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The pre-commitment and time-consistent strategies are the two most representative investment strategies for the classic multi-
period mean-variance portfolio selection problem. In this paper, we revisit the case in which there exists one risk-free asset in the
market and prove that the time-consistent solution is equivalent to the optimal open-loop solution for the classic multi-period
mean-variance model. Then, we further derive the explicit time-consistent solution for the classic multi-period mean-variance
model only with risky assets, by constructing a novel Lagrange function and using backward induction. Also, we prove that the
Sharpe ratio with both risky and risk-free assets strictly dominates that of only with risky assets under the time-consistent strategy
setting. After the theoretical investigation, we perform extensive numerical simulations and out-of-sample tests to compare the
performance of pre-commitment and time-consistent strategies. The empirical studies shed light on the important question: what
is the primary motivation of using the time-consistent investment strategy.

1. Introduction

Currently, the portfolio selection problem is one of the most
popular topics in financial economics, and it has played a
central role in modern financial studies since the publication
of the work on the static mean-variance portfolio theory
introduced by Markowitz [1], which primarily examined the
optimal allocation of an investor’s wealth to a basket of assets.
After the publication of Markowitz’s pioneering work, multi-
period portfolio selection problems have been discussed by
many researchers.Many of the previous studies have followed
the approach of maximizing the expected utility functions
of the terminal wealth or consumption, such as Mossin [2],
Dumas and Luciano [3], etc. Nevertheless, the explicit ex-
pression of the optimal strategy has not been derived under
the mean-variance criterion for a long time, in part because
the variance is not separable, and thus the multi-period
mean-variance problem cannot be directly solved by applying
dynamic programming. In the study by Li and Ng [4], the
authors first derived the analytical optimal solution and
efficient frontier for the classic mean-variance model using

a novel approach: the embedding scheme. In the same year,
Zhou and Li [5] also derived the explicit solution for the
mean-variance formulation in continuous-time setting by
using the same method.

Since then, many researchers have followed the work by
Li andNg [4] and further studied the dynamicmean-variance
portfolio optimization problem. Zhou andYin [6] considered
a continuous-time mean-variance portfolio selection in a
regime-switching capital market, while Yin and Zhou [7]
studied a discrete-time version. Leippold et al. [8] presented
a geometric approach to solve the multi-period asset-liability
management mean-variance portfolio selection problem. In
addition, Zhu et al. [9] discussed a generalized multi-period
mean-variance model that provides useful advice to help
investors not only achieve an optimal expected return but also
have a good risk control over bankruptcy. As far as we are
aware, the studies above always assumed a predetermined
time horizon. However, in the real world, the investor could
not determine the timehorizon at the beginning of the invest-
ment in some cases. In other words, some investors might
be forced to abandon the original investment plan as a
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consequence of some exogenous or endogenous factors. Wu
and Li [10] investigated an uncertain exit time horizon multi-
period mean-variance portfolio in the regime-switching cap-
ital market. Yao et al. [11] further studied the work of Wu and
Li [10] and considered an uncertain exit time multi-period
mean-variance portfolio selection problem with endogenous
liabilities in a regime-switching capital market. In fact, there
is a growing literature that addresses dynamic mean-variance
portfolio selection problems. For more detailed discussions
on the above subject, see Cui et al. [12], Li and Li [13], Yao
et al. [14], etc.

By examining the above literatures, it is not difficult to
determine that all of the optimal strategies are made at an
initial date (at the time that the investor has just joined the
capital market), and they not only depend on the current
wealth but also rely on the initial capital and the statistic
characteristics of the assets for different periods of time.Many
of the researchers designated these optimal investment strate-
gies derived in the above mean-variance models as the pre-
commitment strategy, which has been criticized for lacking
rationality since the above optimal investment strategies do
not satisfy the Bellman principle or time-consistency. It is
easy to find that the cause of this time inconsistency in the
above optimal investment strategies is that the variance in op-
timization objective functions is not separable. For more de-
tails of the subject of time-consistent strategy, readers may
refer to see Bjork andMurgoci [15] andBasak andChabakauri
[16].

To the best of our knowledge, there exist three approaches
to address the time-inconsistent mean-variance problem in
the current literature. In addition to the method of Bjork and
Murgoci [15], Cui et al. [17] presented aweak time consistency
and also derived the corresponding weak time-consistent
strategy. On the other hand, Chen et al. [18] proposed
the notation of an expected conditional mapping and then
constructed a time-consistent multi-period mean-variance
portfolio optimization model. Chen et al. [19] generalized
the work of Chen et al. [18] to a regime-switching capital
market. However, compared with the first approach, the last
two approaches have not been used to derive the explicit
time-consistent solutions directly for the classical model.
Therefore, the approach that is first used by Bjork and
Murgoci [15] is by far the most widely used. Zeng and Li
[20] applied this game approach to study the time-consistent
investment and reinsurance strategies for mean-variance
insurers. Czichowsky [21] proved that the continuous-time
mean-variance portfolio selection formulation is coincident
with the continuous-time limit of the discrete-time formu-
lation under the time-consistent setting. Furthermore, Hu et
al. [22] and Björk et al. [23] also discussed a more realistic
mean-variance model whereby the risk aversion depends on
the current total wealth. Bensoussan et al. [24] extended the
work of Björk et al. [23] to the portfolio selection with no
short-selling constraints.

Along the above research line, we discuss the relationship
between the time-consistent and optimal open-loop strate-
gies when there exists one risk-free asset in the classic multi-
period mean-variance model. Most of the existing studies on
the time-consistent solutions of the mean-variance portfolio

selection problem are only concerned with the market with
both risky assets and one risk-free asset. In real applications,
it is easy to find the case in which the investor only invests
on risky assets. Note that the time-consistent strategy shown
in Bjork and Murgoci [15] with a non-feedback form might
not be true for the case without risk-free assets. In this paper,
we derive the explicit time-consistent solution for the multi-
period mean-variance model in the case that there only exist
risky assets by using a novel approach.What ismore, we prove
that the best Sharpe ratio generated by both risky and risk-
free assets strictly dominates that of only risky assets under
the time-consistent strategy setting. In addition, we discuss
the time-consistent solution of the adjustment model, and
prove the time-consistent strategy is coincident with that of
the classic multi-period mean variance model. According to
the results of Bjork and Murgoci [15], the pre-commitment
strategy might produce more expected return than the time-
consistent strategy in terms of theory. However, in real invest-
ment, the time-consistent strategy may be a better choice for
many investors. Thus, motivated by the work of DeMiguel et
al. [25], we use Sharpe ratio, Portfolio turnover and Maxi-
mum drawdown to compare the pre-commitment and time-
consistent investment strategies presented in this paper.

The remainder of this paper is organized as follows.
In Section 2, we introduce the classic multi-period mean-
variance portfolio selection model. In Section 3, we discuss
the time-consistent strategies and optimal open-loop strate-
gies for the classic model; in addition, we also present the
relationship between the best Sharpe ratio generated by both
risky and risk-free assets and that generated by only risky
assets under the time-consistent strategy setting. In Section 4,
we further discuss the above two strategies for the adjustment
model in Calafiore [26]. Next, some numerical simulations
and empirical studies are given in Section 5 to illustrate the
conclusions for different models or optimal strategies. The
concluding remarks are presented in the end.

2. Problem Formulations

In this paper, we assume that the investor joins the capital
market at time 0 with an initial known wealth 𝑤0 and wishes
to make a plan for allocating all of his/her wealth among the𝑛 risky assets and one risk-free asset within a time horizon
of 𝑇 periods. In addition, the investor can rebalance his/her
portfolio at the beginning of each of the subsequent periods.
Let 𝑒𝑡 = [𝑒1𝑡 , . . . , 𝑒𝑛𝑡 ] be the return at time period 𝑡, where𝑒𝑖𝑡 denotes the return of the 𝑖th risky asset at time period 𝑡,𝑖 = 1, . . . , 𝑛, 𝑡 = 0, 1, . . . , 𝑇 − 1. We assume that the risk-
free asset with a deterministic rate of return 𝑠𝑡 and the risky
return 𝑒𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1 are statistically independent and
have a known mean 𝐸(𝑒𝑡) = [𝐸(𝑒1𝑡 ), . . . , 𝐸(𝑒𝑛𝑡 )] and a known
covariance matrix

Ω𝑡 =
[[[[[[[[

cov (𝑒1𝑡 , 𝑒1𝑡 ) cov (𝑒1𝑡 , 𝑒2𝑡 ) ⋅ ⋅ ⋅ cov (𝑒1𝑡 , 𝑒𝑛𝑡 )
cov (𝑒2𝑡 , 𝑒1𝑡 ) cov (𝑒2𝑡 , 𝑒2𝑡 ) ⋅ ⋅ ⋅ cov (𝑒2𝑡 , 𝑒𝑛𝑡 )... ... d

...
cov (𝑒𝑛𝑡 , 𝑒1𝑡 ) cov (𝑒𝑛𝑡 , 𝑒2𝑡 ) ⋅ ⋅ ⋅ cov (𝑒𝑛𝑡 , 𝑒𝑛𝑡 )

]]]]]]]]
. (1)
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Let 𝑤𝑡 denote the wealth variable for the investment
process at time 𝑡 and the investment portfolio 𝑢𝑡 =(𝑢0𝑡 , 𝑢1𝑡 , . . . , 𝑢𝑛𝑡 ) represent the amounts that have been
invested in the 𝑛 risky assets at the beginning of the 𝑡th time
period, then the amount invested in the risk-free asset is equal
to 𝑤𝑡 − ∑𝑛𝑖=1 𝑢𝑖𝑡 under the self-financing condition, where𝑡 = 0, 1, . . . , 𝑇 − 1. Thus, the dynamic wealth process can be
described as

𝑤𝑡+1 = 𝑠𝑡𝑤𝑡 + 𝑃𝑡 𝑢𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1. (2)

where 𝑃𝑡 = [(𝑒1𝑡 − 𝑠𝑡), (𝑒2𝑡 − 𝑠𝑡), . . . , (𝑒𝑛𝑡 − 𝑠𝑡)].
Therefore, the classic multi-period mean-variance port-

folio selection can be expressed as

max 𝐸 (𝑤𝑇) − 𝜔 var (𝑤𝑇)𝑠.𝑡. 𝑤𝑡+1 = 𝑠𝑡𝑤𝑡 + 𝑃𝑡 𝑢𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1. (3)

where𝜔 is a risk aversion parameter that reflects the investor’s
attitude toward risk.

3. Solutions of the Classic
Multi-Period Mean-Variance Portfolio
Optimization Model

Because the optimal solution of the classic multi-period
mean-variance model (henceforth, the pre-commitment
strategy) is time-inconsistent, in the literature, many authors
have developed time-consistent solutions for it in the case in
which there is a risk-free asset, such as Basak and Chabakauri
[16], Bjork and Murgoci [15] and Bensoussan et al. [24], etc.
In Section 3.1, we revisit this model due to its importance and
then present the solution obtained by Bjork andMurgoci [15]
which is coincident with the optimal open-loop solution of
this model. In addition, since the pioneering work of Bjork
andMurgoci [15] only considers both risk-free asset and risky
assets as investment target, it is necessary to discuss the time-
consistent strategy for Model (3) when the capital pool is
only with risky assets (note that if investor does not invest
risk-free assets, in this case, we only need to add the extra
condition 𝑤𝑡 = ∑𝑛𝑖=1 𝑢𝑖𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1 into Model (3)).
When the capital pool is only with risky assets, along with
the work of Bjork and Murgoci [15], we derive the time-
consistent solution of multi-period mean-variance model by
applying the backward induction method in Section 3.2. It is
interesting that the solution obtained is a feedback, while the
solution obtained byBjork andMurgoci [15] is a deterministic
solution (an open-loop solution).

3.1. Definition of Time-Consistent Strategy and Solution
Methodology. To this end, it is necessary to introduce the
definition of time-consistent solutions for the above opti-
mization models. Let the different control strategies for the
above models be represented by 𝑢 = (𝑢0, 𝑢1, . . . , 𝑢𝑇−1), and𝐸𝑘(𝑤𝑇), var𝑘(𝑤𝑇), 𝑘 = 0, 1, . . . 𝑇 − 1 denote the conditional
expectation and variance based on the information of the
time period 𝑘, respectively.

Let𝐽 (𝑤𝑘, 𝑢) = 𝐸𝑘 (𝑤𝑇) − 𝜔var𝑘 (𝑤𝑇) , 𝑘 = 0, 1, . . . 𝑇 − 1. (4)

According to definition 2.2 in Bjork and Murgoci [15],
the time-consistent strategy for Model (4) can be defined as
follows.

Definition 1. Consider a given control law �̂� =(�̂�0, �̂�1, . . . , �̂�𝑇−1). For 𝑘 = 0, 1, . . . 𝑇 − 1, we let
𝑢 (𝑘) = (𝑢𝑘, �̂�𝑘+1, . . . , �̂�𝑇−1) ,�̂� (𝑘) = (�̂�𝑘, �̂�𝑘+1, . . . , �̂�𝑇−1) , (5)

where 𝑢𝑘 is an arbitrary control variable. Then, �̂� is said to
be a time-consistent strategy if, for all 𝑘 = 0, 1, ⋅ ⋅ ⋅ 𝑇 − 1, the
following conditions hold:

max
𝑢𝑘

𝐽 (𝑤𝑘, 𝑢 (𝑘)) = 𝐽 (𝑤𝑘, �̂� (𝑘)) . (6)

To make the above definition easier to understand, it
is necessary to introduce detailed procedures to derive the
above time-consistent solution, which is presented as follows:(1) For the given initial time 𝑘 = 𝑇 − 1, as𝑤𝑇−1 is known,
the above Model (4) degenerates into a single period mean-
variance portfolio problem. By maximizing the following
objective function 𝐸𝑇−1(𝑤𝑇) − 𝜔var𝑇−1(𝑤𝑇), we can find the
time-consistent strategy �̂�𝑇−1, the optimal value functions𝐸𝑇−1(𝑤𝑇), and var𝑇−1(𝑤𝑇), which are the function of 𝑤𝑇−1.
And the corresponding value function can be expressed as

𝑉𝑇−1 (𝑤𝑇−1) = 𝐸𝑇−1 (𝑤𝑇) − 𝜔var𝑇−1 (𝑤𝑇) . (7)

(2) By applying the backward induction method, the law
of iterated expectations and the law of total variance, given
the initial time 𝑘 = 𝑇 − 2 and fixed wealth 𝑤𝑇−2, the time-
consistent strategy �̂�𝑇−2 satisfies the following condition:�̂�𝑇−2 = argmax

𝑢𝑇−2
([𝐸𝑇−2 (𝑤𝑇) − 𝜔var𝑇−2 (𝑤𝑇)] | �̂�𝑇−1)

= argmax
𝑢𝑇−2

(𝐸𝑇−2 [𝐸𝑇−1 (𝑤𝑇) − 𝜔var𝑇−1 (𝑤𝑇)]
− 𝜔var𝑇−2 [𝐸𝑇−1 (𝑤𝑇)])= argmax

𝑢𝑇−2
(𝐸𝑇−2 [𝑉𝑇−1 (𝑤𝑇−1)]

− 𝜔var𝑇−2 [𝐸𝑇−1 (𝑤𝑇)]) .
(8)

Additionally, the value function can be derived by

𝑉𝑇−2 (𝑤𝑇−2) = 𝐸𝑇−2 (𝑤𝑇) − 𝜔var𝑇−2 (𝑤𝑇) . (9)

(3) Repeating the above steps, we can find the time-
consistent investment policy for all the time periods 𝑢 =(�̂�0, �̂�1, . . . , �̂�𝑇−1).

Bjork and Murgoci [15] showed that the so-called time-
consistent strategy means that optimal strategy obtained at
time period 𝑘1 agrees with that derived at time period 𝑘2
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where 𝑘1 < 𝑘2. Compared the above solution methodology
with the embedding scheme presented in Li and Ng [4],
we can conclude that the former adopts a novel approach
to deal with this time-inconsistent mean-variance problem,
which directly forces the proposed solution methodology
to satisfy the Bellman principle or time-consistency, while
the latter mainly uses an indirect approach where a time-
consistent auxiliary problemmax𝑢𝜆𝐸(𝑤𝑇)−𝜔𝐸(𝑤2𝑇) is solved;
after that, the gap between the original problem and auxiliary
problem can be bridged by using the relationship among
them. However, the embedding approach cannot assure that
the derived investment strategy satisfies time-consistency.

3.2. Revisiting the Time-Consistent Control Policy with Both
Risky Assets and Risk-Free Assets. Here, we first describe the
concept of the open-loop strategy. An open-loop strategy
is also called a non-feedback strategy. That is, it only uses
the information at current state and does not need feedback
information to determine the investment strategy. According
to definition 2.1 in Fershtman [27], the open-loop strategy for
Model (4) can be defined as follows.

Definition 2. Consider a given control law 𝑢𝑂𝐿 = (𝑢𝑂𝐿0 , 𝑢𝑂𝐿1 ,. . . , 𝑢𝑂𝐿𝑇−1). For 𝑘 = 0, 1, . . . 𝑇 − 1, if 𝑢𝑂𝐿𝑘 is only a time
path 𝑢𝑂𝐿𝑘 (𝑤0) such that, given the initial state variable 𝑤0,
it assigns for every 𝑘 a control in the set of admissible
control, then𝑢𝑂𝐿is called as open-loop strategy. Furthermore,�̂�𝑂𝐿 = (�̂�𝑂𝐿0 , �̂�𝑂𝐿1 , . . . , �̂�𝑂𝐿𝑇−1) is said to be the optimal open-loop
strategy, when �̂�𝑂𝐿 satisfies the following conditions:

�̂�𝑂𝐿 = argmax
𝑢𝑂𝐿

( [𝐸0 (𝑤𝑇) − 𝜔var0 (𝑤𝑇)]𝑤0) . (10)

It is not difficult to find that the optimal open-loop
strategy takes the viewpoint that the decision maker wants to
compute and freeze the whole sequence of control strategies�̂�𝑂𝐿 = (�̂�𝑂𝐿0 , �̂�𝑂𝐿1 , . . . , �̂�𝑂𝐿𝑇−1) at the initial time 𝑘 = 0; see
Calafiore [26, 28] for the detailed discussion. In this case,
the multi-period portfolio selection problem does not need
to use dynamic programming approach because it is a deter-
ministic optimization problem, which can be solved by some
existing optimization algorithms. Compared to the optimal
feedback strategy, the performance of the optimal open-loop
strategy would generally be worse in theory; for this curious
phenomenon, Calafiore [26] gave an interpretation that the
optimal open-loop strategy �̂�𝑂𝐿 is “here and now”, while the
feedback strategy is “wait and see”. However, the open-loop
strategy is much easier to compute in general.

According to the definition of the time-consistent strat-
egy, one can derive the general time-consistent strategy and
efficient frontier by using backward induction, and the main
results are as follows.

Lemma 3. The time-consistent strategy and efficient frontier
for Model (3) can be expressed as

�̂�𝑡 = Ω−1𝑡 𝐸 (𝑃𝑡)2𝜔∏𝑇−1𝑖=𝑡+1𝑠𝑖 , 𝑡 = 0, 1, . . . , 𝑇 − 1 (11)

and

var0 (𝑤𝑇) = (𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑠𝑘)2∑𝑇−1𝑘=0 𝐸 (𝑃
𝑘
)Ω−1
𝑘

𝐸 (𝑃𝑘) (12)

where𝐸(𝑃𝑡) is assumed to be not identically equal to zero vector.

Proof. Thedetails of the proof can be found in Proposition 6.1
provided by Bjork andMurgoci [15], Proposition 9.1 provided
by Bjork and Murgoci [29], and Theorem 2 provided by Wu
[30], and then we omit the proof here.

Additionally, Lemma 3 also indicates that when there is
a risk-free asset, the time-consistent solution of Model (11)
is demonstrated to be determinist. The question is whether
it is an optimal open-loop strategy for this case. In general,
an optimal open-loop strategy is not necessarily a time-
consistent one. In this section, we prove that it is indeed the
case.

Theorem 4. The time-consistent strategy (11) is also the opti-
mal open-loop strategy for Model (3) with risky assets and one
risk-free asset. In addition, the efficient frontiers are the same
under the above two investment strategies.

Proof. According to the conclusions of Lemma 3, to prove
Theorem 4, we only need to derive the optimal open-loop
strategy forModel (3) and check whether they are equivalent.
Based on the dynamic wealth process, we have

𝑤𝑡 = 𝑃𝑡−1𝑢𝑡−1 + ( 𝑡−1∏
𝑖=𝑡−1

𝑠𝑖)𝑃𝑡−2𝑢𝑡−2 + ⋅ ⋅ ⋅
+ ( 𝑡−1∏
𝑖=1

𝑠𝑖)𝑃0𝑢0 + ( 𝑡−1∏
𝑖=0

𝑠𝑖)𝑤0
= ( 𝑡−1∏
𝑖=0

𝑠𝑖)𝑤0 + 𝑡−1∑
𝑘=0

( 𝑡−1∏
𝑖=𝑘+1

𝑠𝑖)𝑃𝑘𝑢𝑘.
(13)

From the definition of the open-loop strategy, we can
obtain the explicit expressions for the expectation and vari-
ance of the terminal of total wealth.

𝐸0 (𝑤𝑡) = ( 𝑡−1∏
𝑖=0

𝑠𝑖)𝑤0 + 𝑡−1∑
𝑘=0

( 𝑡−1∏
𝑖=𝑘+1

𝑠𝑖)𝐸 (𝑃𝑘) 𝑢𝑘, (14)

and

var0 (𝑤𝑡) = var0(𝑡−1∑
𝑘=0

[ 𝑡−1∏
𝑖=𝑘+1

𝑠𝑖]𝐸 (𝑃𝑘) 𝑢𝑘)
= 𝑡−1∑
𝑘=0

( 𝑡−1∏
𝑖=𝑘+1

𝑠𝑖)2 𝑢𝑘Ω𝑘𝑢𝑘.
(15)
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Therefore, the explicit expression for the open-loop
model can be expressed as

max 𝐸0 (𝑤𝑇) − 𝜔var0 (𝑤𝑇)𝑠.𝑡. 𝐸0 (𝑤𝑇)
= (𝑇−1∏
𝑖=0

𝑠𝑖)𝑤0 + 𝑇−1∑
𝑘=0

( 𝑇−1∏
𝑖=𝑘+1

𝑠𝑖)𝐸 (𝑃𝑘) 𝑢𝑘
var0 (𝑤𝑇) = 𝑇−1∑

𝑘=0

( 𝑇−1∏
𝑖=𝑘+1

𝑠𝑖)2 𝑢𝑘Ω𝑘𝑢𝑘.
(16)

Note that problem (16) is a convex optimization problem
with respect to the open-loop control variable 𝑢𝑘. By the first-
order necessary optimality condition, the optimal open-loop
strategy can be derived:

�̂�𝑂𝐿𝑡 = Ω−1𝑡 𝐸 (𝑃𝑡)2𝜔∏𝑇−1𝑖=𝑡+1𝑠𝑖 , 𝑡 = 0, 1, . . . , 𝑇 − 1. (17)

Substituting (17) into (14) and (15), the efficient frontier
under the optimal open-loop strategy (17) can be derived:

var0 (𝑤𝑇) = (𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑠𝑘)2∑𝑇−1𝑘=0 𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘) . (18)

Compared with Lemma 3 and the above results, it is not
difficult to find that the optimal open-loop strategy (17) and
corresponding efficient frontier (18) are the same as the time-
consistent strategy (11) and time-consistent efficient frontier
(12), respectively. Therefore, Theorem 4 is derived.

In addition, according to the formulation of the time-
consistent strategy presented in Lemma 3, we can find that it
is not dependent on the information in the future investment,
which has the same form of the following myopic investment
strategies: the myopic investment strategies by optimizing a
one-period investment problem at each period time 𝑡, where0 ≤ 𝑡 ≤ 𝑇 − 1.

max 𝐸𝑡 (𝑤𝑡+1) − 𝜔var𝑡 (𝑤𝑡+1)
s.t. 𝑤𝑡+1 = 𝑠𝑡𝑤𝑡 + 𝑃𝑡 𝑢𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1. (19)

Obviously, we can derive the myopic investment strate-
gies at each time 𝑡 for Model (19), and the detailed results can
be expressed as follows:

𝑢𝑀𝑃𝑡 = Ω−1𝑡 𝐸 (𝑃𝑡)2𝜔 , 𝑡 = 0, 1, . . . , 𝑇 − 1. (20)

Compared the time-consistent strategy (11) with the
myopic strategy (20), we can find that the time-consistent
solution of Model (11) at each time period 𝑡 is similar to the
solution of the common single-period optimization problem
(19). The only difference is that the risk aversion for the
investor is varying at different period 𝑡. Thus the time-
consistent strategy for Model (11) can also be derived by

optimizing the single-period problem (19) with time-vary
risk aversion coefficient 𝜔𝑡 = 𝜔∏𝑇−1𝑖=𝑡+1𝑠𝑖. In addition, suppose
that the length of each rebalancing period is very short (high
frequency trading), the investor mightmodify the investment
strategy after one minute or one hour, then the return of the
risk asset becomes very small, and it almost can be ignored
in this case (𝑠𝑡 → 1). As a result, we can obtain some
interesting finding that the time-consistent strategy (11) is
almost equivalent to the myopic strategy (20) in this case.

3.3. Time-ConsistentControl Policy without Risk-FreeAsset. If
we further consider the investor allocate all his/her wealth on
the above 𝑛 risky assets, the dynamic wealth process (2) can
be rewritten as𝑤𝑡+1 = 𝑒𝑡𝑢𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1,

𝑤𝑡 = I𝑢𝑡 𝑡 = 0, 1, . . . , 𝑇 − 1, (21)

where I = (1, . . . , 1) denotes (𝑛 + 1) × 1 vector.
Based on the above wealth processes, the classic multi-

period mean-variance portfolio optimization model reads as
follows:

max 𝐸 (𝑤𝑇) − 𝜔 var (𝑤𝑇)𝑠.𝑡. 𝑤𝑡+1 = 𝑒𝑡𝑢𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1,
𝑤𝑡 = I𝑢𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1.

(22)

In this section, we will develop the time-consistent solu-
tion of Model (22) for the case in which there is no risk-free
asset by directly applying the backward induction method.
We assume that the covariance matrix Ω𝑡 is positively
definite. For notational simplicity, we first put together all the
notations that will appear hereafter.

𝐴 𝑡 = IΩ̂−1𝑡 I,𝐵𝑡 = IΩ̂−1𝑡 𝐸 (𝑒𝑡) , (23)

𝐶𝑡 = 𝐸 (𝑒𝑡) Ω̂−1𝑡 𝐸 (𝑒𝑡) ,
𝐷𝑡 = 𝐴 𝑡𝐶𝑡 − 𝐵2𝑡 , (24)

𝛼𝑡 = 1𝐴 𝑡 ,
𝑚𝑡 = 𝑇−1∏

𝑘=𝑡

𝐵𝑘𝐴𝑘 ,
(25)

Ω̂𝑡 = {{{
Ω𝑇−1, 𝑡 = 𝑇 − 1𝛼𝑡+1𝐸 (𝑒𝑡𝑒𝑡) + 𝑚2𝑡+1Ω𝑡, 𝑡 < 𝑇 − 1, (26)

where 𝑡 = 0, 1, . . . , 𝑇 − 1. From the definitions of 𝐴 𝑡 and 𝑚𝑡,
it is obvious that 𝛼𝑡 > 0 and 𝑚2𝑡 > 0 for 𝑡 = 0, 1, . . . , 𝑇 − 1.
In this section, we also assume that 𝐸(𝑒𝑡𝑒𝑡) is positive definite
matrix. Since Ω̂𝑡 is a linear combination ofΩ𝑡 and𝐸(𝑒𝑡𝑒𝑡) and
the combination coefficients are all positive, it is easy to see
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that Ω̂𝑡 is positive definite matrix. Then, the time-consistent
strategy and the optimal value function can be derived by
using the backward induction method and constructing the
Lagrange function for the investor who only invests in risky
assets.

From thework of Bjork andMurgoci [15], one can see that
they first conjectured that the optimal value function was a
linear function of current total wealth, and they subsequently
were able to find the explicit formulation for the solution.
However, it will be observed later that this conjecture is
untrue for the capital market with only risky assets. The
main results of this section can be expressed as the following
theorem.

Theorem 5. When there are no risk-free assets, the time-
consistent strategy, and the corresponding conditional expecta-
tion and variance of terminal wealth for the Model (22) can be
expressed as follows:

�̂�𝑡 = 𝑎𝑡𝑤𝑡 + 𝑏𝑡, (27)

𝐸𝑡 (𝑤𝑇) = 𝑚𝑡𝑤𝑡 + 𝑛𝑡, (28)

var𝑡 (𝑤𝑇) = 𝛼𝑡𝑤2𝑡 + 𝛽𝑡𝑤𝑡 + 𝛾𝑡, (29)

where 𝑡 = 0, 1, . . . , 𝑇 − 1, and the above parameters satisfy the
following relations:

𝑎𝜏 = Ω̂−1𝜏 I𝐴𝜏 ,
𝑏𝜏 = 𝑚𝜏+12𝜔 Ω̂−1𝜏 (𝐸 (𝑒𝜏) − 𝐵𝜏I𝐴𝜏 ) , (30)

𝑚𝜏 = 𝑇−1∏
𝑘=𝜏

𝐵𝑘𝐴𝑘 ,
𝑛𝜏 = 𝑚2𝜏+1𝐷𝜏2𝜔𝐴𝜏 + 𝑛𝜏+1,

(31)

𝛼𝜏 = 1𝐴𝜏 ,𝛽𝜏 = 0,
𝛾𝜏 = 𝛾𝜏+1 + 𝑚2𝜏+1𝐷𝜏4𝜔2𝐴𝜏 ,

(32)

where 𝜏 = 0, 1, . . . , 𝑇 − 2, as well as the terminal conditions:

𝑎𝑇−1 = Ω−1𝑇−1I𝐴𝑇−1 ,
𝑏𝑇−1 = 12𝜔Ω−1𝑇−1 (𝐸 (𝑒𝑇−1) − 𝐵𝑇−1I𝐴𝑇−1 ) ,

𝑚𝑇−1 = 𝐵𝑇−1𝐴𝑇−1 ,

𝑛𝑇−1 = 𝐷𝑇−12𝜔𝐴𝑇−1 ,
𝛼𝑇−1 = 1𝐴𝑇−1 ,𝛽𝑇−1 = 0,
𝛾𝑇−1 = 𝐷𝑇−14𝜔2𝐴𝑇−1 ,

(33)

Proof. The proof of Theorem 5 is shown in Appendix A.

According to (28) and (29), the efficient frontier under
the time-consistent strategy (27) can be derived; for the main
results, see Corollary 6.

Corollary 6. The efficient frontier under the time-consistent
strategy (27) for the mean-variance model (22) is given by

var0 (𝑤𝑇) = [𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)]2∑𝑇−1𝑘=0 [∏𝑇−1𝑖=𝑘+1 (𝐵𝑖/𝐴 𝑖)2] (𝐷𝑘/𝐴𝑘) + 𝑤20𝐴0 , (34)

where ∏𝑇−1𝑖=𝑘+1(𝐵𝑖/𝐴 𝑖) in (34) is defined to be unity when 𝑘 =𝑇 − 1.
Proof. From Theorem 5, it is easy to derive the following
results:

𝑛𝑡 = 12𝜔 𝑇−1∑
𝑘=𝑡

( 𝑇−1∏
𝑖=𝑘+1

𝐵𝑖𝐴 𝑖) 𝐷𝑘𝐴𝑘 ,
𝛾𝑡 = 14𝜔2 𝑇−1∑

𝑘=𝑡

[ 𝑇−1∏
𝑖=𝑘+1

( 𝐵𝑖𝐴 𝑖)
2] 𝐷𝑘𝐴𝑘 ,

(35)

For the given 𝑡 = 0 and the initial wealth 𝑤0, (28) and (29)
can be rewritten as

𝐸0 (𝑤𝑇) = 𝑇−1∏
𝑖=0

𝐵𝑖𝐴 𝑖𝑤0 + 12𝜔 𝑇−1∑
𝑘=0

( 𝑇−1∏
𝑖=𝑘+1

𝐵𝑖𝐴 𝑖) 𝐷𝑘𝐴𝑘 , (36)

var0 (𝑤𝑇) = 𝑤20𝐴0 + 14𝜔2 𝑇−1∑
𝑘=0

[ 𝑇−1∏
𝑖=𝑘+1

( 𝐵𝑖𝐴 𝑖)
2] 𝐷𝑘𝐴𝑘 . (37)

Thus, the following efficient frontier can be obtained:

var0 (𝑤𝑇) = [𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)]2∑𝑇−1𝑘=0 [∏𝑇−1𝑖=𝑘+1 (𝐵𝑖/𝐴 𝑖)2] (𝐷𝑘/𝐴𝑘) + 𝑤20𝐴0 . (38)

Then, Corollary 6 is proved.

Suppose that the risk aversion 𝜔 in Model (22) tends
to infinity, then the investor only considers the risk in the
investment process and the expected return is ignored in this
case, which is also known as the global minimum variance
portfolio optimization problem in literature. According to
Theorem 4, we can directly derive the time-consistent strat-
egy and the corresponding optimal expected and variance
values of the terminal wealth; for the detailed results see the
following corollary.
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Corollary 7. Suppose that there are no risk-free assets, the
time-consistent control policy, and the corresponding expecta-
tion and variance of terminal wealth for the global minimum
variance model can be expressed as follows:

�̂�𝑡 = Ω̂−1𝑡 I𝐴 𝑡 𝑤𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1 (39)

𝐸𝑡 (𝑤𝑇) = 𝑇−1∏
𝑘=𝑡

𝐵𝑘𝐴𝑘𝑤𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1 (40)

var𝑡 (𝑤𝑇) = 1𝐴 𝑡𝑤2𝑡 , 𝑡 = 0, 1, . . . , 𝑇 − 1 (41)

Proof. From Theorem 5 and Corollary 6, we can obtain that𝑏𝑡, 𝑛𝑡, and 𝛾𝑡 trend to zero when 𝜔 → ∞. Therefore,
Corollary 7 is proved.

Notice that the solution obtained is a feedback or close-
loop solution, while the solution obtained by Bjork and
Murgoci [15, 29] for the case with a risk-free asset is a
deterministic solution (or an open-loop solution).

3.4. The Premium of Dynamic Trading under the Time-
Consistent Strategies Setting. In the previous section, we
mainly have discussed the time-consistent investment strate-
gies for the classic model with and without risk-free assets.
However, the premiums of dynamic trading for the above two
investment strategies are also concerned by most investors,
such as the Sharpe ratios of the portfolios under different
strategies. To the best of our knowledge, Chiu and Zhou
[31] showed that the Sharpe ratio of this portfolio included
a risk-free asset that strictly dominates that of this portfolio

without including a risk-free asset under continuous-time
setting. Additionally, Yao et al. [32] extended the work of
Chiu and Zhou [31] to a discrete-time setting. However, the
above literatures are limited to the conclusions under pre-
commitment investment strategy framework. In the follow-
ing, we will further discuss the premium of dynamic trading
under the time-consistent strategy setting.

We consider the Sharpe ratio defined as

𝑆𝑅 (𝐸0 (𝑤𝑇)) = 𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑡=0 𝑠𝑡√var0 (𝑤𝑇) . (42)

For convenience, let 𝐵𝑆𝑅𝑟𝑓 and 𝐵𝑆𝑅 denote the best
Sharpe ratios for the portfolio with and without risk-free
assets, respectively. According to the efficient frontier (12), the
best Sharpe ratio thatwith both risky assets and risk-free asset
can be expressed as

𝐵𝑆𝑅𝑟𝑓 = √𝑇−1∑
𝑘=0

𝐸 (𝑃
𝑘
)Ω−1
𝑘

𝐸 (𝑃𝑘). (43)

Similarly, we can also derive the best Sharpe ratio that of
only risky assets. From the efficient frontier (34), we have the
following Sharpe ratio:𝑆𝑅 (𝐸0 (𝑤𝑇))

= 𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑡=0 𝑠𝑡√(1/𝜑0) [𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)]2 + 𝑤20/𝐴0 ,
(44)

where 𝜑0 = ∑𝑇−1𝑘=0 [∏𝑇−1𝑖=𝑘+1(𝐵𝑖/𝐴 𝑖)2](𝐷𝑘/𝐴𝑘).
By the first-order derivative of 𝑆𝑅, we have

𝑑𝑆𝑅 (𝐸0 (𝑤𝑇))𝑑𝐸0 (𝑤𝑇) = 𝑤20/𝐴0 + (1/𝜑0) [𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑡=0 𝑠𝑡] [∏𝑇−1𝑡=0 𝑠𝑡 − ∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)] 𝑤0((1/𝜑0) [𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)]2 + 𝑤20/𝐴0)3/2 . (45)

Due to the fact that 𝐸0(𝑤𝑇) − 𝑤0∏𝑇−1𝑡=0 𝑠𝑡 ≥ 0, if ∏𝑇−1𝑡=0 𝑠𝑡 −∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖) ≥ 0, we can easily find that 𝑆𝑅 is an increasing
function about 𝐸0(𝑤𝑇) on its domain [𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖),∞).
In this case, we can derive the supremum of the Sharpe ratio
(44), which can be referred to as the best Sharpe ratio.

𝐵𝑆𝑅 = √𝜑0 = √𝑇−1∑
𝑘=0

[ 𝑇−1∏
𝑖=𝑘+1

( 𝐵𝑖𝐴 𝑖)
2] 𝐷𝑘𝐴𝑘 . (46)

On the other hand, for ∏𝑇−1𝑡=0 𝑠𝑡 − ∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖) < 0, we
rewrite the efficient frontiers (12) and (34) as follows, respec-
tively.𝜎𝑟 (𝑤𝑇) = √var0 (𝑤𝑇)

= √ [𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)]2∑𝑇−1𝑘=0 [∏𝑇−1𝑖=𝑘+1 (𝐵𝑖/𝐴 𝑖)2] (𝐷𝑘/𝐴𝑘) + 𝑤20𝐴0
(47)

and

𝜎𝑟𝑓 (𝑤𝑇) = √var0 (𝑤𝑇) = (𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑠𝑘)√∑𝑇−1𝑘=0 𝐸 (𝑃
𝑘
)Ω−1
𝑘

𝐸 (𝑃𝑘) . (48)

It is easy to find that the tangent line for the efficient
frontier (47) passes through the point (𝑤0∏𝑇−1𝑘=0 𝑠𝑘, 0), and its
slope is the best Sharpe ratio generated by only risky assets.
Therefore, the best Sharpe ratio can be expressed as

𝐵𝑆𝑅
= √𝑇−1∑
𝑘=0

[ 𝑇−1∏
𝑖=𝑘+1

( 𝐵𝑖𝐴 𝑖)
2] 𝐷𝑘𝐴𝑘 + 𝐴0 [∏𝑇−1𝑖=0 𝐵𝑖𝐴 𝑖 − ∏𝑇−1

𝑡=0
𝑠𝑡]2 (49)

Similar to Chiu and Zhou [31] and Yao et al. [32], we can
conclude the following theorem.
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Theorem 8. If 𝑇 ≥ 2, under the time-consistent strategy
framework, we have the following conclusions.

(a) The efficient frontier (12) with both risky and risk-free
assets strictly dominates the efficient frontier (34) only with
risky assets.

(b)The best Sharpe ratio with both risky and risk-free assets
is strictly greater than that of only with risky assets, that is,𝐵𝑆𝑅𝑟𝑓 > 𝐵𝑆𝑅.
Proof. The proof of Theorem 8 is shown in Appendix B.

As shown inTheorem 8 and its proof, we can find, under
the time-consistent strategy framework, that the probability
of any efficient portfolio involving a risk-free asset at any
time is strictly greater than zero in the multi-period mean-
variance model with a risk-free asset. This indicates that the
efficient frontier with a risk-free asset is strictly above that
with only risky assets in the multi-period setting. In other
words, the multi-period mean-variance model with a risk-
free asset can achieve a strictly better Sharpe ratio than a
model with only risky assets, which is different from the
case of the classical static model (the efficient frontier in the
single-period case is tangent to the risky region). Theorem 8
additionally shows that the availability of a risk-free asset can
increase the Sharpe ratio of portfolios derived by the multi-
period time-consistent strategy.

4. Further Discussions on the Time-Consistent
Solutions for the Adjustment Model

In many applications, such as those with transaction costs,
it is more convenient to take the control variable in Model
(3) in the form of adjustments of investments. These types of
models have been studied in Calafiore [26, 28].

We denote V𝑖𝑡 as the value of the portion of the investor’s
total wealth invested in risky asset i at the beginning of time𝑡.The vector of portfolio with component V𝑖𝑡 can be expressed
V𝑡 = [V1𝑡 , . . . , V𝑛𝑡 ], where 𝑖 = 1, . . . , 𝑛, 𝑡 = 0, 1, . . . , 𝑇− 1. At the
end of each period, the investor has the opportunity to adjust
his investment by rebalancing the portfolio composition V𝑡.
Let ΔV𝑖𝑡 be the adjustment value of 𝑖th risky asset and ΔV𝑡 =[ΔV1𝑡 , . . . , ΔV𝑛𝑡 ] denote the control variables. Based on the
self-financing condition, the adjustment value of risk-free
asset at the time 𝑡 can be denoted as ΔV0𝑡 = −IΔV𝑡. Then,
we can construct the following dynamicwealth process under
this control variable of adjustment value.

𝑤𝑡+1 = 𝑠𝑡𝑤𝑡 + 𝑃𝑡 (V𝑡 + ΔV𝑡) , 𝑡 = 0, 1, . . . , 𝑇 − 1 (50)

where 𝑃𝑡 = [(𝑒1𝑡 − 𝑠𝑡), (𝑒2𝑡 − 𝑠𝑡), . . . , (𝑒𝑛𝑡 − 𝑠𝑡)].
According to (50), the following multi-period mean-

variance portfolio adjustment model can be presented as

max 𝐸 (𝑤𝑇) − 𝜔 var (𝑤𝑇)
s.t. 𝑤𝑡+1 = 𝑠𝑡𝑤𝑡 + 𝑃𝑡 (V𝑡 + ΔV𝑡) ,𝑡 = 0, 1, . . . , 𝑇 − 1.

(51)

Similarly, if we assume that the investment is only on the
risky assets, we need add the condition 𝑤𝑡 = I(V𝑡 + ΔV𝑡) into
Model (51).

Because 𝑢𝑡 = V𝑡 + ΔV𝑡, where 𝑢𝑡 is the control variable
in Model (3) and Model (22). Thus, it is clear that the
dynamic wealth processes for Model (3), Model (22), and the
above adjustment model can be transformed by each other,
respectively.

In the following, we will also discuss the time-consistent
strategy for the adjustment model. According to the relation-
ship amongModel (3), Model (22), and the above adjustment
model, we can readily derive the time-consistent strategy and
efficient frontier, and the main conclusions are summarized
as follows.

Theorem 9. When a capital market has risky assets and one
risk-free asset, the time-consistent strategy and efficient frontier
for the adjustment model (51) can be expressed as

ΔV̂𝑡 = Ω−1𝑡 𝐸 (𝑃𝑡)2𝜔∏𝑇−1𝑖=𝑡+1𝑠𝑖 − V̂𝑡, 𝑡 = 0, 1, . . . , 𝑇 − 1 (52)

where ΔV̂𝑡 = [ΔV1𝑡 , . . . , ΔV𝑛𝑡 ], and
var0 (𝑤𝑇) = (𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑠𝑘)2∑𝑇−1𝑘=0 𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘) . (53)

Theorem10. The time-consistent strategy and efficient frontier
for the problem (51) can be expressed as the following conclu-
sions when a capital market has no risk-free asset.

ΔV𝑡 = (Ω̂−1𝑡 II𝐴 𝑡 − Σ) V𝑡

+ 12𝜔 𝑇−1∏
𝑖=𝑡+1

𝐵𝑖𝐴 𝑖 Ω̂−1𝑡 (𝐸 (𝑒𝑡) − 𝐵𝑡I𝐴 𝑡 ) ,
𝑡 = 0, 1, . . . , 𝑇 − 1

(54)

and

var0 (𝑤𝑇)
= [𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)]2∑𝑇−1𝑘=0 [∏𝑇−1𝑖=𝑘+1 (𝐵𝑖/𝐴 𝑖)2] (𝐷𝑘/𝐴𝑘) [𝐸0 (𝑤𝑇)
− IV0∏𝑇−1𝑖=0 𝐵𝑖𝐴 𝑖 ]

2 + V0II
V0𝐴0 ,

(55)

where Σ denotes 𝑛 × 𝑛 identity matrix, and the notions of Ω̂𝑡,𝐴 𝑡, 𝐵𝑡, 𝐷𝑡 are the same as that in Section 3.2.

5. Numerical Simulation and
Empirical Analysis

For the purpose of comparing the relative performance of the
above two models under the different investment strategies,
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Table 1: Sharpe ratios for portfolios with one risk-free asset.

Sharpe ratios for different risk aversion parameters

Periods
risk aversion parameter risk aversion parameter risk aversion parameter𝜔 = 0.1 𝜔 = 0.5 𝜔 = 2.5

Pre-commitment Time-consistent Pre-commitment Time-consistent Pre-commitment Time-consistent
1 1.2091 1.2091 1.2091 1.2091 1.2091 1.2091
2 2.2497 1.7099 2.2497 1.7099 2.2497 1.7099
3 3.7313 2.0942 3.7313 2.0942 3.7313 2.0942
4 5.9781 2.4182 5.9781 2.4182 5.9781 2.4182
5 9.4576 2.7037 9.4576 2.7037 9.4576 2.7037
6 14.8888 2.9617 14.8888 2.9617 14.8888 2.9617
7 23.3926 3.1990 23.3926 3.1990 23.3926 3.1990
8 36.7243 3.4199 36.7243 3.4199 36.7243 3.4199
9 57.6353 3.6273 57.6353 3.6273 57.6353 3.6273
10 90.4412 3.8235 90.4412 3.8235 90.4412 3.8235

wemainly compare their Sharpe ratios and efficient frontiers.
We assume that the investor has one unit of initial wealth
(𝑤0 = 1). In this section, our simulation and empirical anal-
ysis have twofold contributions. The first contribution is to
provide some simulations to check our conclusions presented
in Section 3 and to compare efficient frontiers and Sharpe
ratios of the pre-commitment and time-consistent strategies.
Second, we provide an empirical analysis to compare the
performances of portfolios under pre-commitment and time-
consistent strategies, respectively. The results show that the
time-consistent strategies almost have better performance
than pre-commitment strategies in out-of-sample test.

5.1. Comparison of Pre-Commitment and Time-Consistent
Strategies. In this section, we mainly aim to check the the-
oretical findings presented in Section 3, and quantify the dif-
ference betweenpre-commitment and time-consistent strate-
gies. To make it easier to compare our results with those in Li
andNg [4], we adopt the data in examples 1 and 2 fromLi and
Ng [4]. Although there are some existing researches regard-
ing the difference in efficient frontiers between the time-
consistent and pre-commitment strategies, such as Lioui [33]
and Wu [30], they did not quantify the differences. In this
section, we will give some examples to illustrate the results
using both efficient frontiers and Sharpe ratio. For a given
risk aversion parameter 𝜔, we can obtain the expectation and
variance of the terminal wealth under different investment
strategies. Based on the Sharpe ratio presented in Section 3.4,
we have

𝜃𝑠ℎ𝑎𝑟𝑝𝑒 (𝜔) = 𝐸 (𝑤𝑇) − 𝑤0 (𝑟𝑓)𝑇√var (𝑤𝑇) , (56)

where 𝑟𝑓 denotes the risk-free rate for each time period with
a given return rate of 1.04.

According to the definition of Sharpe ratio, we can con-
clude that the portfolio with a large Sharpe ratio ismore effec-
tive than the one with a small Sharpe ratio. In the following,
we will consider both the capital market with and without the
risk-free asset. In the first case, in addition to the following

three risky assets, suppose there exists a risk-free asset with a
given annual return rate of 1.04, where the expected annual
return vectors and covariance matrices at different periods
are given as

𝐸 (𝑒𝑡) = [1.162, 1.246, 1.228] , 𝑡 = 0, 1, . . . , 𝑇 − 1,
Ω𝑡 = [[[

0.0146 0.0187 0.01450.0187 0.0854 0.01040.0145 0.0104 0.0289
]]] ,
𝑡 = 0, 1, . . . , 𝑇 − 1.

(57)

In the second case, we consider the market only with the
above three risky assets.

According to the efficient frontiers shown in Section 3
and Li and Ng [4], we can compare the efficient frontiers
under pre-commitment and time-consistent strategies, as
shown in Figure 1. In addition, from the definition of the
Sharpe ratio, we can obtain the Sharpe ratios for the different
risk aversion parameters and investment strategies. Themain
results are displayed in Tables 1 and 2.

Figure 1 reports the efficient frontiers with different in-
vestment strategies. It is clear that the efficient frontiers under
pre-commitment strategies are always higher than those of
time-consistent strategies, no matter risk-free asset exists in
capital pool or not. In addition, when the capital pool with
one risk-free asset and risky assets, the gap between the
efficient frontiers under pre-commitment strategy and time-
consistent strategy is quite large even if the investment period
are very small (𝑇 = 2), while the gap in the efficient frontiers
of the pre-commitment strategy and time-consistent strategy
is quite close when there is not a risk-free asset in capital pool,
comparatively speaking. More importantly, we can find that
the efficient frontiers with a risk-free asset are always higher
than the efficient frontiers only with risky assets, no matter
that the investor chooses the pre-commitment strategies or
time-consistent strategies, which also check the conclusions
shown in Section 3 and Yao et al. [32].
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Table 2: Sharpe ratios for portfolios without risk-free assets.

Sharpe ratios for different risk aversion parameters

Periods
risk aversion parameter risk aversion parameter risk aversion parameter𝜔 = 0.1 𝜔 = 0.5 𝜔 = 2.5

Pre-commitment Time-consistent Pre-commitment Time-consistent Pre-commitment Time-consistent
1 0.7748 0.7748 0.8863 0.8863 1.1771 1.1771
2 1.2205 1.0941 1.3671 1.2580 1.7512 1.6121
3 1.6684 1.3379 1.8304 1.5446 2.2484 1.8941
4 2.1470 1.5425 2.3095 1.7851 2.7094 2.0795
5 2.6596 1.7215 2.8091 1.9932 3.1401 2.1927
6 3.1932 1.8820 3.3176 2.1749 3.5318 2.2492
7 3.7215 2.0280 3.8104 2.3321 3.8677 2.2607
8 4.2112 2.1618 4.2576 2.4655 4.1310 2.2370
9 4.6329 2.2849 4.6335 2.5743 4.3122 2.1862
10 4.9703 2.3982 4.9256 2.6579 4.4145 2.1147

Pre-commitment strategy with risk-free asset

Pre-commitment strategy with risk-free asset

Pre-commitment strategy only with risky assets
Time-consistent strategy only with risky assets

Time-consistent strategy with risk-free asset

Pre-commitment strategy only with risky assets
Time-consistent strategy only with risky assets

Time-consistent strategy with risk-free asset
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Figure 1: Comparison of frontiers under pre-commitment and time-consistent strategies.

As indicated in Tables 1 and 2, the Sharpe ratios under the
time pre-commitment strategies are always higher than those
of the time-consistent strategies for𝑇 > 1.This is because that
the pre-commitment strategy achieves the global optimality
from the initial point 0, while the time-consistent strategies
only obtains sub-optimality since it insures the investment
strategies with time consistency at the expense of global
interests. For a fixed investment horizon, the Sharpe ratios
are the same for different risk aversion parameters when
the market with one risk-free asset exists (this conclusion
can be directly derived by applying the efficient frontiers
for the different investment strategies). In addition, for a
fixed risk aversion parameter 𝜔, we can find that the Sharpe
ratios with both risk-free asset and risky assets are always
larger than those only with risky assets, no matter for the
pre-commitment strategies or time-consistent strategies. The
simulation results in Tables 1 and 2 are also coincident with
the theoretical findings in Section 3.

Although the pre-commitment strategies always perform
better than the time-consistent strategies from a theoretical

point of view, the differences of the above two investment
strategies in real investment process are not clear. More
importantly, for a real investor, he/she would like to use
the re-estimation approach to update new information at
each time period and then to reestimate the future return
distributions. Based on the new information, then the
investor can re-calculate the investment strategies in the rest
of the investment periods. According to the re-estimation
approach, we can find that the investor only adopt the
previously calculated investment strategy to invest in the first
stage; after the first stage, the investor will recalculate the
investment policies according to the changes. In this case,
the above two investment strategies are called as recalculated
pre-commitment strategies and recalculated time-consistent
strategies, respectively. In the following, we will compare the
pre-commitment strategy (the recalculated pre-commitment
strategy) and the time-consistent strategy (the recalculated
time-consistent strategy) by using Out-of-sample test, and
the main results are shown in Sections 5.2 and 5.3, respec-
tively.
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Table 3: Sharpe ratios of portfolios under different strategies (T=2, M=120).

Sharpe ratios for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Pre-commitment Time-consistent Pre-commitment Time-consistent
0.1 0.1053 0.2810 0.1243 0.1465
0.5 0.1053 0.2810 0.1302 0.1524
1.0 0.1053 0.2810 0.1308 0.1530
1.5 0.1053 0.2810 0.1310 0.1531
2.0 0.1053 0.2810 0.1311 0.1532

Table 4: Sharpe ratios of portfolios under different strategies (T=4, M=120).

Sharpe ratios for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Pre-commitment Time-consistent Pre-commitment Time-consistent
0.1 0.0000 0.4183 0.1226 0.1451
0.5 0.0000 0.4183 0.1221 0.1448
1.0 0.0000 0.4183 0.1221 0.1447
1.5 0.0000 0.4183 0.1221 0.1447
2.0 0.0000 0.4183 0.1221 0.1447

Table 5: Sharpe ratios of portfolios under different strategies (T=8, M=120).

Sharpe ratios for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Pre-commitment Time-consistent Pre-commitment Time-consistent
0.1 -0.0712 0.5542 -0.1034 -0.1581
0.5 -0.0712 0.5542 -0.1034 -0.1581
1.0 -0.0712 0.5542 -0.1034 -0.1581
1.5 -0.0712 0.5542 -0.1034 -0.1581
2.0 -0.0712 0.5542 -0.1034 -0.1581

5.2. Out-of-Sample Evaluation of the Pre-Commitment and
Time-Consistent Strategies. In the section, we assume that the
investor will strictly adhere to the pre-committed strategy
and time-consistent strategy without recalculating the invest-
ment strategies. In this case, the investor does not need
to update the market parameters, and only need to esti-
mate the expected return vectors and covariance matrices
of risky assets at the initial time. To further discuss the
difference between the pre-commitment strategies and time-
consistent strategies, we assume the expected return vectors
and covariance matrices at different periods with the same
values. We randomly choose 12 industry portfolios in United
States from July 1976 to September 2016, which is downloaded
from Kenneth French’s web site (http://mba.tuck.dartmouth
.edu/pages/faculty/ken.french/data library.html). The 12 in-
dustries considered are Food, Beer, Smoke, Games, Books,
Steel, Carry, Coal, Oil, Paper, Finance, and Other.

In addition, we arbitrarily regard the monthly return of
risk-free asset as 𝑠𝑡 = 1.0003. Motivated by Lan [34], we
assume that there is a group of investors who have the same
risk preference except that they start their investments at
different periods. In the section, we assume that the length
of the sample returns is 𝑁. Also, we suppose that in the
investment period 𝑇 and in each of the 𝑇 months, there is

one investor who starts a T-period investment. Similar to
DeMiguel et al. [25], we adopt “rolling-sample” approach to
evaluate the above two strategies and choose an estimation
window of length 𝑀. In the following, we provide some
portfolio performance indexes to evaluate the investment
strategies presented in this paper, such as Sharpe ratio,
Portfolio turnover, and Maximum drawdown.

5.2.1. Sharpe Ratios. In this section, we will assess the perfor-
mance of the pre-commitment strategy and time-consistent
strategy by using Sharpe ratio index. Table 3 contain the
results for Sharpe ratios of portfolios under different strate-
gies when 𝑇 = 2, 𝜔 = 0.1, 0.5, 1.0, 1.5, 2.0 and 𝑀 = 120. It
is fact that the time-consistent strategies almost have higher
Sharpe ratios than pre-commitment strategies in out-of-
sample test, no matter that the risk-free assets are considered
into capital pool or not. In this case, the time-consistent
strategy might be a good choice for the investor in the real
financial market.

Additionally, we will test the robustness for our conclu-
sions when 𝑇 take different values. Let 𝑇 = 4, 8, then the
empirical results can be derived similarly. The detailed results
are shown in Tables 4 and 5.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 6: Portfolio turnovers of portfolios under different strategies (T=2, M=120).

Portfolio turnovers for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Pre-commitment Time-consistent Pre-commitment Time-consistent
0.1 3.1412 1.3826 8.5531 7.4077
0.5 0.6282 0.2765 8.4973 7.3446
1.0 0.3141 0.1383 8.5051 7.3579
1.5 0.2094 0.0922 8.5083 7.3635
2.0 0.1571 0.0691 8.5101 7.3665

Table 7: Portfolio turnovers of portfolios under different strategies (T=4, M=120).

Portfolio turnovers for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Pre-commitment Time-consistent Pre-commitment Time-consistent
0.1 9.3703 1.3880 116.5914 99.1490
0.5 1.8741 0.2776 116.5625 99.2885
1.0 0.9370 0.1388 116.5610 99.3106
1.5 0.6247 0.0925 116.5607 99.3183
2.0 0.4685 0.0694 116.5605 99.3222

Table 8: Portfolio turnovers of portfolios under different strategies (T=8, M=120).

Portfolio turnovers for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Pre-commitment Time-consistent Pre-commitment Time-consistent
0.1 70.4774 1.3730 3.8704 e+04 3.6401 e+04
0.5 14.0955 0.2746 3.8703 e+04 3.6401 e+04
1.0 7.0477 0.1373 3.8703 e+04 3.6401 e+04
1.5 4.6985 0.0915 3.8703 e+04 3.6401 e+04
2.0 3.5239 0.0687 3.8703 e+04 3.6401 e+04

As shown in Tables 4 and 5, the Sharpe ratios under
the time-consistent strategy are almost better than that of
the pre-commitment strategy. Also, it is coincident with
the conclusion shown in Tables 3–6. This indicates that the
time-consistent strategy might be a more suitable investment
strategy for investors under Sharpe ratio evaluation frame-
work.

5.2.2. Portfolio Turnovers. In this section, we will compare
the performance of the above two investment strategies under
Portfolio turnover framework. Let 𝑀 = 120, 𝑇 = 2, 4, 8
and 𝜔 = 0.1, 0.5, 1.0, 1.5, 2.0, according to the definition of
Portfolio turnover shown in DeMiguel et al. [25], then the
empirical results can be obtained similarly. These detailed
results are shown in Tables 6–8.

As shown in Tables 6–8, the Portfolio turnovers under
the time-consistent strategy are almost smaller than that
of the pre-commitment strategy. As we all know, more
turnover mean the investor should pay more transaction
cost in the actual investment process. This indicates that the
time-consistent strategy might be a more perfect investment
strategy for investors under Portfolio turnover framework.

5.2.3. Maximum Drawdowns. In this section, we will com-
pare the performance of the above two investment strategies
under Maximum drawdown framework. Maximum draw-
down up to time T is the maximum of the drawdown over
the history of the variable. According to the definition of
Maximum drawdown, we can find that the larger Maximum
drawdown mean the investor will face higher risk in the
actual investment process. Let M = 120, T = 2, 4, 8 and𝜔 = 0.1, 0.5, 1.0, 1.5, 2.0, then the empirical results can be ob-
tained similarly. These detailed results are shown in Tables
9–11.

As shown inTables 9–11, theMaximumdrawdowns under
the time-consistent strategy are almost smaller than that
of the pre-commitment strategy. It means that the investor
will undertake less loss by using time-consistent strategy
compared with pre-commitment strategy. This also indicates
that the time-consistent strategy might be a more suitable
investment strategy for investors under Maximum draw-
downs evaluation framework.

5.3. Out-of-Sample Evaluation of the Recalculated Pre-Com-
mitment and Recalculated Time-Consistent Strategies. In this
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Table 9: Maximum drawdowns of portfolios under different strategies (T=2, M=120).

Maximum drawdowns for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Pre-commitment Time-consistent Pre-commitment Time-consistent
0.1 70.6723 30.6784 179.6937 165.7188
0.5 14.1345 6.1357 172.0585 158.6346
1.0 7.0672 3.0678 171.2166 157.7491
1.5 4.7115 2.0452 171.1129 157.4540
2.0 3.5336 1.5339 171.0611 157.3064

Table 10: Maximum drawdowns of portfolios under different strategies (T=4, M=120).

Maximum drawdowns for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Pre-commitment Time-consistent Pre-commitment Time-consistent
0.1 410.2703 30.5253 7.8974 e+03 7.0880 e+03
0.5 82.0541 6.1051 7.8906 e+03 7.0876 e+03
1.0 41.0270 3.0525 7.8898 e+03 7.0875 e+03
1.5 27.3514 2.0350 7.8895 e+03 7.0875 e+03
2.0 20.5135 1.5263 7.8893 e+03 7.0875 e+03

Table 11: Maximum drawdowns of portfolios under different strategies (T=8, M=120).

Maximum drawdowns for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Pre-commitment Time-consistent Pre-commitment Time-consistent
0.1 1.6876 e+03 34.3380 1.7671 e+06 2.5050 e+06
0.5 0.3375 e+03 6.8676 1.7671 e+06 2.5050 e+06
1.0 0.1688 e+03 3.4338 1.7671 e+06 2.5050 e+06
1.5 0.1125 e+03 2.2892 1.7671 e+06 2.5050 e+06
2.0 0.0844 e+03 1.7169 1.7671 e+06 2.5050 e+06

section, we assume that these investors can use the re-
estimation approach to update new information that appears
over the investment horizon and then to recalculate the
corresponding investment strategies. Similar to Section 5.2,
we also adopt “rolling-sample” approach to evaluate the
above two strategies and choose an estimation window of
length 𝑀.

In fact, before carrying out the T-period investment,
these investors can only re-estimate the expected return and
covariance matrix for the first period investment by “rolling-
sample” approach. Based on the information at time 𝑡 = 𝑀,
these investors still need to forecast the expected return and
covariance matrix of the return of risky assets at the later
period time. In this section, we adopt a simulation-based
approach to forecast the expected return and covariance
matrix at the second period. The main procedures are as
follows:(1) Starting from 𝑡 = 𝑀, the return data in the previous𝑀 months are used to estimate the parameters for the first
period, such as expected return and covariance matrix of
risky assets;(2) Following, we should estimate the expected return
and covariance matrix of risky assets at the later investment

periods. When these investors stand the first investment
period time, they can not obverse the realized return of the
risky assets at this time. However, if we want to estimate
the expected return and covariance matrix of risky assets at
the second investment period time, the return of the risky
assets at the first period time should be forecasted. Based
on the expected return and covariance matrix estimated in(1), we can simulate the return of risky assets will appear
in first investment period by using Monte Carlo approach,
we add the above simulated return data into the previous𝑀 data and drop the earliest return in the dataset, and
then we can forecast the parameters at the later investment
periods.(3) When finishing the first period investment, we can
reestimate the expected return and covariance matrix of
risky assets for the second period by using the updated
information, and then recalculate the investment strategies
for the second investment.(4) Similarly, when 𝑡 = 𝑀 + 2, repeating step
(3), then we can obtain a T-month investment path. This
process is continued by adding the return of the next
period and dropping the earliest return in the dataset, until𝑡 = 𝑁 − 1.
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Table 12: Mean of Sharpe ratios of portfolios under different strategies (T=2, M=120).

Mean of Sharpe ratios for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Recalculated pre-commitment Recalculated time-consistent Recalculated pre-commitment Recalculated time-consistent
0.1 0.2311 0.2314 0.1336 0.1339
0.5 0.2311 0.2314 0.1159 0.1165
1.0 0.2311 0.2314 0.1136 0.1142
1.5 0.2311 0.2314 0.1128 0.1135
2.0 0.2311 0.2314 0.1125 0.1131

Table 13: Mean of Sharpe ratios of portfolios under different strategies (T=4, M=120).

Mean of Sharpe ratios for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Recalculated pre-commitment Recalculated time-consistent Recalculated pre-commitment Recalculated time-consistent
0.1 0.3953 0.4346 0.1865 0.1867
0.5 0.3953 0.4346 0.1847 0.1848
1.0 0.3953 0.4346 0.1844 0.1846
1.5 0.3953 0.4346 0.1843 0.1846
2.0 0.3953 0.4346 0.1843 0.1846

Table 14: Mean of Sharpe ratios of portfolios under different strategies (T=8, M=120).

Mean of Sharpe ratios for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Recalculated pre-commitment Recalculated time-consistent Recalculated pre-commitment Recalculated time-consistent
0.1 0.3579 0.6138 0.0569 0.0570
0.5 0.3579 0.6138 0.0568 0.0568
1.0 0.3579 0.6138 0.0568 0.0568
1.5 0.3579 0.6138 0.0568 0.0568
2.0 0.3578 0.6138 0.0569 0.0570

Table 15: Mean of Portfolio turnovers of portfolios under different strategies (T=2, M=120).

Mean of Portfolio turnovers for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Recalculated pre-commitment Recalculated time-consistent Recalculated pre-commitment Recalculated time-consistent
0.1 1.4693 1.1340 5.3115 5.3079
0.5 0.2939 0.2268 5.1604 5.1539
1.0 0.1469 0.1134 5.1523 5.1457
1.5 0.0980 0.0756 5.1505 5.1439
2.0 0.0735 0.0567 5.1499 5.1432

(5) Based on the above T-month investment paths, then
we calculate the Sharpe ratios for the different investment
strategies.(6) Repeating the above procedures 𝐻 times, we can
calculate the mean of the above H Sharpe ratios. It is defined
as the out-of-sample mean of Sharpe ratios here.

From the above real investment paths, we can obtain
the out-of-sample mean of Sharpe ratios, Portfolio turnovers
and Maximum drawdowns of different investment strategies
under the different risk aversion parameters𝜔 and estimation
window of length 𝑀. The main results are presented in the
following Tables 12–20.

5.3.1. Sharpe Ratios. Assuming that 𝐻 = 1000, 𝑀 = 120,𝑇 = 2, 4, 8 and 𝜔 = 0.1, 0.5, 1.0, 1.5, 2.0, we can obtain the
empirical results under Sharpe ratio evaluation framework.
Tables 12–14 report the empirical results when investors
adopt recalculation approach to invest under different situa-
tions.

As shown in Tables 12–14, the Sharpe ratios under the
recalculated time-consistent strategy are almost larger than
that of the recalculated pre-commitment strategy. This indi-
cates that the recalculated time-consistent strategy might be a
more suitable investment strategy for investors under Sharpe
ratios evaluation framework.
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Table 16: Mean of Portfolio turnovers of portfolios under different strategies (T=4, M=120).

Mean of Portfolio turnovers for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Recalculated pre-commitment Recalculated time-consistent Recalculated pre-commitment Recalculated time-consistent
0.1 4.2591 1.8665 90.8734 90.7543
0.5 0.8518 0.3733 90.7378 90.6176
1.0 0.4259 0.1866 90.7278 90.6074
1.5 0.2839 0.1244 90.7251 90.6054
2.0 0.2130 0.0933 90.7231 90.6027

Table 17: Mean of Portfolio turnovers of portfolios under different strategies (T=8, M=120).

Mean of Portfolio turnovers for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Recalculated pre-commitment Recalculated time-consistent Recalculated pre-commitment Recalculated time-consistent
0.1 13.4218 2.4709 2.1103 e+04 2.1029e+04
0.5 2.6839 0.4942 2.1103 e+04 2.1028e+04
1.0 1.3421 0.2471 2.1103 e+04 2.1028e+04
1.5 0.8949 0.1647 2.1103 e+04 2.1028e+04
2.0 0.6710 0.1235 2.1103 e+04 2.1028e+04

Table 18: Mean of Maximum drawdowns of portfolios under different strategies (T=2, M=120).

Mean of Maximum drawdowns for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Recalculated pre-commitment Recalculated time-consistent Recalculated pre-commitment Recalculated time-consistent
0.1 22.2764 20.6553 101.2131 101.1972
0.5 4.4553 4.1311 98.1210 98.0921
1.0 2.2277 2.0655 97.7348 97.7046
1.5 1.4851 1.3770 97.6057 97.5745
2.0 1.1138 1.0328 97.5413 97.5102

Table 19: Mean of Maximum drawdowns of portfolios under different strategies (T=4, M=120).

Mean of Maximum drawdowns for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Recalculated pre-commitment Recalculated time-consistent Recalculated pre-commitment Recalculated time-consistent
0.1 48.3886 25.2976 3.2589 e+03 3.2748 e+03
0.5 9.6794 5.0595 3.2597 e+03 3.2756 e+03
1.0 4.8412 2.5298 3.2601 e+03 3.2754 e+03
1.5 3.2260 1.6865 3.2600 e+03 3.2757 e+03
2.0 2.4189 1.2649 3.2600 e+03 3.2756 e+03

5.3.2. Portfolio Turnovers. Similarly, assuming that 𝐻 =1000, 𝑀 = 120, T = 2, 4, 8 and 𝜔 = 0.1, 0.5, 1.0, 1.5, 2.0, we
can also obtain the empirical results under Portfolio turnover
evaluation framework. Tables 15–17 report the empirical
results when investors adopt recalculation approach to invest
under different situations.

As shown in Tables 15–17, the Portfolio turnovers under
the recalculated time-consistent strategy are almost smaller
than that of the recalculated pre-commitment strategy. It is
interesting that the above conclusions derived in this situation
are consistent with the findings of Tables 12–14, even then the

recalculated time-consistent strategies are not always better
than recalculated pre-commitment strategies. This indicates
that the time-consistent strategy might be a more suitable
investment strategy for investors under Portfolio turnovers
framework.

5.3.3.MaximumDrawdowns. Assuming that𝐻 = 1000,𝑀 =120, 𝑇 = 2, 4, 8 and 𝜔 = 0.1, 0.5, 1.0, 1.5, 2.0, we can similarly
obtain the empirical results. Tables 18–20 report the empirical
results when investors adopt recalculation approach to invest
under different situations.
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Table 20: Mean of Maximum drawdowns of portfolios under different strategies (T=8, M=120).

Mean of Maximum drawdowns for different risk aversion parameters 𝜔
𝜔 Portfolio with risk-free assets Portfolio without risk-free assets

Recalculated pre-commitment Recalculated time-consistent Recalculated pre-commitment Recalculated time-consistent
0.1 164.1320 36.0936 6.8385 e+05 6.8196 e+05
0.5 32.8023 7.2187 6.8384 e+05 6.8194 e+05
1.0 16.4079 3.6094 6.8383 e+05 6.8192 e+05
1.5 10.9409 2.4062 6.8383 e+05 6.8192 e+05
2.0 8.2069 1.8047 6.8383 e+05 6.8193 e+05

Tables 18–20 report the empirical results when investors
adopt recalculation approach to invest under different situ-
ations. It is interesting that the recalculated time-consistent
strategies always have higher mean of Maximum drawdowns
than recalculated pre-commitment strategies in out-of-
sample test, no matter that the risk-free assets are considered
into capital pool or not. In other words, the recalculated time-
consistent strategy is more dominant than the recalculated
pre-commitment strategy.This indicates that the recalculated
time-consistent strategy might be a good choice for the
investor in the real financial market.

6. Conclusion

To answer the important question: what are the main prac-
tical gains of using the time-consistent investment strategy
and when would it be advantageous to use it instead of the
pre-commitment strategy? To achieve this target, we prove
that the time-consistent strategy is also the optimal open-
loop strategy for the classic model when there is one risk-
free asset. We first derive the explicit time-consistent solution
for the classic model in the case only with risky assets. In
addition, we prove that the Sharpe ratio with both risky and
risk-free assets strictly dominates that of only risky assets
under the time-consistent strategy setting. Finally, extensive
numerical simulations and empirical studies are given to
compare the pre-commitment and time consistent strategies.
This indicates that the investor should adopt the time-
consistent strategies, since the investor needs to recalculate
the investment strategy based on the updated market infor-
mation in actual applications.

In this paper, we only limit to discuss the performance
of pre-commitment and time-consistent strategies, aiming to
answer the question that for the pre-commitment and time-
consistent strategies which one is better for a real investor,
although there are some other simple dynamic investment
strategies in the literatures. For future research, considering
the market is always with perturbation, we can generalize
our results under the robust optimization framework and
consider more existing dynamic investment strategies for
comparison, for example, the 1/N strategy and the myopic
strategy which is derived by optimizing a one-period invest-
ment problem at each rebalancing period. In addition, we
assume the investor with a constant risk aversion parameter
in our model. In order to have a more realistic model we
can investigate the case when the risk aversion depends

dynamically on current wealth, then a state-dependent time-
consistent strategy will be provided for real investor.

Appendix

A. The proof of Theorem 5

For the given 𝑡 = 𝑇 − 1 and a fixed wealth 𝑤𝑇−1, we will
obtain the optimal strategy �̂�𝑇−1 bymaximizing the objection
function 𝐸𝑇−1(𝑤𝑇) − 𝜔var𝑇−1(𝑤𝑇). Based on the wealth
process 𝑤𝑇 = 𝑒𝑇−1𝑢𝑇−1 and the self-financing condition
I𝑢𝑇−1 = 𝑤𝑇−1, we can construct the following Lagrange
function:

𝐿𝑇−1 (𝑢𝑇−1) = 𝐸 (𝑒𝑇−1) 𝑢𝑇−1 − 𝜔𝑢𝑇−1Ω𝑇−1𝑢𝑇−1− 𝜆𝑇−1 (I𝑢𝑇−1 − 𝑤𝑇−1) , (A.1)

where 𝜆𝑇−1 is the Lagrange multiplier. By the first-order nec-
essary optimality condition, we have the following equations:

𝐸 (𝑒𝑇−1) − 2𝜔Ω𝑇−1𝑢𝑇−1 − 𝜆𝑇−1I = 0
I𝑢𝑇−1 = 𝑤𝑇−1. (A.2)

Then, we have

𝜆𝑇−1 = 𝐵𝑇−1 − 2𝜔𝑤𝑇−1𝐴𝑇−1 , (A.3)

�̂�𝑇−1 = 𝑎𝑇−1𝑤𝑇−1 + 𝑏𝑇−1, (A.4)

where

𝑎𝑇−1 = Ω−1𝑇−1I𝐴𝑇−1 ,
𝑏𝑇−1 = 12𝜔Ω−1𝑇−1 (𝐸 (𝑒𝑇−1) − 𝐵𝑇−1I𝐴𝑇−1 ) . (A.5)

Based on the optimal decision at the beginning of the (𝑇 −1)th period, we can obtain the conditional expectation and
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variance of the terminal wealth, and the main results are the
following:

𝐸𝑇−1 (𝑤𝑇) = 𝐸 (𝑒𝑇−1) �̂�𝑇−1
= 𝐸 (𝑒𝑇−1) 𝑎𝑇−1𝑤𝑇−1 + 𝐸 (𝑒𝑇−1) 𝑏𝑇−1
= 𝑚𝑇−1𝑤𝑇−1 + 𝑛𝑇−1

(A.6)

var𝑇−1 (𝑤𝑇) = �̂�𝑇−1Ω𝑇−1�̂�𝑇−1
= 𝑎𝑇−1Ω𝑇−1𝑎𝑇−1𝑤2𝑇−1

+ 2𝑎𝑇−1Ω𝑇−1𝑏𝑇−1𝑤𝑇−1
+ 𝑏𝑇−1Ω𝑇−1𝑏𝑇−1= 𝛼𝑇−1𝑤2𝑇−1 + 𝛽𝑇−1𝑤𝑇−1 + 𝛾𝑇−1

(A.7)

where the boundary conditions are as follows:

𝑚𝑇−1 = 𝐵𝑇−1𝐴𝑇−1 ,
𝑛𝑇−1 = 𝐷𝑇−12𝜔𝐴𝑇−1 ,

(A.8)

𝛼𝑇−1 = 1𝐴𝑇−1 ,𝛽𝑇−1 = 0,
𝛾𝑇−1 = 𝐷𝑇−14𝜔2𝐴𝑇−1 .

(A.9)

Apparently, Theorem 5 holds for 𝑡 = 𝑇 − 1.
Now, we will prove that Theorem 5 is true for 𝑡 =0, 1, . . . , 𝑇−2 by using the mathematical induction approach.
In the following, we assume that Theorem 5 holds for𝑡 = 𝑘 + 1, where 𝑘 < 𝑇 − 2. For the given 𝑡 = 𝑘,

initial wealth 𝑤𝑘 and the time-consistent strategy �̂�𝑖, 𝑖 =𝑘 + 1, . . . , 𝑇 − 1. Then, we can derive the time-consistent
investment strategy �̂�𝑘 by maximizing the objective function𝐸𝑘(𝑤𝑇) − 𝜔var𝑘(𝑤𝑇) = 𝐸𝑘[𝑉𝑘+1(𝑤𝑘+1)] − 𝜔var𝑘[𝐸𝑘+1(𝑤𝑇)].
Similarly, we can construct the following Lagrange func-
tion:

𝐿𝑘 (𝑢𝑘) = 𝐸𝑘 [𝑉𝑘+1 (𝑤𝑘+1)] − 𝜔var𝑘 [𝐸𝑘+1 (𝑤𝑇)]
− 𝜆𝑘 (I𝑢𝑘 − 𝑤𝑘) = 𝑚𝑘+1𝐸𝑘 (𝑤𝑘+1) + 𝑛𝑘+1
− 𝜔 [𝛼𝑘+1𝐸𝑘 (𝑤2𝑘+1) + 𝛽𝑘+1𝐸𝑘 (𝑤𝑘+1) + 𝛾𝑘+1
+ 𝑚2𝑘+1var𝑘 (𝑤𝑘+1)] − 𝜆𝑘 (I𝑢𝑘 − 𝑤𝑘)
= 𝑚𝑘+1𝑢𝑘𝐸 (𝑒𝑘) + 𝑛𝑘+1 − 𝜔 [𝛼𝑘+1𝑢𝑘𝐸 (𝑒𝑘𝑒𝑘) 𝑢𝑘

+ 𝛽𝑘+1𝑢𝑘𝐸 (𝑒𝑘) + 𝛾𝑘+1 + 𝑚2𝑘+1𝑢𝑘Ω𝑇−2𝑢𝑘]− 𝜆𝑘 (I𝑢𝑘 − 𝑤𝑘) ,
(A.10)

Where 𝜆𝑘 is the Lagrange multiplier at time period 𝑡 = 𝑘.
Finally, we can obtain the following:

�̂�𝑘 = 𝑎𝑘𝑤𝑘 + 𝑏𝑘, (A.11)

𝐸𝑘 (𝑤𝑇) = 𝑚𝑘𝑤𝑘 + 𝑛𝑘, (A.12)

var𝑘 (𝑤𝑇) = 𝛼𝑘𝑤2𝑘 + 𝛽𝑘𝑤𝑘 + 𝛾𝑘, (A.13)

where

𝑎𝑘 = Ω̂−1𝑘 I𝐴𝑘 ,
𝑏𝑘 = 𝑚𝑘+12𝜔 Ω̂−1𝑘 (𝐸 (𝑒𝑘) − 𝐵𝑘I𝐴𝑘 ) , (A.14)

𝑚𝑘 = 𝑇−1∏
𝑖=𝑘

𝐵𝑖𝐴 𝑖 ,
𝑛𝑘 = 𝑚2𝑘+1𝐷𝑘2𝜔𝐴𝑘 + 𝑛𝑘+1,

(A.15)

𝛼𝑘 = 1𝐴𝑘 ,𝛽𝑘 = 0,
𝛾𝑘 = 𝛾𝑘+1 + 𝑚2𝑘+1𝐷𝑘4𝜔2𝐴𝑘 .

(A.16)

Therefore, Theorem 5 holds for 𝑡 = 𝑘. From the above
discussion, we know that the time-consistent strategy, condi-
tional expectation and variance of terminal wealth are given
by (27), (28) and (29), respectively.

B. The proof of Theorem 8

In the following, we will proveTheorem 8 from the following
two cases.

For Case 1: 𝑇 ≥ 2,∏𝑇−1𝑡=0 𝑠𝑡 − ∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖) ≥ 0.
For convenience, let �̆� 𝑡 = IΩ−1𝑡 I, �̆�𝑡 = IΩ−1𝑡 𝐸(𝑒𝑡), �̆�𝑡 =𝐸(𝑒𝑡)Ω−1𝑡 𝐸(𝑒𝑡), �̆�𝑡 = �̆� 𝑡�̆�𝑡−�̆�2𝑡 and 𝑙𝑡+1 = 𝛼𝑡+1/𝑚2𝑡+1 hereafter,

where 𝑡 = 0, 1, . . . , 𝑇−2. Similar toYao et al. [32], we can easily
prove that �̆� 𝑡 > 0, �̆�𝑡 > 0 and �̆�𝑡 > 0. In addition, let 𝑙𝑇 = 0,
then we have

𝜑0 = 𝑇−1∑
𝑘=0

[ 𝑇−1∏
𝑖=𝑘+1

( 𝐵𝑖𝐴 𝑖)
2] 𝐷𝑘𝐴𝑘 = 𝑇−1∑

𝑘=0

𝑚2𝑘+1𝐷𝑘𝐴𝑘
= 𝑇−1∑
𝑘=0

�̆�𝑘�̆�𝑘 + 𝑙𝑘+1 (�̆�𝑘 + �̆�𝑘) > 0. (B.1)
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Due to the fact that

𝑇−1∑
𝑘=0

𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘) = 𝑇−1∑
𝑘=0

(�̆�𝑘 + �̆�𝑘𝑟2𝑘 − 2𝑟𝑘�̆�𝑘)
= 𝑇−1∑
𝑘=0

�̆�𝑘 + (�̆�𝑘𝑟𝑘 − �̆�𝑘)2�̆�𝑘
≥ 𝑇−1∑
𝑘=0

�̆�𝑘�̆�𝑘 > 0
(B.2)

and 𝑙𝑡+1 = 𝛼𝑡+1/𝑚2𝑡+1 > 0 for 𝑡 = 0, 1, . . . , 𝑇 − 2, then we have

(𝐵𝑆𝑅𝑟𝑓)2 − (𝐵𝑆𝑅)2 = 𝑇−1∑
𝑘=0

�̆�𝑘 + (�̆�𝑘𝑟𝑘 − �̆�𝑘)2�̆�𝑘
− 𝑇−1∑
𝑘=0

[ 𝑇−1∏
𝑖=𝑘+1

( 𝐵𝑖𝐴 𝑖)
2] 𝐷𝑘𝐴𝑘

= 𝑇−1∑
𝑘=0

�̆�𝑘 + (�̆�𝑘𝑟𝑘 − �̆�𝑘)2�̆�𝑘
− 𝑇−1∑
𝑘=0

�̆�𝑘�̆�𝑘 + 𝑙𝑘+1 (�̆�𝑘 + �̆�𝑘)
> 𝑇−1∑
𝑘=0

�̆�𝑘 + (�̆�𝑘𝑟𝑘 − �̆�𝑘)2�̆�𝑘
− 𝑇−1∑
𝑘=0

�̆�𝑘�̆�𝑘 = 𝑇−1∑
𝑘=0

(�̆�𝑘𝑟𝑘 − �̆�𝑘)2�̆�𝑘≥ 0.
(B.3)

Thus, we can obtain that 𝐵𝑆𝑅𝑟𝑓 > 𝐵𝑆𝑅 in this case.

In addition, we denote var𝑟𝑓0 (𝑤𝑇) and var𝑟0(𝑤𝑇) as the
variances of terminal wealth for the portfolio with and
without risk-free asset under the assumption that 𝐸0(𝑤𝑇) ≥∏𝑇−1𝑘=0 𝑠𝑘, respectively. Then we can conclude that

var𝑟𝑓0 (𝑤𝑇) − var𝑟0 (𝑤𝑇) = (𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑟0𝑘)2∑𝑇−1𝑘=0 𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘) − [𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)]2∑𝑇−1𝑘=0 [∏𝑇−1𝑖=𝑘+1 (𝐵𝑖/𝐴 𝑖)2] (𝐷𝑘/𝐴𝑘) − 𝑤20𝐴0
= (2𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑟0𝑘 − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)) (𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖) − 𝑤0∏𝑇−1𝑘=0 𝑟0𝑘)∑𝑇−1𝑘=0 [∏𝑇−1𝑖=𝑘+1 (𝐵𝑖/𝐴 𝑖)2] (𝐷𝑘/𝐴𝑘) − 𝑤20𝐴0 < 0.

(B.4)

According to (B.4), we can easily derive that the efficient
frontier (12) with both risky and risk-free assets strictly
dominates the efficient frontier (34) only with risky assets.
Therefore, Theorem 8 is proved in this case.

For Case 2: 𝑇 ≥ 2,∏𝑇−1𝑡=0 𝑠𝑡 − ∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖) < 0.
Since the parameters in efficient frontier (34) are semi-

analytical formulas, it is difficult to directly compare the
differences between the above two efficient frontiers in this
case. Motivated by Theorem 4.5 in Chiu and Zhou [31], to
prove the conclusion (a) in Theorem 8, we only need to
prove that the following conclusion (B.5) holds for the time-
consistent strategy �̂�𝑡 derived byModel (3) when the terminal
wealth satisfies 𝐸0(𝑤𝑇) ≥ 𝑤0∏𝑇−1𝑡=0 𝑠𝑡 setting.

𝑃 {�̂�0𝑡 ̸= 0} > 0, holds for ∀𝑡 ∈ {1, . . . , 𝑇 − 1} , (B.5)

where �̂�0𝑡 denotes the amount invested in risk-free asset at
period 𝑡 (𝑡 = 0, 1, . . . , 𝑇).

If 𝐸0(𝑤𝑇) = 𝑤0∏𝑇−1𝑡=0 𝑠𝑡, then (B.5) is obviously true.
In the following, we only need to prove that (B.5) holds
for the assumption 𝐸0(𝑤𝑇) > 𝑤0∏𝑇−1𝑡=0 𝑠𝑡. According to
Lemma 3, for each investment period time 𝑡 ∈ {1, . . . , 𝑇 − 1},

the time-consistent strategy �̂�𝑡 can be expressed as �̂�𝑡 =Ω−1𝑡 𝐸(𝑃𝑡)/(2𝜔∏𝑇−1𝑖=𝑡+1𝑠𝑖). Note that we will prove (B.5) by using
the proof by contradiction.

Assume that (B.6) is not true, then there exists 𝜏 ∈{1, . . . , 𝑇 − 1}, such that 𝑃{�̂�0𝜏 = 0} = 1. Then we have that𝑤𝜏 = ∑𝑛𝑖=1 �̂�𝑖𝜏 = 𝐼Ω−1𝜏 𝐸(𝑃𝜏)/(2𝜔∏𝑇−1𝑖=𝜏+1𝑠𝑖), where 𝑤𝜏 is a
deterministic value in this case. According to (2), we also have
that𝑤𝜏 = (∏𝜏−1𝑖=0 𝑠𝑖)𝑤0+∑𝜏−1𝑘=0(∏𝜏−1𝑖=𝑘+1𝑠𝑖)𝑃𝑘�̂�𝑘, and the following
equation can be derived.

(𝜏−1∏
𝑖=0

𝑠𝑖)𝑤0 + 𝜏−1∑
𝑘=0

( 𝜏−1∏
𝑖=𝑘+1

𝑠𝑖)𝑃𝑘�̂�𝑘 = 𝐼Ω−1𝜏 𝐸 (𝑃𝜏)(2𝜔∏𝑇−1𝑖=𝜏+1𝑠𝑖) . (B.6)

As shown in (B.6), we can easily find that the left of (B.6)
is a random variable on the excess returns, while the right of
(B.6) is a deterministic value. So if (B.6) is true, we can obtain
that �̂�𝑘 = 0 a.s. for 𝑘 = 0, 1, 𝜏 − 1, which contradicts with
the time-consistent strategy𝑢𝑘 shown inLemma 3.Therefore,
(B.5) is proved, and the conclusion (a) inTheorem 8 is true in
this case.
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Due to the fact that the efficient frontier (12) strictly
dominates the efficient frontier (34), for the given expected
return level 𝐸0(𝑤𝑇), we have

var𝑟𝑓0 (𝑤𝑇) − var𝑟0 (𝑤𝑇)
= (𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑠𝑘)2∑𝑇−1𝑘=0 𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘)

− [𝐸0 (𝑤𝑇) − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)]2𝜑0 − 𝑤20𝐴0 < 0.
(B.7)

Then, we obtain that

𝜑0𝐴0 (𝐸 (𝑤𝑇) − 𝑤0𝑇−1∏
𝑘=0

𝑠𝑘)2

− [𝑇−1∑
𝑘=0

𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘)]𝐴0 [𝐸 (𝑤𝑇) − 𝑤0𝑇−1∏
𝑖=0

𝐵𝑖𝐴 𝑖]
2

− 𝑤20 [𝑇−1∑
𝑘=0

𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘)]𝜑0 < 0 ⇒
(𝐸 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑠𝑘)2

var𝑟0 (𝑤𝑇) < 𝑤20 ∑𝑇−1𝑘=0 𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘)𝐴0var𝑟0 (𝑤𝑇)
+ [∑𝑇−1𝑘=0 𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘)] [𝐸 (𝑤𝑇) − 𝑤0∏𝑇−1𝑖=0 (𝐵𝑖/𝐴 𝑖)]2𝜑0var𝑟0 (𝑤𝑇) ⇒

(𝐸 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑠𝑘)2
var𝑟0 (𝑤𝑇) < 𝑤20 ∑𝑇−1𝑘=0 𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘)𝐴0var𝑟0 (𝑤𝑇)

+ [𝑇−1∑
𝑘=0

𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘)] [1 − 𝑤20𝐴0var𝑟0 (𝑤𝑇)] ⇒
(𝐸 (𝑤𝑇) − 𝑤0∏𝑇−1𝑘=0 𝑠𝑘)2

var𝑟0 (𝑤𝑇) < [𝑇−1∑
𝑘=0

𝐸 (𝑃𝑘)Ω−1𝑘 𝐸 (𝑃𝑘)] ⇒
(𝑆𝑅)2 < (𝐵𝑆𝑅𝑟𝑓)2 .

(B.8)

Since (B.8) holds for the entire portfolio only with risk
assets, and then we can prove that (𝐵𝑆𝑅)2 < (𝐵𝑆𝑅𝑟𝑓)2 or𝐵𝑆𝑅 < 𝐵𝑆𝑅𝑟𝑓 is also true in this case. Finally, we can conclude
that Theorem 8 is proved.
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Supplementary Materials

In addition, we also provide the results of several additional
analysis that we have undertaken to test the robustness of
our findings. The results, reported in Tables A1–A54 of the
Online Appendix, show that the time-consistent strategy (the
recalculated time-consistent strategy) almost outperform the
pre-commitment strategy (the recalculated pre-commitment
strategy) under the different evaluation criterions. Obviously,
this conclusion is coincident with that of Sections 5.2 and
5.3. For more detailed results, see the Online Appendix.
(Supplementary Materials)
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