 𝑎1:𝑖−1𝑘 , x𝑡𝑘)

∝
{{{
{{{
{

𝑞0 𝑡 = 0,
𝑃𝑡𝐷 (1 − 𝑒𝛾𝑡) (1 − 𝑞0)
∑𝑁𝑡
𝑙=1

𝑃𝑙𝐷 (1 − 𝑒𝛾𝑙)
𝑡 ∈ [1, . . . , 𝑁𝑡] ,

(22)

where 𝑞0 is the prior probability of the measurement 𝑖 from
the clutter and set to some fixed value, 𝑃𝑡𝐷 is the detection
probability of the extended target 𝑡, and 𝛾𝑡 is the mean
number of measurements from the extended target 𝑡.

Since the extended target could generate more than
one measurement, for any given measurement, it may be
generated from any extended target or the clutter. Thus, we
could assume that the prior probability distribution of the 𝑖th
component (22) is independent of the association hypotheses
for those 1 : 𝑖 − 1th measurements; i.e., 𝑞(𝑎𝑖𝑘 | 𝑎1:𝑖−1𝑘 , x𝑡𝑘) is
independent of 𝑎1:𝑖−1𝑘 .Therefore, the proposal distribution for
the 𝑖th component of the association vector 𝑞(𝑎𝑖𝑘 | 𝑎1:𝑖−1𝑘 , 𝑋𝑈𝑘 ,
z𝑖𝑘) is also independent of 𝑎1:𝑖−1𝑘 and thus can be represented
as 𝑞(𝑎𝑖𝑘 | 𝑋𝑈𝑘 , z𝑖𝑘).
3.2.2. The Proposal Distribution for the Multiple Extended
Target Combined State. As assumed in Section 2, the indi-
vidual extended targets evolve independently according to
Markovian dynamicmodels in (3), and thus the proposal dis-
tribution function for the multiple extended target combined
state factorises over the proposal for individual extended
target

𝑞 (𝑋𝑈𝑘 | 𝑋𝑈𝑘−1, 𝑍𝑘) =
𝑁𝑡

∏
𝑡=1

𝑞 (x𝑡𝑘 | x𝑡𝑘−1, 𝑍𝑘) (23)

The simplest state proposal distribution is taken to be the state
transition function

𝑞 (x𝑡𝑘 | x𝑡𝑘−1, 𝑍𝑘) = 𝑝 (x𝑡𝑘 | x𝑡𝑘−1) (24)

However, the new particle set generated from the simplest
state proposal distribution is seriously dependent on the
target evolution model and does not work well in some situa-
tions due to taking no account of the current measurements.
An alternative method is to select the optimal importance
function as the proposal distribution, which minimises the
variance of the importance weights

𝑞 (x𝑡𝑘 | x𝑡𝑘−1, 𝑍𝑘) = 𝑝 (x𝑡𝑘 | x𝑡𝑘−1, 𝑍𝑘)
∝ 𝑝 (𝑍𝑘 | x𝑡𝑘) 𝑝 (x𝑡𝑘 | x𝑡𝑘−1) ,

(25)

where 𝑝(𝑍𝑘 | x𝑡𝑘) is the likelihood function of the extended
target 𝑡. For linear and Gaussian models, the optimal impor-
tance function is also the Gaussian function, and its analytic
form could be obtained. For models with nonlinearity and/or
non-Gaussian noise, it is generally not possible to obtain a
closed-form expression for the optimal proposal distribution.

3.3. Implementation of the Multiple Extended Target Particle
Filter. If the particle filter discussed above is directly imple-
mented, most particles will have the following phenomenon:
the resulting joint particle has good estimates for some target’
states, and bad estimates for other. However, the weight
of this particle is small for penalty of the poor target’s
states. Therefore, during the resampling stage, this particle
would be ignored and the component with good estimates
is also abandoned by suppressing the poor estimates. This
leads to a great decline of the filter performance. In this
case, to maintain the same estimation accuracy, the number
of particles required will increase exponentially with the
increase of the combined state dimension, which increases as
the number of targets increases.

To solve the above problem, the proposed method is as
follows. Firstly, the generation and evolution of the multiple
extended target combined state particles are decomposed into
that of the individual target state particles, and the particle
set of each target is resampled according to the weights
associated with it. This allows each target to retain particles
whose state is better, avoiding the problem generated from
the combined state particles evolution directly.The feasibility
and rationality are discussed below.

Since the proposal distribution for the 𝑖th component
of the association vector 𝑞(𝑎𝑖𝑘 | 𝑋𝑈𝑘 , z𝑖𝑘), as discussed in
Section 3.2.1, is independent of 𝑎1:𝑖−1𝑘 , according to (3), (19),
(20), and (23), the particle weight represented in (17) can be
decomposed into weights related to the individual extended
target

𝑤(𝑖)𝑘 ∝ 𝑤(𝑖)𝑘−1𝑉−𝑀
(𝑖)
𝑐 𝑝 (𝑀(𝑖)𝑐 )

𝑁𝑡

∏
𝑡=1

𝑤𝑡,(𝑖)𝑘 , (26)

where 𝑝(𝑀(𝑖)𝑐 ) is the prior probability that produces 𝑀(𝑖)𝑐
measurements and 𝑤𝑡,(𝑖)

𝑘
is the weight associated with the

extended target 𝑡

𝑤𝑡,(𝑖)𝑘 = 𝑝 (x𝑡,(𝑖)
𝑘

| x𝑡,(𝑖)
𝑘−1

)
𝑞 (x𝑡,(𝑖)
𝑘

| x𝑡,(𝑖)
𝑘−1

, 𝑍𝑘)

× ∏
𝑗∈I𝑡

𝑝 (z𝑗
𝑘
| x𝑡,(𝑖)
𝑘

) 𝑝 (𝑎𝑗,(𝑖)
𝑘

| x𝑡,(𝑖)
𝑘

)
𝑞 (𝑎𝑗,(𝑖)
𝑘

| x𝑡,(𝑖)
𝑘

, z𝑗
𝑘
)

(27)

andI𝑡 = {𝑗 ∈ {1 : 𝑀} : 𝑎𝑗,(𝑖)
𝑘

= 𝑡}.
If a particle has bad estimates for the extended target 𝑡, the

weight associated with this extended target 𝑤𝑡,(𝑖)
𝑘

is small for
the penalty of the poor state and causes the small weight of
this particle 𝑤(𝑖)

𝑘
. In this case, even with good state estimates

for some targets, this particle would be ignored, and the
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component with good estimates is also abandoned during the
resampling stage.

The joint proposal distribution for the multiple extended
target combined state and association hypothesis can be
written as a product of that for the association vector and
that for the combined state, as shown in (18), and the proposal
distribution function for the extended target combined state
can factorise over the proposal for individual extended target,
as shown in (23). Therefore, new particle set of the extended
target combined state can be independently sampled from
those proposal distributions of individual target at 𝑘 step.
Furthermore, as shown in (26), the particle weight can be
decomposed into weights related to the individual extended
target, and thus the generation and evolution of extended tar-
get combined state particles can be decomposed into that of
individual target state particles. Therefore, the particle set of
individual extended targets could be resampled individually
according to those weights 𝑤𝑡,(𝑖)

𝑘
, and then the particle set

of the multiple extended target combined state is resampled
according to weights 𝑤(𝑖)

𝑘
.

Assuming that the sample set {𝑋𝑈,(𝑖)
𝑘−1

, 𝑤(𝑖)
𝑘−1

}𝑁𝑖=1, which is
approximately distributed by the marginal posterior proba-
bility𝑝(𝑋𝑈𝑘−1 | 𝑍𝑘−1), is obtained bymarginalizing the sample
set {𝑋𝑈,(𝑖)

𝑘−1
, 𝜆(𝑖)
𝑘−1

, 𝑤(𝑖)
𝑘−1

}𝑁𝑖=1 of the joint posterior probability
distribution 𝑝(𝑋𝑈𝑘−1, 𝜆𝑘−1 | 𝑍𝑘−1), the implementation steps
of the proposed multiple extended target particle filter are as
follows.

(1) For 𝑡 = 1 : 𝑁𝑡, 𝑖 = 1 : 𝑁, generate new samples for the
extended target states from the proposal distribution of the
extended target state x𝑡,(𝑖)

𝑘
∼ 𝑞𝑡(x𝑡𝑘 | x𝑡,(𝑖)𝑘−1, 𝑍𝑘).

(2) For 𝑗 = 1 : 𝑀, 𝑖 = 1 : 𝑁, generate samples for
the associations according to the proposal distribution of the
association vector 𝑎𝑗,(𝑖)

𝑘
∼ 𝑞(𝑎𝑗
𝑘
| 𝑋(𝑖)
𝑘
, z𝑗
𝑘
).

(3) For 𝑡 = 1 : 𝑁𝑡, 𝑖 = 1 : 𝑁, compute and normalise the
individual target component weights 𝑤𝑡,(𝑖)

𝑘

𝑤𝑡,(𝑖)𝑘 ∝ 𝑝(x𝑡,(𝑖)
𝑘

| x𝑡,(𝑖)
𝑘−1

)
𝑞 (x𝑡,(𝑖)
𝑘

| x𝑡,(𝑖)
𝑘−1

, 𝑍𝑘)

× ∏
𝑗∈I𝑡

𝑝 (z𝑗
𝑘
| x𝑡,(𝑖)
𝑘

) 𝑝 (𝑎𝑗,(𝑖)
𝑘

| x𝑡,(𝑖)
𝑘

)
𝑞 (𝑎𝑗,(𝑖)
𝑘

| x𝑡,(𝑖)
𝑘

, z𝑗
𝑘
) ,

𝑁

∑
𝑖=1

𝑤𝑡,(𝑖)𝑘 = 1

(28)

(4) If resampling is required, for 𝑡 = 1 : 𝑁𝑡, 𝑖 = 1 : 𝑁,
sample an index 𝑛𝑖 according the distribution {𝑤𝑡,(𝑙)𝑘 }𝑁𝑙=1, and
{x𝑡,(𝑛𝑖)
𝑘

, 𝑎𝑗,(𝑛𝑖)
𝑘

} replace {x𝑡,(𝑖)
𝑘

, 𝑎𝑗,(𝑖)
𝑘

}, where 𝑗 ∈ {1 : 𝑀} and
𝑎𝑗,(𝑖)
𝑘

= 𝑡.
(5) For 𝑖 = 1 : 𝑁, compute and normalise the particle

weights 𝑤(𝑖)
𝑘

𝑤(𝑖)𝑘 ∝ 𝑤(𝑖)𝑘−1𝑉−𝑀
(𝑖)
𝑐 𝑝 (𝑀(𝑖)𝑐 ) ,

𝑁

∑
𝑖=1

𝑤(𝑖)𝑘 = 1
(29)

(6) If resampling is required, for 𝑖 = 1 : 𝑁, sample an
index 𝑛𝑖 according the distribution {𝑤(𝑙)𝑘 }𝑁𝑙=1, and {𝑋𝑈,(𝑛𝑖)𝑘 , 𝜆(𝑛𝑖)

𝑘
,

𝑁−1} replace {𝑋𝑈,(𝑖)
𝑘

,𝜆(𝑖)
𝑘
, 𝑤(𝑖)
𝑘
}.

The resulting sample set {𝑋𝑈,(𝑖)
𝑘

,𝜆(𝑖)
𝑘
, 𝑤(𝑖)
𝑘
}𝑁𝑖=1 is approxi-

mately distributed in the joint posterior probability distribu-
tion of the multiple extended target combined state and the
association hypothesis at the current time step 𝑝(𝑋𝑈𝑘 ,𝜆𝑘 |
𝑍𝑘).

Not only the kinematic state but also the shape infor-
mation can be obtained from the multiple measurements
generated from the extended target. According to the tar-
get state evolution model, the measurement source model,
and the sensor measurement model, the proposed multiple
extended target particle filter can estimate the kinematic state
and shape parameter of each extended target. For example,
the random hypersurface model can be used to describe the
extended target measurement source model [5].

4. Simulation Results

In this section, we compare the performance of the proposed
multiple extended target particle filter with the ET-RHM-
GMPHD filter and the ET-RHM-SMCPHD filter. The ET-
RHM-GMPHD filter uses the framework of the Gaussian-
Mixture probability hypothesis density (GMPHD) filter to
avoid the data association [17] and applies the random
hypersurface model describing the measurement source dis-
tribution for convex-star extended target [5] and employs the
particle filter to deal with the nonlinear measurement model
in update step. Details for the ET-RHM-GMPHD filter are
referred to in [32].The ET-RHM-SMCPHDfilter is a sequen-
tialMonte Carlo implementation of the extended target prob-
ability hypothesis density (ET-PHD) filter based on RHM.

4.1. Simulation Setup. For illustration purposes, we consider
a two-dimensional scenario over the surveillance region
[−1000, 1000] × [−1000, 1000] (in m). The extended target
state is x𝑘 = [𝑥𝑘, 𝑦𝑘, �̇�𝑘, ̇𝑦𝑘, (x𝐸𝑘 )T]T, where [𝑥𝑘, 𝑦𝑘]T is the
position vector of the centroid, [�̇�𝑘, ̇𝑦𝑘]T is the velocity vector,
and x𝐸𝑘 is the shape parameter vector. The shape parameter
vector x𝐸𝑘 , as defined in [5], is [a0𝑘, 𝑎1𝑘 , 𝑏1𝑘 , . . . , 𝑎𝑁𝐹𝑘 , 𝑏𝑁𝐹

𝑘
]T, which

consists of Fourier coefficients of the Fourier series expansion
of the radial function for the extended target boundary. Here
𝑁𝐹 is set to 5.

The nonlinear system which has the linear Gaussian
dynamics and the nonlinear measurement model is con-
sidered. Each extended target follows the linear Gaussian
dynamics

x𝑡𝑘+1 = F𝑘x
𝑡
𝑘 + k𝑡𝑘 𝑡 = 1, . . . , 𝑁𝑡, (30)
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Figure 1: Measurement model for extended targets.
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Figure 2: Trajectories of extended targets (circle: star point; square:
end point).

where k𝑡𝑘 is process noise with zero-mean and covari-
ance matrix 𝑄𝑘. F𝑘 = diag ([ I2 𝑇I2

02 I2 ] , I11), Q𝑘 =
diag(𝜎2 [ (𝑇4/4)I2 (𝑇3/2)I2

(𝑇3/2)I2 𝑇2I2
] , 0.03I11), and 𝑇 = 1 is the sampling

period, and 𝜎 = 1 is the standard deviation of the process
noise, and I𝑛 denotes the 𝑛 × 𝑛 identity matrix, and 0𝑛 is the𝑛 × 𝑛 zero matrix. The measurement sources are uniformly
drawn from the surface of the extended target (the squared
scaling factor 𝑠𝑘 is uniformly distributed on the interval [0, 1]
[5]).

As illustrated in Figure 1, themeasurementmodel consists
of the measurement source model which is described by the
random hypersurface model (RHM) and sensor model [5].
Themeasurement z𝑘 is a noisy version of the position ofmea-
surement source y𝑘, but there is serious nonlinearity between
shape parameters of the irregular extended target and mea-
surements. Each extended target has multiple measure-
ment sources, so multiple measurements can be generated.
The measurement model can be shown as

z𝑡𝑘,𝑙 = y𝑡𝑘,𝑙 + 𝜔𝑘,𝑙
= 𝑠𝑡𝑘,𝑙 ⋅ R𝑘 (𝜙𝑡𝑘,𝑙) ⋅ x𝐸,𝑡𝑘 ⋅ 𝜂 (𝜙𝑡𝑘,𝑙) + 𝜇𝑡𝑘 + 𝜔𝑘,𝑙

(31)

which maps the state x𝑡𝑘, the measurement noise 𝜔𝑘,𝑙, and the
scaling factor 𝑠𝑡𝑘,𝑙 to the measurement z𝑡𝑘,𝑙, where z𝑡𝑘,𝑙 is the
𝑙th measurement from the extended target 𝑡, 𝜇𝑡𝑘 = [𝑥𝑡𝑘, 𝑦𝑡𝑘]T
is the position vector of the centroid, and 𝜂(𝜙𝑡𝑘,𝑙) = [cos(𝜙𝑡𝑘,𝑙),

sin(𝜙𝑡𝑘,𝑙)]T, and R𝑘(𝜙𝑡𝑘,𝑙) = [1, cos(𝜙𝑡𝑘,𝑙), sin(𝜙𝑡𝑘,𝑙), . . . ,
cos(𝑁𝐹𝜙𝑡𝑘,𝑙), sin(𝑁𝐹𝜙𝑡𝑘,𝑙)]. The term 𝜙𝑡𝑘,𝑙 denotes the angle
between the vector from the center to the measurement
source y𝑡𝑘,𝑙 and the 𝑥-axis, but it is unknown in (31). However,
we can substitute the unknown value of 𝜙𝑡𝑘,𝑙 by a proper point
estimate. In case of isotropic measurement noise, a proper
point estimate 𝜙𝑡𝑘,𝑙 is given by the angle between the vector
from the current center estimate �̂�𝑡𝑘,𝑙−1 to the measurement
z𝑡𝑘,𝑙 and the 𝑥-axis. To reduce the influence of 𝜙𝑘,𝑙 on 𝑥𝑘,
algebraic manipulations are performed on (31) as follows:

z𝑡𝑘,𝑙 − 𝜇𝑡𝑘 = 𝑠𝑡𝑘,𝑙 ⋅ R𝑘 (𝜙𝑡𝑘,𝑙) ⋅ x𝐸,𝑡𝑘 ⋅ 𝜂 (𝜙𝑡𝑘,𝑙) + 𝜔𝑘,𝑙 (32)

z𝑡𝑘,𝑙 − 𝜇𝑡𝑘

2 = (𝑠𝑡𝑘,𝑙)2 ⋅ R𝑘 (𝜙𝑡𝑘,𝑙) ⋅ x𝐸,𝑡𝑘


2

+ 2𝑠𝑡𝑘,𝑙R𝑘 (𝜙𝑡𝑘,𝑙) x𝐸,𝑡𝑘 𝜂 (𝜙𝑡𝑘,𝑙)𝜔𝑘,𝑙
+ 𝜔𝑘,𝑙2

(33)

Based on (33), the following new measurement equation
ℎ∗(⋅, ⋅, ⋅, ⋅) is obtained:

0 = ℎ∗ (𝑥𝑘, 𝜔𝑘,𝑙, 𝑠𝑘,𝑙, 𝑧𝑘,𝑙)
= (𝑠𝑡𝑘,𝑙)2 ⋅ R𝑘 (𝜙𝑡𝑘,𝑙) ⋅ x𝐸,𝑡𝑘


2

+ 2𝑠𝑡𝑘,𝑙R𝑘 (𝜙𝑡𝑘,𝑙) x𝐸,𝑡𝑘 𝜂 (𝜙𝑡𝑘,𝑙)𝜔𝑘,𝑙 + 𝜔𝑘,𝑙2

− z𝑡𝑘,𝑙 − 𝜇𝑡𝑘

2

(34)

which maps the state 𝑥𝑘, the measurement noise 𝜔𝑘,𝑙, and the
scaling factor 𝑠𝑘,𝑙 to the pseudomeasurement 0. The obtained
final measurement equation (34) is applied to update the
kinematic state and shape parameter estimates [5, 33] and
is used as the measurement model for the star-convex shape
target.

Themeasurement noise is set to zero-meanGaussianwith
covariance matrix ΣV = diag(0.2, 0.2). The scaling factor 𝑠 is
set to aGaussian functionwithmean 0.5 and variance 0.02. In
each simulation, clutters are generated with a Poisson rate of
10 clutter measurements and each extended target generates
measurements with a Poisson rate 10 measurements per scan.
The detection probability of the extended target is set to 0.9,
and the number of particles per steps is set to 1000.

4.2. Results. In this section, four star-convex extended targets
are tracked, and their trajectories are shown in Figure 2. The
targets 1 and 2 are born at 1 s. The target 3 is spawned from
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Figure 3: Shape of the extended targets 1 and 2 (×: measurement).
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Figure 4: Shape of the extended targets 3 and 4 (×: measurement).

target 1 at 6 s and disappears at 15 s.The target 4 is born at 20 s.
The size of the targets 3 and 4 is about half of the targets 1 and
2, as shown in Figures 3 and 4.Theparameters of the shape are
a priori set to Gaussian with mean [2, 01×10]𝑇 and covariance
matrix 0.03I11, i.e., an uncertain circle with radius 2.

To evaluate the performance of the proposed filter, the
root mean squared errors (RMSE) of the position estimates
are comparedwith the corresponding results produced by the
ET-RHM-GMPHD filter and the ET-RHM-SMCPHD filter.
Because Fourier coefficients with lower indices encode infor-
mation about the coarse features of the shape and Fourier
coefficients with higher indices give information about finer
details, their RMSE could not describe the shape estimation
error well. In this paper, the Jaccard distance between the
estimated shape and the true shape is applied to evaluate the
estimated shape of the extended target, as done in [28, 34].

The Jaccard distance between two shapes is derived from
the Jaccard distance between the samples, defined as [34]

𝐷AB = 1 − 𝑆 (𝑅 (A) ∩ 𝑅 (B))
𝑆 (𝑅 (A) ∪ 𝑅 (B)) , (35)

where 𝑅(A) is the region formed by geometric shapeA; 𝑆(𝑈)
is the area of region𝑈. In [28], we have proved that the Jaccard
distance accords with three conditions of the metric.

The Jaccard distance reflects the difference in the shape
contour, size, position, and direction of the two shapes. In this
paper, the center position of the estimated shape is moved to
the center of the actual shape, and then the Jaccard distance is
used to measure the shape contour and size and the direction
of the estimated shape performance.

The shape estimation of the proposed multiple extended
target filter and the two compared filters at somemoment are
shown as Figures 5 and 6. Figures 7 and 8, which are obtained
by averaging over 100 Monte Carlo runs, are the mean RMSE
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Figure 5: Shape estimation of the target 2 at some moment (blue:
ET-RHM-GMPHD filter; red: ET-RHM-SMCPHD filter; black:
proposed multiple extended target filter).
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Figure 6: Shape estimation of target 4 at some moment (blue:
ET-RHM-GMPHD filter; red: ET-RHM-SMCPHD filter; black:
proposed multiple extended target filter).

of the position estimates and the Jaccard distance between the
estimated shape and the true shape, respectively, for the ET-
RHM-GMPHD filter and the ET-RHM-SMCPHD and the
proposed multiple extended target filter.

Figure 7 shows that the proposed filter has better position
estimates than the ET-RHM-GMPHD filter and the ET-
RHM-SMCPHD filter at the initial several moments of the
new target tracking and in the situation that the two extended
targets are spatially close to each other, and slightly better in
other situation. The reason is as follows: it is difficult to dis-
tinguish measurements from those spatially close extended
targets using the measurement set partitioning algorithm,
on which the performance of the ET-RHM-GMPHD filter
and the ET-RHM-SMCPHD depends; however association
hypothesis of the proposed particle filter is extracted from
its proposal distribution function, and the estimation error
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Figure 7: The mean RMSE of the position estimates.
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Figure 8: The Jaccard distance of the shape estimates.

caused by the uncertainty of the association hypothesis is
small. As shown in Figures 5, 6, and 8, the proposed filter sig-
nificantly outperforms the ET-RHM-GMPHD filter and the
ET-RHM-SMCPHD in the shape estimation performance.
The reason for this is that the function, which describes the
relationship between measurements and the shape param-
eters, is severely nonlinear, and the proposed multiple
extended target filter, which jointly estimates extended targets
and association hypothesis using particle filtering techniques,
is specifically presented for the nonlinear non-Gaussian
system, and furthermore the estimation error caused by the
uncertainty of the association hypothesis is small.

5. Conclusion

For the nonlinear system, this paper proposed a multiple
extended target particle filter which applies the idea of
particle filter to jointly estimate the kinematic state and shape
parameters of extended targets. Firstly, the Bayesian frame-
work for multiple extended targets is proposed to jointly esti-
matemultiple extended target state and data association. Fur-
thermore, the joint proposal distribution function ofmultiple
extended target combining state and association hypothesis is
defined according to the extended targetmeasurement source
model, themeasurementmodel, and the target state evolution
model. Then, the particle implementation is applied under
the Bayesian framework for multiple extended targets, and
to improve the performance the generation and evolution
of the joint target state particles are decomposed into the
generation and evolution of the particles of individual target
state. Simulation results show that the proposed multiple
extended target particle filter achieves the less error of the
shape estimates and enhances the position tracking accuracy
at the initial several moments of the new target tracking and
when there are spatially close extended targets.
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