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In the electrostatic field computations, second-order elliptic interface problems with nonhomogeneous interface jump conditions
need to be solved. In realistic applications, often the total electric quantity on the interface is given. However, the charge distribution
on the interface corresponding to the nonhomogeneous interface jump condition is unknown. This paper proposes a Cartesian
grid method for solving the interface problemwith the given total electric quantity on the interface.The proposedmethod employs
both the immersed finite element with the nonhomogeneous interface jump condition and the augmented technique. Numerical
experiments are presented to show the accuracy and efficiency of the proposed method.

1. Introduction

We consider an isolated conductor that is placed near other
charges or in an external electric field. For simplicity, we take
a rectangular domain Ω ∈ R2 as the computational domain.
The conductor occupying Ω− is included in the domain Ω.
The boundary of Ω− is denoted by Γ which is also called an
interface in this paper. We assume that Γ ∩ 𝜕Ω ̸= 0. Let Ω+ =Ω\Ω−, let n be the unit normal vector of Γ pointing fromΩ−
to Ω+, and let 𝜀+ be the permittivity of Ω+. The modeling of
the electrostatic field leads to the interface problem [1],

−∇ ⋅ (∇𝜙−) = 0, in Ω−,
−∇ ⋅ (𝜀+∇𝜙+) = 𝑓+ (𝑥, 𝑦) , in Ω+, (1)

together with the interface jump conditions on the interfaceΓ,
𝜙+ − 𝜙− = 0,

𝜀+∇𝜙+ ⋅ n − ∇𝜙− ⋅ n = −𝑞 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Γ, (2)

where the interfacial function 𝑞(𝑥, 𝑦) represents the charge
density on the interface Γ and is also unknown; however, the
total electric quantity

𝑄 = ∫
Γ
𝑞 (𝑥, 𝑦) 𝑑𝑠 (3)

is given. For simplicity, we consider a homogeneous Dirichlet
boundary condition:

𝜙 (𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ 𝜕Ω. (4)

Note that other boundary conditions can be treated using
standard techniques. The function 𝑓+(𝑥, 𝑦) represents the
external charge density of the part outside of the conductor.
The solution 𝜙(𝑥, 𝑦)|Ω± = 𝜙±(𝑥, 𝑦) is the potential. Once
the potential 𝜙 is obtained, the electrostatic field can be
computed by𝐸 = −∇𝜙(𝑥, 𝑦). If the charge distribution 𝑞(𝑥, 𝑦)
on the interface Γ is given, then the potential 𝜙(𝑥, 𝑦) can
be solved efficiently by the immersed finite element (IFE)
method for nonhomogeneous interface jump conditions (see
[2, 3]). The significance of the IFE method [4–7] is the use
of structured meshes which are independent of the interface,
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such as Cartesian meshes.The IFEmethodmodifies the basis
function on interface elements according to the interface
conditions to capture the jumps of the exact solution. The
weak form and the degrees of freedom remain the same as if
there was no interface. If the coefficient is a constant without
jumps, then the stiffnessmatrix is the same as that obtained by
traditional finite element for the problem without interfaces.
And only the right-hand side needs to be modified according
to the interface conditions. The elliptic interface problem
can be solved efficiently by the IFE method with the given
nonhomogeneous interface jump 𝑞(𝑥, 𝑦).

However, for the problem discussed in this paper, only
the total electric quantity on the interface is known, not
the charge density distribution on the interface which is
related to the nonhomogeneous interface jump condition of
this problem. In [1], the authors proposed an iterative IFE
method for this interface problem. An IFE method with
nonhomogeneous interface jump conditions and a standard
finite element method with ghost nodes are combined to get
a “Prediction-Correction-Prediction” iteration. Numerical
examples in [1] show that the iterative method is convergent
and can solve this problem efficiently. Note that for partial
differential equations there are many other methods in the
literature [8–11]. In this paper, we present a new Cartesian
grid method based on the IFE method and the augmented
technique [12, 13]. By introducing the jump of the normal
derivative of the exact solution as an augmented variable,
we can get an efficient discretization in which the fast
Fourier transform- (FFT-) based fast Poisson solver can be
applied. The augmented variable is chosen such that the
nonhomogeneous interface jump condition and the total
electric quantity are satisfied. In the numerical method, the
augmented variable is solved by using the GMRES iteration.
Compared with the iterative IFE method proposed in [1], the
advantage of our Cartesian gridmethod is that the FFT-based
fast Poisson solver can be used. Numerical experiments are
also provided in this paper to show the performance of the
proposed method.

The rest of the paper is organized as follows. In Section 2,
we describe the augmented technique for the interface prob-
lem with given electric quantity on the interface. We choose
an augmented variable and rewrite the interface problem to
a new one for which the FFT-based fast Poisson solver can
be applied. In Section 3, we briefly recall the IFE method
for the nonhomogeneous interface jump conditions, where
the augmented variable is assumed to be given. In Section 4,
the constraint of the total electric quantity is enforced and
some implementation details about the GMRES iteration are
described. Finally, some numerical examples are provided in
Section 5 to show the accuracy and efficiency of the proposed
method.

2. Augmented Technique for Given
Electric Quantity on Interfaces

By introducing an augmented variable𝑔 = ∇𝜙+⋅n−∇𝜙−⋅n and
using the fact that the coefficient 𝜀+ is a constant, the original
problem can be written as

−Δ𝜙 = 𝑓 (𝑥, 𝑦) , in Ω− ∪ Ω+,
[𝜙]Γ = 𝜙+ − 𝜙− = 0, on Γ,

[∇𝜙 ⋅ n]Γ = ∇𝜙+ ⋅ n − ∇𝜙− ⋅ n = 𝑔, on Γ,
𝜙 (𝑥, 𝑦) = 0, on 𝜕Ω,

(5)

with

𝑓 (𝑥, 𝑦) = {{{{{
0 in Ω−,
𝑓+ (𝑥, 𝑦)
𝜀+ in Ω+. (6)

It is obvious that the solution of (5)-(6) is dependent on the
augmented variable 𝑔.Thus, we denote the solution of (5)-(6)
by 𝜙𝑔(𝑥, 𝑦). Let the solution of the original model problem
(1)-(4) be 𝜙∗(𝑥, 𝑦) and define

𝑔∗ = ∇𝜙∗󵄨󵄨󵄨󵄨Ω+ ⋅ n − ∇𝜙∗󵄨󵄨󵄨󵄨Ω− ⋅ n, on Γ. (7)

Then 𝜙∗(𝑥, 𝑦) satisfies (5)-(6) with 𝑔 ≡ 𝑔∗. In other words,𝜙𝑔∗(𝑥, 𝑦) = 𝜙∗(𝑥, 𝑦). From the original model problem, the
augmented variable 𝑔 should be chosen such that the solution
of (5)-(6) 𝜙𝑔(𝑥, 𝑦) satisfies
𝜀+ ∇𝜙𝑔󵄨󵄨󵄨󵄨Ω+ ⋅ n − ∇𝜙𝑔󵄨󵄨󵄨󵄨Ω+ ⋅ n = −𝑞 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Γ,

𝑄 = ∫
Γ
𝑞 (𝑥, 𝑦) 𝑑𝑠. (8)

This is the constraint for the choice of the augmented variable.
When the conductor Ω− is in electrical equilibrium, the
electrical potential is a constant and electric field𝐸 = −∇𝜙− =
0 inside the conductor; that is, ∇𝜙− ⋅ n = 0 on the interface Γ.
Hence, we have 𝑞 = −𝜀+∇𝜙+ ⋅ n and ∫

Γ
∇𝜙+ ⋅ n 𝑑𝑠 = −𝑄/𝜀+.

In the continuous case, the augmented method is to find
the solution 𝜙(𝑥, 𝑦) of (5)-(6) and the augmented variable 𝑔
is constrained by

∇𝜙− ⋅ n = 0, (𝑥, 𝑦) ∈ Γ, (9)

∫
Γ
∇𝜙+ ⋅ n𝑑𝑠 = −𝑄𝜀+ . (10)

To present the numerical method, first we partition
the domain into uniform rectangles with mesh size (ℎ𝑥,ℎ𝑦); then we obtain the triangulation Tℎ with mesh size

ℎ = √(ℎ𝑥)2 + (ℎ𝑦)2 by cutting the rectangles along one
of diagonals in the same direction. We call an element 𝑇
an interface element if Γ intersects 𝑇; otherwise, we call 𝑇
a noninterface element. The sets of all interface elements
and noninterface elements are denoted by Tint

ℎ and Tnon
ℎ ,

respectively. The interface Γ is approximated by Γℎ, the union
of the line segments connecting the intersections of the
interface and the edges of elements. That is,

Γℎ =
𝑁Γ⋃
𝑖=1

Γ𝑖ℎ, Γ𝑖ℎ = xΓ𝑖 xΓ𝑖+1, xΓ1 = xΓ𝑁Γ+1, (11)
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where xΓ𝑖 is the intersection of the interface and edges of
elements. Let Ω−ℎ be the domain with Γℎ as its boundary, andΩ+ℎ = Ω\Ω−ℎ . There is a small region around the interface Γ,

Γ𝑟 = Ω − (Ω+ ∩ Ω+ℎ) − (Ω− ∩ Ω−ℎ) , (12)

whose area is of order𝑂(ℎ3). And the distance between Γ andΓℎ satisfies 𝑑(Γ, Γℎ) ≤ 𝐶ℎ2.
In the discrete case, the augmented variable is piecewise

constant and is defined at line segments Γ𝑖ℎ on interface
elements; that is,

𝐺 = [𝐺 (1) , 𝐺 (2) , . . . , 𝐺 (𝑁Γ)]T ,
𝐺 (𝑖) = 𝑔 (Γ𝑖ℎ) , 𝑖 = 1, 2, . . . , 𝑁Γ.

(13)

In other words, on the interface Γℎ, the augmented variable 𝑔
is approximated by the piecewise constant function:

𝑔ℎ (𝑥, 𝑦) = 𝐺 (𝑖) , if (𝑥, 𝑦) ∈ Γ𝑖ℎ. (14)

In the numerical method, if the vector 𝐺 (or 𝑔ℎ in the
function form) is given, then we can use the IFE method
which will be described in the next section to get the discrete
solution 𝜙ℎ(𝑥, 𝑦).
3. Immersed Finite Element
for Nonhomogeneous Interface
Jump Conditions

In the IFE method, the interface jump conditions [𝜙]Γ = 0
and [∇𝜙 ⋅ n]Γ = 𝑔 are used to construct the discrete trial
function space 𝑆ℎ. For any 𝑤ℎ ∈ 𝑆ℎ, the finite dimensional
function𝑤ℎ is piecewise linear on each element and is broken
along Γℎ to satisfy [𝑤ℎ] = 0 and [𝑤ℎ]Γ = 𝑔ℎ on Γℎ. For the
test function space, we use the standardP1 conforming finite
element space𝑉ℎ ∈ 𝐻10 (Ω). It will be shown later that the IFE
function 𝑤ℎ ∈ 𝑆ℎ can be decomposed as

𝑤ℎ = Vℎ + 𝜙𝐽ℎ, (15)

where Vℎ ∈ 𝑉ℎ and 𝜙𝐽ℎ is a piecewise linear function that
is nonzero only on noninterface elements. Note that the
function 𝜙𝐽

ℎ
depends on the augmented variable 𝐺.

Given the augmented variable 𝐺, the IFE method for (5)-
(6) is to find 𝜙𝐿ℎ ∈ 𝑉ℎ such that

∫
Ω
∇𝜙𝐿ℎ ⋅ ∇Vℎ𝑑𝑥 𝑑𝑦 = ∫

Ω+
𝑓+Vℎ𝑑𝑥 𝑑𝑦 + ∫

Γℎ

𝑞ℎVℎ𝑑𝑠
− ∑
𝑇∈Tint
ℎ

∫
𝑇
∇𝜙𝐽ℎ ⋅ ∇Vℎ𝑑𝑥 𝑑𝑦,

∀Vℎ ∈ 𝑉ℎ.

(16)

The discrete solution is 𝜙ℎ = 𝜙𝐿ℎ + 𝜙𝐽ℎ. From (16), it is obvious
that the stiffness matrix is the same as that obtained by
traditional finite element for the problem without interfaces;
only the right-hand side needs to be modified. Thus, we can
take advantage of the fast Poisson solver to solve the system
of equations efficiently when the augmented variable 𝐺 is
known.

A

CB

E

D
T−

T+

Figure 1: An example of the interface element.

3.1. Construction of the Function 𝜙𝐽
ℎ
. First, we describe the

function 𝑤ℎ in the space 𝑆ℎ in detail. On a non-interface
element,𝑤ℎ is the standard linear function and the degrees of
freedom are functional values on the vertices of the element.
On interface elements, for example, on 󳵻𝐴𝐵𝐶 (see Figure 1
for an illustration), the function𝑤ℎ ∈ 𝑆ℎ is constructed as the
following piecewise linear function:

𝑤ℎ (x)
= {{{

𝑤+ℎ (x) = 𝑎+ + 𝑏+𝑥 + 𝑐+𝑦, x = (𝑥, 𝑦) ∈ 𝑇+,
𝑤−ℎ (x) = 𝑎− + 𝑏−𝑥 + 𝑐−𝑦, x = (𝑥, 𝑦) ∈ 𝑇−.

(17)

The coefficients 𝑎±, 𝑏±, 𝑐± are chosen such that
𝑤ℎ (𝐴) = 𝑉1,
𝑤ℎ (𝐵) = 𝑉2,
𝑤ℎ (𝐶) = 𝑉2,

𝑤+ℎ (𝐷) − 𝑤−ℎ (𝐷) = 0,
𝑤+ℎ (𝐸) − 𝑤−ℎ (𝐸) = 0,

∇𝑤+ℎ ⋅ n𝐷𝐸 − ∇𝑤−ℎ ⋅ n𝐷𝐸 = 𝑔ℎ (𝐷𝐸) ,

(18)

where the vector 𝑉𝑖 represents the degrees of freedom.
Obviously, the function 𝑤ℎ can be decomposed as

𝑤ℎ = Vℎ + 𝜙𝐽ℎ, (19)

where Vℎ ∈ 𝑉ℎ and 𝜙𝐽ℎ satisfy
𝜙𝐽ℎ (x) = {{{

𝑎+ + 𝑏̃+𝑥 + 𝑐+𝑦, x = (𝑥, 𝑦) ∈ 𝑇+,
𝑎− + 𝑏̃−𝑥 + 𝑐−𝑦, x = (𝑥, 𝑦) ∈ 𝑇−, (20)

with coefficients 𝑎±, 𝑏̃±, 𝑐± chosen such that

𝜙𝐽ℎ (𝐴) = 0,
𝜙𝐽ℎ (𝐵) = 0,
𝜙𝐽ℎ (𝐶) = 0,

[𝜙𝐽ℎ] (𝐷) = 0,
[𝜙𝐽ℎ] (𝐸) = 0,

∇𝜙𝐽ℎ󵄨󵄨󵄨󵄨󵄨Ω+ ⋅ n𝐷𝐸 − ∇𝜙𝐽ℎ󵄨󵄨󵄨󵄨󵄨Ω− ⋅ n𝐷𝐸 = 𝑔ℎ (𝐷𝐸) .

(21)
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4. Enforce the Total Electric
Quantity on the Interface

In the discrete case, constraints (9) and (10) are replaced by

∇𝜙−ℎ ⋅ nΓℎ = 0, (𝑥, 𝑦) ∈ Γℎ, (22)

∫
Γℎ

∇𝜙+ℎ ⋅ nΓℎ𝑑𝑠 = −𝑄𝜀+ . (23)

In matrix-vector form, the discretization (16) and (22) can be
written as

[𝐴 𝐵
𝐸 𝐾][

Φ
𝐺] = [

𝐹1
𝐹2] . (24)

For (23), we have the vector form 𝑎𝑇Φ + 𝑏𝑇𝐺 =−𝑄/𝜀+, where 𝑎 and 𝑏 are vectors. To enforce this constraint,
we augmented the linear system with the equation and a
Lagrangian multiplier 𝜇 to get

[[[
[

𝐴 𝐵 𝑎
𝐸 𝐾 𝑏
𝑎𝑇 𝑏𝑇 0

]]]
]
[[
[

Φ
𝐺
𝜇
]]
]
= [[[[
[

𝐹1
𝐹2−𝑄𝜀+
]]]]
]
. (25)

We use the GMRES iteration method to solve the augmented
variable 𝐺 and the Lagrangian multiplier 𝜇 first and then
to solve Φ by using one more fast Poisson solver. We refer
the readers to Section 6.1.2 in [14] for the details about the
GMRES iteration.

5. Numerical Experiments

In this section, we present some examples to show the accu-
racy and the efficiency of the proposed numerical method.
First, we consider the following example in which the exact
solution is given. This example is taken from [1].

Example 1. Consider a conductor Ω− = {(𝑥, 𝑦) ∈ R2 : 𝑥2 +𝑦2 < 𝑟2} that is placed in an externally applied field 𝐸0 along
the 𝑥 direction. The external charge density 𝑓(𝑥, 𝑦) = 0. It is
easy to verify that the exact solution is

𝜙+ (𝑥, 𝑦) = −𝑥𝐸0 + 𝑟2𝑥𝐸0𝑥2 + 𝑦2 ,
𝜙− (𝑥, 𝑦) = 0,

(26)

and on the interface

𝑞 (𝑥, 𝑦) = 2𝑥𝐸0𝜀+𝑟 ,
𝑄 = 0.

(27)

We choose 𝐸0 = 1, 𝑟 = 0.3, and 𝜀 = 1 in this example.
Not only the potential 𝜙ℎ(𝑥, 𝑦) but also the electric field𝐸ℎ(𝑥, 𝑦) = −∇𝜙ℎ(𝑥, 𝑦) are computed by using the proposed
method.We choose the square domainΩ = [−1, 1]×[−1, 1] as

Table 1: A grid refinement analysis for Example 1 for the proposed
method.

𝑁 󵄩󵄩󵄩󵄩𝜙ℎ − 𝜙󵄩󵄩󵄩󵄩𝐿2 Rate 󵄩󵄩󵄩󵄩𝐸ℎ − 𝐸󵄩󵄩󵄩󵄩𝐿2 Rate
16 0.59718𝐷 − 01 0.18051𝐷 + 00
32 0.13765𝐷 − 01 2.11712 0.79071𝐷 − 01 1.19087
64 0.11122𝐷 − 01 0.30758 0.44268𝐷 − 01 0.83689
128 0.44936𝐷 − 02 1.30749 0.21733𝐷 − 01 1.02640
256 0.26655𝐷 − 02 0.75350 0.11267𝐷 − 01 0.94776
512 0.11016𝐷 − 02 1.27473 0.53901𝐷 − 02 1.06372
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blue: exact

x y
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Figure 2: Exact charge distribution 𝑞(𝑥, 𝑦) (blue) and the numerical
charge distribution 𝑞ℎ(𝑥, 𝑦) on the interface (red) obtained by the
proposed method with𝑁 = 64 for Example 1.

the computational domain.We first partition the domain into𝑁2 congruent squares, and then we obtain the triangulation
Tℎ by cutting the squares along one of diagonals in the
same direction. We compute errors in 𝐿2 for the numerical
potential 𝜙ℎ and the numerical electric field 𝐸ℎ and estimate
the convergence rate by using

Rate = log2 (
󵄩󵄩󵄩󵄩𝑒2ℎ󵄩󵄩󵄩󵄩𝐿2󵄩󵄩󵄩󵄩𝑒ℎ󵄩󵄩󵄩󵄩𝐿2 ) ,

𝑒ℎ = 𝜙ℎ − 𝜙 or 𝑒ℎ = 𝐸ℎ − 𝐸.
(28)

Numerical results reported in Table 1 show that the proposed
method achieves first-order convergence in the 𝐿2 norm for
both the potential and the electric field.The numerical charge
distribution 𝑞ℎ(𝑥, 𝑦) on the interface, the numerical potential𝜙ℎ(𝑥, 𝑦), and the numerical electric field𝐸ℎ(𝑥, 𝑦) obtained by
the proposed method with𝑁 = 64 are plotted in Figures 2, 3,
and 4, respectively.

Example 2. Consider Ω− = {(𝑥, 𝑦) ∈ R2 : (𝑥 − 𝑥0)2 +(𝑦 − 𝑦0)2 < 𝑟20} with 𝑥0 = −1, 𝑦0 = 0, and 𝑟0 = 1.6.
The computational domain is Ω = [−10, 10] × [−10, 10].
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Figure 3: Numerical potential 𝜙ℎ(𝑥, 𝑦) obtained by the proposed
method with𝑁 = 64 for Example 1.
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Figure 4:Numerical electric field𝐸ℎ(𝑥, 𝑦) obtained by the proposed
method with𝑁 = 64 for Example 1.

The external charge density is set to be 𝑓(𝑥, 𝑦) = −1 inside
the rectangular [4.75, 5.25] × [−0.25, 0.25] and 𝑓(𝑥, 𝑦) =0 everywhere else. Dirichlet boundary condition 𝜙 = 0
is applied to the left boundary and Neumann boundary
condition 𝜕𝜙/𝜕𝑛 = 0 is applied on the right, bottom, and
top boundaries. We choose 𝜀 = 5 and the total electric
quantity 𝑄 = 2 in this example. Note that there is no explicit
analytical solution for this example. Numerical results are
plotted in Figures 5, 6, and 7. Note that the external charge
is negative in a small area and the total electric quantity
is positive. In order to maintain the electric field 𝐸 = 0
inside the conductor, the positive surface charges should
move towards the external negative charges. Figure 5 shows
that the positive charges gather on the right side of the
circle.
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Figure 5: Numerical charge distribution 𝑞ℎ(𝑥, 𝑦) on the interface
(red) obtained by the proposedmethodwith𝑁 = 256 for Example 2.
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Figure 6: Numerical potential 𝜙ℎ(𝑥, 𝑦) obtained by the proposed
method with𝑁 = 256 for Example 2.

Example 3. Consider a conductor with complicated bound-
ary

Ω−
= {(𝑥, 𝑦) ∈ R2 : √𝑥2 + 𝑦2 − (𝑟0 + 𝜆sin (𝜔𝜃)) ≤ 0} , (29)

where

𝜃 = {{{{{
arccos(𝑥𝑟 ) , if 𝑥 ≥ 0,
2𝜋 − arccos(𝑦𝑟 ) , if 𝑦 < 0. (30)

We choose 𝜔 = 5, 𝜆 = 0.1, and 𝑟0 = 0.5. The external charge
density is set to be 𝑓(𝑥, 𝑦) = 0. Dirichlet boundary condition
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Figure 7: Numerical electric field𝐸ℎ(𝑥, 𝑦) obtained by the proposed
method with𝑁 = 256 for Example 2.

x

y

−1 −0.5 0.5 10

−5

0

5

10

15

20

25

30

1

0

−1

q
(x
, y

)

red: numerical
blue: interface

Figure 8: Numerical charge distribution 𝑞ℎ(𝑥, 𝑦) on the interface
(red) obtained by the proposedmethodwith𝑁 = 256 for Example 3.

𝜙 = 1 is applied to the left boundary andNeumann boundary
condition 𝜕𝜙/𝜕𝑛 = 0 is applied on the rest of boundaries.
We choose 𝜀 = 10, 𝑄 = 20, and Ω = [−1, 1] × [−1, 1] in
this example. Similar numerical results are plotted in Figures
8, 9, and 10. From these figures, we can see that the surface
charge is distributed according to the potential 𝜙 = 1 on the
left boundary to maintain the electric field 𝐸ℎ ≈ 0 inside the
conductor.
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Figure 9: Numerical potential 𝜙ℎ(𝑥, 𝑦) obtained by the proposed
method with𝑁 = 256 for Example 3.
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Figure 10: Numerical electric field 𝐸ℎ(𝑥, 𝑦) obtained by the pro-
posed method with𝑁 = 256 for Example 3.

6. Conclusion

We presented a Cartesian grid method for solving the
surface charge distribution problem in electromagnetism.
The advantage of the method is that the used mesh does not
need to be aligned with the interface.This is quite convenient
for the problem with complex interfaces. The proposed
method employs both the immersed finite element and the
augmented technique. The GMRES iteration and FFT-based
fast Poisson solver are used to solve the discrete systems.
Numerical examples are provided to show the accuracy and
efficiency of the proposed method.
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