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This papermainly focuses on output feedback practical tracking controller design for stochastic nonlinear systems with polynomial
function growth conditions. Mostly, there are some studies on output feedback tracking control problem for general nonlinear
systems with parametric certainty in existing achievements. Moreover, we extend it to stochastic nonlinear systems with parametric
uncertainty and system nonlinear terms are assumed to satisfy polynomial function growth conditions which are more relaxed
than linear growth conditions or power growth conditions. Due to the presence of unknown parametric uncertainty, an output
feedback practical tracking controller with dynamically updated gains is constructed explicitly so that all the states of the closed-
loop systems are globally bounded and the tracking error belongs to arbitrarily small interval after some positive finite time. An
example illustrates the efficiency of the theoretical results.

1. Introduction

The problem of global output tracking control for nonlinear
systems has been extensively studied by academic researchers
and successfully applied in some practical nonlinear systems
(see [1–10]). According the existing papers, two types output
tracking have been concerned which are asymptotic output
tracking and practical tracking (see [11–16]). The asymptotic
output tracking focuses on the design of controller that forces
the controlled output of system to reach and follow a time-
parameterised reference track signal. However, for many
practical systems and control design, we can hardly achieve
goodmodels, too expensive to derive, and the parameters are
not precisely known preventing the error signals from tend-
ing to zero, so the practical tracking has been proposed by
many researchers.

Consider the output feedback practical tracking control
problem for a class of nonlinear system which appears in past
research papers:𝑑𝑥𝑖 = 𝑥𝑖+1𝑑𝑡 + 𝑓𝑖 (𝑥) 𝑑𝑡 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛 − 1𝑑𝑥𝑛 = 𝑢𝑑𝑡 + 𝑓𝑛 (𝑥) 𝑑𝑡

𝑦 = 𝑥1 − 𝑦𝑟
(1)

where 𝑥 = (𝑥1, ...., 𝑥𝑛)𝑇, 𝑢 ∈ 𝑅, and 𝑦 ∈ 𝑅 are the system
states, input, and output. Correspondingly, 𝑦𝑟 is given ref-
erence trajectory, and the nonlinear term 𝑓𝑖(𝑥) satisfies the
Lipschitz condition, whose initial value is 𝑓𝑖(0) = 0. Some
related papers have studied the practical output feedback con-
trol problem for nonlinear system (1) (see [17–22]). In [17, 18],
the system nonlinear term satisfies lower triangular structure
and is limited to the following order of polynomial function
growth conditions:𝑐0 (1 + 𝑥1𝑝) (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖) + 𝑐0 (2)

where 𝑝 ≥ 1 and 𝑐0 ≥ 0 are known constants. Similarly,
the system nonlinear term satisfies the following growth
conditions which have contained known constants 𝑐 and 𝜏 in
[22]:𝑐 (𝑥1𝑖𝜏+1 + 𝑥2(𝑖𝜏+1)/(𝜏+1) + ⋅ ⋅ ⋅ + 𝑥𝑖(𝑖𝜏+1)/((𝑖−1)𝜏+1))+ 𝑐 (3)
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After introducing the unknown parameters into the growth
condition of system (1), [19] has studied output feedback
tracking control research on this kind of uncertain nonlin-
ear system by introducing coordinate transformation, using
Nussbaum gain method and adding power integral method
so as to obtain a continuous adaptive controller and ensure
that system tracking error converges to a small neighborhood
of zero after a limited time, while the closed-loop nonlinear
system meets the boundedness of the states. In [20], an
adaptive output feedback tracking controller is designed by
means of general control and dead zonemethod. It is pointed
out that the nonlinear term growth condition of the system
in [20] depends on the unmeasurable states and the growth
rate is unknown constant;meanwhile, the reference trajectory
signal and its first derivative have unknown upper bound.

However, all the mentioned references are only limited to
the nonlinear systems. Naturally, one may ask an interesting
and challenging question: If we consider the tracking control
problem for stochastic nonlinear system, how to design a
controller? As is well known, stochastic factor is a main
resource that contributes significantly to the system complex-
ity. In some practical fields, such as aerospace, biological, and
economic systems andhealth community, the output tracking
problem for these stochastic nonlinear systems has a wide
range of practical applications. The treatment of stochastic
items is the key to solving our problems in the stochastic
control system. To our knowledge, the existing research
results on the tracking problem for stochastic nonlinear sys-
tems are [23–27]. The work [23] has utilized a backstepping-
based control for a class of stochastic nonlinear systems
where the controller has ensured the overall system stability.
The works [24–27] further consider the states feedback
tracking controller design problem for high-order stochastic
nonlinear system, satisfying a more relax condition. As is
known to all, output feedback controller is more practical
than state feedback controller in the actual system because
states information of actual system is difficult to master. For
the stochastic nonlinear system where nonlinear vector fields
depend on the unmeasurable states besides the measurable
output, how to design an output feedback tracking controller?
This paper is focused on the problem of extending the results
of [25, 27] which has not yet been studied till now.

Meanwhile, some research has studied output feedback
practical tracking control problem for a class of stochastic
nonlinear system which satisfies the growth condition of
polynomial function, the nonlinear term of the system
depends on the state of unmeasurable, and the growth condi-
tion of the nonlinear term parameters is known (see [17, 18]).
This leads to some limitations; since parameter uncertainties
and structural uncertainties are common in practical systems
such as spaceflight control systems, navigation systems, and
bioengineering systems, this is far from sufficient for research
on output feedback tracking control problem for stochastic
nonlinear system under known parameters conditions.

This paper extends it to stochastic nonlinear systems and
proposes to set the corresponding parameters of stochastic
nonlinear system to be unknown and introduce the parame-
ter uncertainty factors, so as to generalize the output feedback

practical tracking control research results in the previous
papers. The main contribution of this paper is as follows.

Use Ito differential mathematics theory to deal with com-
plex stochastic terms such that a high-order gain observer
and trajectory tracking error system are constructed. Then
the error system is analyzed by Lyapunov function and
the boundedness of system parameters is proved. The out-
put feedback practical tracking controller with dynamically
updated gains is constructed explicitly so that all the states of
the closed-loop system are bounded and the error converges
to any small neighborhood of the origin when the time goes
to infinity.

The paper is organized as follows. Section 2 provides
some problem description. In Section 3, an output feedback
practical tracking controller is designed and analyzed. A sim-
ulation example is provided in Section 4. Section 5 concludes
this paper.

2. Problem Description

In this paper, we consider the output feedback practical
tracking problem for following stochastic nonlinear system:𝑑𝑥𝑖 = 𝑥𝑖+1𝑑𝑡 + 𝑓𝑖 (𝑥) 𝑑𝜔 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛 − 1)𝑑𝑥𝑛 = 𝑢𝑑𝑡 + 𝑓𝑛 (𝑥) 𝑑𝜔𝑦 = 𝑥1 − 𝑦𝑟 (𝑡) (4)

where 𝑥 = (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛)𝑇 ∈ 𝑅𝑛 and 𝑢 ∈ 𝑅 are the system
states and input, 𝑦 is the system output that can be measured,
respectively, 𝑦𝑟 is given reference tracked unmeasured tra-
jectory, similarly, 𝑥2(𝑡), ..., 𝑥𝑛(𝑡) are unmeasurable, and 𝜔 is
an 𝑚-dimensional standard Wiener process defined on the
complete probability space (Ω, Γ, Ρ) with Ω being a sample
space, Γ being a filtration, and Ρ being a probability measure.
The nonlinear functions 𝑓𝑖 : 𝑅+ ×𝑅𝑛 → 𝑅𝑚, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, are
continuous and assumed to satisfy locally Lipschitz condition
with 𝑓𝑖(0) = 0.

According to the above description of system, it leads to
the objective of this paper: for any constant 𝛿 > 0, all the
states of stochastic nonlinear system (4) are well defined and
bounded. In addition, there exists a finite time 𝑇 > 0 such
that, for any 𝑡 > 𝑇, it can get𝑥1 (𝑡) − 𝑦𝑟 (𝑡) ≤ 𝛿, ∀𝑡 ≥ 𝑇 (5)

To achieve the above control performance, the following
assumptions are made for the nonlinear term in system (4).

Assumption 1. There exist unknown constants 𝜂1 > 0, 𝜂2 > 0
and known integer 𝑝 ≥ 1 such that the following inequality
holds: 𝑓𝑖 (𝑥) ≤ (1 + 𝑥1𝑝) (𝜂1 (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖) + 𝜂2) (6)

Next traced trajectory 𝑦𝑟 satisfies the following assumption.

Assumption 2. The reference output trajectory 𝑦𝑟 of stochas-
tic nonlinear system (4) is continuously differentiable and



Mathematical Problems in Engineering 3

there exists unknown constant 𝜂 > 0 such that the following
inequality holds: 𝑦𝑟 +  ̇𝑦𝑟 ≤ 𝜂 (7)

Assumption 1 can be further extended to the following more
general assumption conditions.

Assumption 3. There exist unknown constants 𝑐 > 0, 𝑑 > 0
(𝑑/𝑐 ≥ 1) and known constants 𝑝 ≥ 1, 0 ≤ 𝜇 ≤ 1, such that
the following inequality holds:𝑠0 𝑓1 (𝑥) + ⋅ ⋅ ⋅ + 𝑠𝑛−1 𝑓𝑛 (𝑥)≤ (1 + 𝑥1𝑝) (𝑐 (𝑠0 𝑥1 + ⋅ ⋅ ⋅ + 𝑠𝑛−1 𝑥𝑛) + 𝑑) (8)

where 𝑠 (0 ≤ 𝑠 ≤ 𝜇) is any constant.
This paper will focus on stochastic nonlinear system

under more general Assumption 3 and then construct an
output feedback practical tracking controller such that output
of system (4) can be gradually converged to zero.

3. System Analysis and Output Feedback
Controller Design

The emphasis of this section is to design the global output
feedback tracking controller in order to achieve asymptotic
stability of system output (4) under Assumptions 2 and
3.

Remark 4. From Assumption 3, we can clearly see that the
unknown parameter 𝑐 > 0 appears in the product term in the
front of unmeasurable states (𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛), which leads to the
fact that the conventional observer design method difficultly
works because the constructed observer contains initial states
of the system which contains unknown parameters such that
the traditional method is no longer applicable. Inspired by
[21, 22], this paper develops a new type of output tracking
controller which consists of two dynamic factors, and it will
be described in detail below.

3.1. Time Varying High-Order Gain Observer Design. First,
make a general assumption as follows:𝑑𝑐 ≥ 1 (9)

and for the sake of convenience of formula derivation, the
following states transformation is introduced:𝑧1 = 𝑥1 − 𝑦𝑟𝑧2 = 𝑥2...𝑧𝑛 = 𝑥𝑛

(10)

and then stochastic nonlinear system (4) is converted to𝑑𝑧𝑖 = 𝑧𝑖+1𝑑𝑡 + 𝑔𝑖 (𝑧) 𝑑𝜔 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛 − 1)

𝑑𝑧𝑛 = 𝑢𝑑𝑡 + 𝑔𝑛 (𝑧) 𝑑𝜔𝑦 = 𝑧1
(11)

where 𝑔𝑖 is the nonlinear term after conversion and is
constructed as follows:𝑔1 (𝑧) = 𝑓1 (𝑧1 + 𝑦𝑟, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑛) − 𝑑𝑦𝑟𝑑𝜔𝑔𝑖 (𝑧) = 𝑓𝑖 (𝑧1 + 𝑦𝑟, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑛) (𝑖 = 2, ⋅ ⋅ ⋅ , 𝑛) (12)

Next, the output feedback tracking controller design
process is initiated. With unmeasurable states 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛
characteristics of system (4), states observer of system (4) is
establisheḋ̂𝑧𝑖 = �̂�𝑖+1 + ℎ𝑖 (𝐴𝐵)𝑖 (𝑧1 − �̂�1) (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛 − 1)̇̂𝑧𝑛 = 𝑢 + ℎ𝑛 (𝐴𝐵)𝑛 (𝑧1 − �̂�1) (13)

where �̂�𝑖 is the estimate value of 𝑧𝑖 and the high-order gain
term consists of two variables 𝐴(𝑡) and 𝐵(𝑡) as follows:�̇� (𝑡) = 𝐴(𝐴𝐵)2𝑏 (�̂�21 + 𝑒21 − 12𝛿2) , 𝐴 (0) = 𝐴0 ≥ 1𝜇�̇� (𝑡) = −𝜇1𝐵2 + 𝜇2𝐵 (1 + 𝑥1𝑝)2 , 𝐵 (0) = 1 (14)

where 𝑒1 = 𝑧1 − �̂�1 is error state, ℎ𝑖 > 0 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛) is the
coefficient of the Hurwitz polynomial with 𝑠𝑛 + ℎ1𝑠𝑛−1 + ⋅ ⋅ ⋅+ℎ𝑛−1𝑠 + ℎ𝑛, and the unknown parameters 𝑏, 𝜇1, 𝜇2 satisfy 0 <𝑏 < 1/4𝑝, 0 < 𝜇1 < 𝜇2.
3.2. Lyapunov Analysis of Closed-Loop Systems. According to
(14) on the definition of 𝑒1, it can be generalized to all states;
that is, definition of 𝑒𝑖 = 𝑧𝑖−�̂�𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛) and the available
system error equation can be obtained:𝑑𝑒𝑖 = 𝑒𝑖+1𝑑𝑡 − ℎ𝑖 (𝐴𝐵)𝑖 𝑒1𝑑𝑡 + 𝑔𝑖 (𝑧) 𝑑𝜔𝑑𝑒𝑛 = −ℎ𝑛 (𝐴𝐵)𝑛 𝑒1𝑑𝑡 + 𝑔𝑛 (𝑧) 𝑑𝜔 (15)

In order to facilitate the output feedback practical tracking
controller design, the transformation of estimated states �̂�𝑖
and error states 𝑒𝑖 is introduced:𝛼𝑖 = 𝑒𝑖(𝐴𝐵)𝑏+𝑖−1 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛)

𝛽𝑖 = �̂�𝑖(𝐴𝐵)𝑏+𝑖−1 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛) (16)

where 𝛼 = (𝛼1, ⋅ ⋅ ⋅ , 𝛼𝑛)𝑇, 𝛽 = (𝛽1, ⋅ ⋅ ⋅ , 𝛽𝑛)𝑇, ℎ = (ℎ1, ⋅ ⋅ ⋅ ,ℎ𝑛)𝑇. By (16), stochastic nonlinear systems (11) and (13) can
be converted to𝑑𝛼 = 𝐴𝐵𝐻𝛼𝑑𝑡 − (�̇�𝐵 + �̇�𝐴𝐴𝐵 )𝐶𝑏𝛼𝑑𝑡+ 𝐺 (𝑧, 𝐴, 𝐵) 𝑑𝜔̇𝛽 = 𝐴𝐵𝐻𝑏𝛽 + 𝐴𝐵ℎ𝛼1 − (�̇�𝐵 + �̇�𝐴𝐴𝐵 )𝐶𝑏𝛽 (17)
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where

𝐻 =( −ℎ1 1 ⋅ ⋅ ⋅ 0... ... d
...−ℎ𝑛−1 0 ⋅ ⋅ ⋅ 1−ℎ𝑛 0 ⋅ ⋅ ⋅ 0),

𝐻𝑏 =( 0 1 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 1−ℎ1 −ℎ2 ⋅ ⋅ ⋅ −ℎ𝑛)𝐶𝑏 = diag (𝑏, 𝑏 + 1, ⋅ ⋅ ⋅ ⋅ ⋅, 𝑏 + 𝑛 − 1)𝐺 (𝑧, 𝐴, 𝐵) = ( 𝑔1(𝐴𝐵)𝑏 , 𝑔2(𝐴𝐵)𝑏+1 , ⋅ ⋅ ⋅ , 𝑔𝑛(𝐴𝐵)𝑏+𝑛−1)𝑇

(18)

From (14) on the definition of 𝐴(𝑡) and 𝐵(𝑡), it can be
generally obtained that𝐴 (𝑡) ≥ 𝐴 (0) ≥ 1𝛼 ≥ 1, ∀𝑡 ≥ 0 (19)

and defining 𝐸 = 𝐵2, the following can be obtained:�̇� ≥ 2𝜇1𝐸 (1 − √𝐸) , 𝐸 (0) = 1 (20)

According to the comparison lemma in [28], the following
can be drawn:𝐵 (𝑡) ≥ 1, 0 < 1𝐴 (𝑡) 𝐵 (𝑡) ≤ 𝜇, ∀𝑡 ≥ 0 (21)

By (16), it can be obtained that𝑧𝑖 = (𝐴𝐵)𝑏+𝑖−1 𝛼𝑖 + (𝐴𝐵)𝑏+𝑖−1 𝛽𝑖 (22)

and according to (21)-(22) and Assumptions 2 and 3, the
inequality for nonlinear 𝐺(𝑧, 𝐴, 𝐵) can be deduced:|𝐺 (𝑧, 𝐴, 𝐵)|

= (( 𝑔1(𝐴𝐵)𝑏)2 + ⋅ ⋅ ⋅ + ( 𝑔𝑛(𝐴𝐵)𝑏+𝑛−1)2)1/2≤ (1 + 𝑥1𝑝)(𝑐 𝑛∑
𝑖=1

1(𝐴𝐵)𝑏+𝑖−1 𝑧𝑖 + 𝑐𝜂 + 𝑑)≤ (1 + 𝑥1𝑝) (|𝛼| + 𝛽 + 1) (𝑐 (𝜂 + 𝑑𝑐 ))
(23)

where 𝑐 = 𝑐(𝜂 + 𝑑/𝑐).
Then a systematic Lyapunov analysis is performed. First,

the existence and uniqueness of the system solution are given
where, since closed-loop stochastic nonlinear system (17) is
continuous and satisfies locally Lipschitz condition on the

initial point, the corresponding solution (𝛼, 𝛽, 𝐴, 𝐵) of the
system can be considered as existence and uniqueness.

Define the following Lyapunov function:𝑉0 (𝛼, 𝛽) = 𝛼𝑇𝑃𝛼 + 𝛽𝑇𝑄𝛽 (24)

and positive definite matrices 𝑃,𝑄 satisfy the following
relation: 𝐻𝑇𝑃 + 𝑃𝐻 ≤ −𝐼𝑛𝑟1𝐼𝑛 ≤ 𝐶𝑏𝑃 + 𝑃𝐶𝑏 ≤ 𝑟2𝐼𝑛𝐻𝑇𝑏 𝑄 + 𝑄𝐻𝑇𝑏 ≤ −2𝐼𝑛𝑟3𝐼𝑛 ≤ 𝐶𝑏𝑄 + 𝑄𝐶𝑏 ≤ 𝑟4𝐼𝑛

(25)

where 𝑟𝑖(𝑖 = 1, 2, 3, 4) is positive constant and 𝐼𝑛 is 𝑛-
dimensional judgment matrix.

By (23), the following can be obtained:2𝛼𝑇𝑃𝐺≤ 2 ‖𝑃‖ (𝑐 (𝜂 + 𝑑𝑐 )) (1 + 𝑥1𝑝) (|𝛼| + 1) (|𝛼| + 𝛽)≤ (1 + 𝑥1𝑝)2 (|𝛼|2 + 𝛽2) + 𝜂1 (|𝛼|2 + 1) (26)

where 𝜂1 = (𝑐(𝜂 + 𝑑/𝑐))2‖𝑃‖2 is unknown constant.
Further, by (25) and (26), the trajectory of (24) along the

Ito differentiation for nonlinear stochastic system (17) can be
obtained as follows:𝐿𝑉0 (𝛼, 𝛽)≤ −𝐴𝐵 |𝛼|2 (�̇�𝐵 + �̇�𝐴𝐴𝐵 ) (𝛼𝑇 (𝐶𝑏𝑃 + 𝑃𝐶𝑏) 𝛼)+ 𝑇𝑟 (𝐺𝑇𝑃𝐺) − 2𝐴𝐵 𝛽2 + 2𝐴𝐵𝛼1𝛽𝑇ℎ− (�̇�𝐵 + �̇�𝐴𝐴𝐵 ) (𝛽𝑇 (𝐶𝑏𝑄 + 𝑄𝐶𝑏) 𝛽)≤ −𝐴𝐵 |𝛼|2 − 2𝐴𝐵 𝛽2+ ‖𝑃‖ (1 + 𝑥1𝑝)2 (|𝛼| + 𝛽 + 1)2 (𝑐(𝜂 + 𝑑𝑐 ))2− (�̇�𝐵 + �̇�𝐴𝐴𝐵 ) (𝑟2 |𝛼|2 + 𝑟4 𝛽2) + 2𝛼𝑇𝑃𝐺+ 2𝐴𝐵𝛼1𝛽𝑇𝑄ℎ≤ −𝐴𝐵 |𝛼|2 − 2𝐴𝐵 𝛽2+ ‖𝑃‖ (1 + 𝑥1𝑝)2 (|𝛼| + 𝛽 + 1)2 (𝑐(𝜂 + 𝑑𝑐 ))2− (�̇�𝐵 + �̇�𝐴𝐴𝐵 ) (𝑟2 |𝛼|2 + 𝑟4 𝛽2)



Mathematical Problems in Engineering 5+ (1 + 𝑥1𝑝)2 (|𝛼|2 + 𝛽2) + 𝜂1 (|𝛼|2 + 1)+ 𝐴𝐵 (|𝛼|2 + 𝛽2)≤ −𝐴𝐵 |𝛼|2 − 2𝐴𝐵 𝛽2 + 𝜂1 (|𝛼|2 + 1)+ 𝜇1𝐵 (𝑟2 |𝛼|2 + 𝑟4 𝛽2)− (1 + 𝑥1𝑝)2 (|𝛼|2 + 𝛽2)+ 𝜂1 (1 + 𝑥1𝑝)2 (|𝛼| + 𝛽 + 1)2≤ −𝐵 (𝐴 − (2𝜂1 + 𝜇1𝑟2 + 𝜇1𝑟4)) (|𝛼|2 + 𝛽2) + 𝜂1
(27)

and Ito differentiation results after simplifying can be
obtained: 𝐿𝑉0 ≤ −𝐵 (𝐴 − 𝜂2) (|𝛼|2 + 𝛽2)+ 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4)) (28)

where 𝜂2 = 2𝜂1 + 𝜇1(𝑟2 + 𝑟4). Since matrices 𝑃,𝑄 are positive,
the following can be easily obtained:𝜆1 (𝛼𝑇𝑃𝛼 + 𝛽𝑇𝑄𝛽) ≤ |𝛼|2 + 𝛽2≤ 𝜆2 (𝛼𝑇𝑃𝛼 + 𝛽𝑇𝑄𝛽) (29)

where 0 < 𝜆1 ≤ 𝜆2. Moreover, by (29), (28) be deduced into𝐿𝑉0 ≤ −𝜆1𝐵 (𝐴 − 𝜂2) 𝑉0 + 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4))
if (𝐴 − 𝜂2 ≥ 0)𝐿𝑉0 ≤ −𝜆2𝐵 (𝐴 − 𝜂2) 𝑉0 + 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4))
if (𝐴 − 𝜂2 < 0)

(30)

3.3. Boundedness Analysis of System States and Gain. Accord-
ing to (30), it is easy to observe that if 𝜂2 is a known constant,
then system (17) can be guaranteed as asymptotically stable
by requiring high-gain 𝐴 to be as large as possible which has
been studied by some existing papers. However, in this paper,
the parameter 𝜂2 is an unknown constant which requires
complex and rigorous analysis to determine the boundedness
of the systemon themaximum time interval [0, 𝑇) and ensure
the asymptotical stability of system tracking output.

This section mainly focuses on the boundedness of high-
gains 𝐴, 𝐵 and system states 𝛼, 𝛽. By (14), the following can
be obtained: 𝐴 (𝑡) ≥ 1𝜇 𝑡 ∈ [0, 𝑇) (31)

Accordingly, a hypothetical judgment can be drawn:

lim
𝑡→𝑇

𝐴 (𝑡) ∈ [ 1𝜇 , +∞) (32)

To verify the above judgment (32), we make use of the
negative proof technology; that is, if conclusion (32) does not
hold, there exists a finite time 𝑡1 ∈ [0, 𝑇) such that𝜆 (𝑡) = 𝜆1,𝐴 (𝑡) ≥ 2𝜂2,∀𝑡 ∈ [𝑡1, 𝑇) (33)

By (30), it can be concluded that, for any time 𝑡 ∈ [𝑡1, 𝑇), the
following Ito differential inequality holds:𝐿𝑉0 ≤ −𝜆12 𝐴𝐵𝑉0 + 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4)) (34)

According to (34), the inequality with 𝑉0(𝛼, 𝛽) on time
interval 𝑡 ∈ [𝑡1, 𝑇) can be obtained:𝑉0 (𝛼, 𝛽) ≤ (𝜂2 − 𝜇1 (𝑟2 + 𝑟4))𝜆1+ 𝑉0 (𝛼, 𝛽) 𝑒(−(𝜆1/2)(𝑡−𝑡1)) (35)

By observing (35), it is easy to infer that 𝑉0(𝛼, 𝛽) is bounded
on 𝑡 ∈ [𝑡1, +∞) and continuous on 𝑡 ∈ [0, 𝑡1]; then it can be
generalized that 𝑉0(𝛼, 𝛽) is bounded on 𝑡 ∈ [0, 𝑇). Therefore,
two cases of time 𝑇 need to be discussed.

The first case: 𝑇 < +∞.
If 𝑉0(𝛼, 𝛽) = ℎ1 > 0 when 𝑡 ∈ [𝑡1, 𝑇], then it can obtain

the following inequality according to (34):𝜆1ℎ12 ∫𝑇
𝑡1

𝐵 (𝑠) 𝑑𝑠 ≤ 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4)) (𝑇 − 𝑡1)+ 𝑉 (𝛼, 𝛽) (36)

By observing (36) and (14), simultaneously, using 𝛼1 = 𝑒1/(𝐴𝐵)𝑏 and 𝛽1 = �̂�1/(𝐴𝐵)𝑏, one has�̇� (𝑡) = 𝐴(𝐴𝐵)2𝑏 (�̂�21 + 𝑒21 − 𝛿2) ≤ 𝜆1ℎ12 𝐵 (37)

According to (36) and (37) again, one can get𝐴 (𝑇) − 𝐴 (0) ≤ 𝜆1ℎ12 ∫𝑇
𝑡1

𝐵 (𝑠) 𝑑𝑠 (38)

At the moment, by observing (38), it can find that 𝐴(𝑇) −𝐴(0) = +∞ on the left and (𝜆1ℎ1/2) ∫𝑇𝑡1 𝐵(𝑠)𝑑𝑠 is constant
on the right, which contradicts (38). Therefore, it is a wrong
judgment that conclusion (32) does not hold.

If 𝑉0(𝛼, 𝛽) = 0 when 𝑡 ∈ [𝑡1, 𝑇], by definition 𝜎 as any
positive constant and according to lim𝑡→𝑇𝐴(𝑡)𝐵(𝑡) = +∞,
there exists 𝑡2 ≥ 𝑡1 such that, ∀𝑡 ∈ [𝑡2, 𝑇), it can obtain𝐴 (𝑡) 𝐵 (𝑡) ≥ 𝜂2𝜎𝜆1 (39)

In addition, since 𝑉0(𝛼, 𝛽) = 0, there exists 𝑡3 ≥ 𝑡2 such that𝑉0(𝛼(𝑡3), 𝛽(𝑡3)) < 𝜎/2. Through the above analysis, (34) can
be converted to𝐿𝑉0 ≤ −2𝜂2𝜎 𝑉0 + 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4)) , ∀𝑡 ∈ [𝑡3, 𝑇) (40)
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According to (40), the inequality with 𝑉0(𝛼, 𝛽) on time
interval 𝑡 ∈ [𝑡3, 𝑇) can be obtained:𝑉 (𝛼, 𝛽) ≤ 𝜎2 + 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4))+ 𝑉 (𝛼 (𝑡3) , 𝛽 (𝑡3))≤ 𝜎 + 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4))

(41)

and this proves that lim𝑡→𝑇𝑉0(𝛼, 𝛽) = 0.
Suppose the following inequality holds:�̇� (𝑡) ≤ 𝜗1 (𝑡) 𝐵 (𝑡) , 𝑡 ∈ [0, 𝑇) (42)

where 𝜗1(𝑡) = (𝛼21+𝛽21−𝛿2/2(𝐴𝐵)2𝑏)2, 𝑡 ∈ [0, 𝑇). By (4), (14),
and (16), the following can be obtained:𝑥1 = (𝐴𝐵)𝑏 (𝛼1 + 𝛽1) + 𝑦𝑟 (43)

and, correspondingly, one has𝑥1 (𝑡) ≤ 𝜂 + 𝜗2 (𝑡) (𝐴𝐵)𝑏 (44)

where 𝜗2(𝑡) = |𝛼1(𝑡) + 𝛽1(𝑡)|. By (14) and Young’ inequality,
one can obtain�̇� ≤ 𝜇2𝐵 (1 + 𝑥1𝑝)2 ≤ 2𝜇2𝐵 (1 + 𝜂 + 𝜗2 (𝑡) (𝐴𝐵)𝑏)2𝑝 (45)

and after further simplification one has2𝜇2𝐵 (𝜂 + 𝜗2 (𝑡) (𝐴𝐵)𝑏)2𝑝≤ 22𝑝𝜇2𝜂2𝑝−1𝐵 + 22𝑝𝜇2𝜗2𝑝−12 𝐴𝐵2 (46)

Then (46) can be converted to�̇� (𝑡) ≤ (2𝜇2 + 22𝑝𝜇2𝜂2𝑝−1) 𝐵 + 22𝑝𝜇2𝜗2𝑝−12 𝐴𝐵2,𝑡 ∈ [0, 𝑇) (47)

Next define the function Ω = 𝐴𝐵𝑉0 and then by (34), (42),
(47), and Ito differential theorem, one has𝐿Ω ≤ −𝐴𝐵(2𝜂2𝜎 𝑉0 + 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4)))≤ −𝐴𝐵((2𝜂2𝜎 − 𝜗1 (𝑡) − 22𝑝𝜇2𝜗2𝑝−12 )𝑉0+ 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4)))

(48)

According to (42) and (47), it can be concluded that there
exists 𝑡4 ≥ 𝑡1 such that the following inequality can hold:22𝑝𝜇2𝜗2𝑝−12 ≤ 𝜂2𝜎 − 𝜗1 (49)

Further, it can get𝐿Ω ≤ −𝐴𝐵(𝜂2𝜎 Ω − 12 (𝜇1 (𝑟2 + 𝑟4) − 𝜂2)) , 𝑡 ≥ 𝑡4 (50)

which shows that Ω is bounded. According to the definition
of 𝜗1(𝑡) = (𝛼21 + 𝛽21 − 𝛿2/2(𝐴𝐵)2𝑏)2, 𝑡 ∈ [0, 𝑇) and through
inequality amplification, one has(𝐴𝐵)2𝑏 (𝑒21 + �̂�21) ≤ 𝜆1𝜆2ℎ12 (51)

which can prove that lim𝑡→𝑇(�̂�21 +𝑒21) = 0 holds.Thence, there
exists 𝑡5 such that, for 𝑡 ∈ [𝑡5, 𝑇), it can obtain�̂�21 (𝑡) + 𝑒21 (𝑡) ≤ 𝜆1𝜆2ℎ12 (𝐴𝐵)2𝑏 ≤ 𝛿22 (52)

By (52) and (14), it can get �̇�(𝑡) = 0, 𝑡 ∈ [𝑡5, 𝑇) which
obviously conflicts with description of (14). Therefore, this is
a false assertion that conclusion (32) does not hold.

The second case: 𝑇 = +∞.
Definition𝜎 is any positive constant; by lim𝑡→𝑇𝐴(𝑡)𝐵(𝑡) =+∞ it can be seen that there exist 𝑡2 ≥ 𝑡1 such that, ∀𝑡 ∈[𝑡2, 𝑇), one has 𝐴 (𝑡) 𝐵 (𝑡) ≥ 2𝜂2𝜎𝜆1 ⇒−𝐴 (𝑡) 𝐵 (𝑡) 𝜆1 ≤ −2𝜂2𝜎 (53)

Then (34) can be converted to𝐿𝑉0 ≤ −2𝜂2𝜎 𝑉0 + 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4)) , ∀𝑡 ≥ 𝑡2 (54)

By (53) and (54), the following can be obtained:𝑉0 (𝛼, 𝛽) ≤ 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4))+ 𝑉 (𝛼 (𝑡2) , 𝛽 (𝑡2)) 𝑒(−(2𝜂2/𝜎)(𝑡−𝑡2)), 𝑡 ≥ 𝑡2 (55)

and then there exists 𝑡3 ≥ 𝑡1 such that the following inequality
holds: 𝑉0 (𝛼 (𝑡2) , 𝛽 (𝑡2)) 𝑒(−(2𝜂2/𝜎)(𝑡−𝑡2))≤ 12 (𝜂2 − 𝜇1 (𝑟2 + 𝑟4)) , ∀𝑡 ≥ 𝑡3 (56)

Accordingly, it can obtain𝑉 (𝛼, 𝛽) ≤ 𝜂2 − 𝜇1 (𝑟2 + 𝑟4) , ∀𝑡 ≥ 𝑡3 (57)

Summarize the above analysis and it can be considered that
lim𝑡→𝑇𝑉0(𝛼, 𝛽) = 0, then available �̇�(𝑡) = 0, which is also
contradictory with (14).

Therefore, through the above two cases of analysis, it is a
false assertion that conclusion (32) does not hold. Similarly,
hypothetical judgment (32) is correct and system gain 𝐴 is
bounded on 𝑡 ∈ [0, 𝑇) which satisfies

lim
𝑡→𝑇

𝐴 (𝑡) ∈ [ 1𝜇 , +∞) (58)

Next, we discuss boundedness for states 𝛼, 𝛽 on [0, 𝑇).
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By (24), (29), and Ito differential theorem, define function𝑉2 (𝛽) = 𝛽𝑇𝑄𝛽 (59)

and then one has𝐿𝑉2≤ 𝑇𝑟 (𝐺𝑇𝑃𝐺) − 2𝐴𝐵 𝛽2 + 2𝐴𝐵𝛼1𝛽𝑇𝑄ℎ− (�̇�𝐵 + 𝐴�̇�𝐴𝐵 )𝛽𝑇 (𝐶𝑏𝑄 + 𝑄𝐶𝑏) 𝛽
+ ‖𝑃‖ (1 + 𝑥1𝑝)2 (|𝛼| + 𝛽 + 1)2 (𝑐(𝜂 + 𝑑𝑐 ))2≤ −𝐴𝐵 𝛽2 + 𝐴𝐵𝛼21 − �̇�𝐵𝛽𝑇 (𝐶𝑏𝑄 + 𝑄𝐶𝑏) 𝛽+ ‖𝑃‖ (1 + 𝑥1𝑝)2 (|𝛼| + 𝛽 + 1)2 (𝑐(𝜂 + 𝑑𝑐 ))2≤ −𝐴𝐵 𝛽2 + 𝐴𝐵𝛼21 + 𝜇1𝑐3𝐵 𝛽2− 𝜇2𝑐4 (1 + 𝑥1𝑝)2 𝛽2+ ‖𝑃‖ (1 + 𝑥1𝑝)2 (|𝛼| + 𝛽 + 1)2 (𝑐(𝜂 + 𝑑𝑐 ))2

(60)

By (60) and choosing the appropriate parameter 𝜇1, it gets𝐿𝑉2≤ −𝐵 𝛽2 + 𝐴𝐵𝛼21+ ‖𝑃‖ (1 + 𝑥1𝑝)2 (|𝛼| + 𝛽 + 1)2 (𝑐(𝜂 + 𝑑𝑐 ))2≤ −𝐵 (𝐴 − (2𝜂1 + 𝜇1𝑟2 + 𝜇1𝑟4)) 𝛽2 + 𝜂1 + 𝐴𝐵𝛼21
(61)

and then by (14), one has𝛼21 ≤ (𝛼21 + 𝛽21 − 𝛿22 (𝐴𝐵)2𝑏) + 𝛿22 (𝐴𝐵)2𝑏≤ (𝛼21 + 𝛽21 − 𝛿22 (𝐴𝐵)2𝑏)2 + 𝛿22 + 1 (62)

such that the following inequality can be derived:𝐴𝐵𝛼21 ≤ 𝐴�̇� + 𝐴𝐵(1 + 𝛿22 ) (63)

Thence, the following can be obtained:𝐴𝐵𝛼21 ≤ 𝐴�̇� + 𝐵𝜇3 (64)

where 𝜇3 = 𝐴(1 + 𝛿2/2). By (64) and (61), the following can
be derived:𝐿𝑉2 ≤ −𝐵 (𝐴 − (2𝜂1 + 𝜇1𝑟2 + 𝜇1𝑟4)) 𝛽2 + 𝐴�̇� + 𝜇3𝐵 (65)

According to the comparison theorem, one has𝛽2 ≤ 𝜇3𝐵 + (𝑉2 (𝛽0) + (𝐴2 (𝑡) − 𝐴 (0)2))⋅ (2𝜂1 + 𝜇1𝑟2 + 𝜇1𝑟4) (66)

It has been shown above that𝐴 is bounded on [0, 𝑇). Further,
(66) can prove that 𝛽 is bounded on [0, 𝑇).

According to the description of system (17), the state
transition is introduced again:Π𝑖 = 1(𝐴𝐵)𝑖−1+𝑏 𝑒𝑖 (67)

where 𝐴 = 2𝑐2‖𝑃‖2/𝑐1𝜇2.
Then the system error equation is converted toΠ̇ = 𝐴𝐵𝐿Π + 𝐴𝐵ℎΠ1 − 𝐴𝐵ΓℎΠ1 − �̇�𝐵𝐶𝑏Π+ 𝐺(𝑧, 𝑢, 𝐴, 𝐵) (68)

where 𝐺 = (𝑔1/(𝐴𝐵)𝑏, 𝑔2/(𝐴𝐵)𝑏+1, ⋅ ⋅ ⋅ ⋅ ⋅, 𝑔𝑛/(𝐴𝐵)𝑏+𝑛−1)𝑇, Γ =
diag(1, 𝐴/𝐴, ⋅ ⋅ ⋅ ⋅ ⋅, (𝐴/𝐴)𝑛−1).

Define Lyapunov function𝑉3 (Π) = Π𝑇𝑃Π (69)

and according to Ito’s theorem, the trajectory of (69) along the
system (68) is𝐿𝑉3 ≤ −𝐴𝐵 |Π|2 + 2Π1𝐴𝐵ℎ𝑇𝑃Π + 2𝐺𝑃Π− 2Π1𝐴𝐵ℎ𝑇Γ𝑃Π − �̇�𝐵Π𝑇 (𝐶𝑏𝑃 + 𝑃𝐶𝑏)Π≤ −𝐴𝐵 |Π|2 + 2Π1𝐴𝐵ℎ𝑇𝑃Π − 2Π1𝐴𝐵ℎ𝑇Γ𝑃Π+ 2𝐺𝑇𝑃Π + 𝜇1𝑐2𝐵 |Π|2− 𝜇2𝑐1 (1 + 𝑥1𝑝)2 |Π|2

(70)

Furthermore, by the inequalities2Π1𝐴𝐵ℎ𝑇𝑃Π ≤ 𝐴2𝐵 ℎ𝑇𝑃2Π21 + 𝐵 |Π|22Π1𝐴𝐵ℎ𝑇Γ𝑃Π ≤ 𝐴2𝐵 |ℎ|2 ‖Γ𝑃‖2Π21 + 𝐵 |Π|2 (71)

(70) can be converted to𝐿𝑉3 ≤ −𝐵 |Π|2 + ℓ𝐵Π21 + ℓ𝐵 𝛽2 + ℓ (72)

where ℓ is unknown constant. Simultaneously, by (63) and
(64), one has𝐿𝑉3 ≤ −𝜆1𝐵𝑉3 + ℓ𝐴�̇� + ℓ𝐵 𝛽2 + ℓ (1 + 𝜇3) (73)

Since the above analysis has proved that 𝛽 is bounded on[0, 𝑇), then (73) can be converted to𝐿𝑉3 ≤ −𝜆1𝐵𝑉3 + ℓ𝐴�̇� + ℓ𝐵 (74)
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where ℓ = ℓmax(sup ‖𝛽‖2, 1 + 𝜇3). Simultaneously, by (16)
and (17), one has1𝜆1 ‖Π‖2 ≤ 𝑉3 (Π0) + ℓ𝜆1 + ℓ((𝐴2 (𝑡) − 𝐴 (0)2)2 ) ,𝑡 ∈ [0, 𝑇) (75)

Since the above analysis has proved that 𝐴 is bounded on[0, 𝑇), then it can be inferred that Π is bounded on [0, 𝑇),
Furthermore, combined with the above conclusions, it can be
obtained that 𝛼 is bounded on [0, 𝑇).

Finally, we discuss the boundedness of state 𝐵 on [0, 𝑇).
Since it has been concluded that system states 𝛼 and 𝛽 are

bounded on [0, 𝑇), then it can obtain𝛼1 + 𝛽1 ≤ 𝑘 (76)

where 𝑘 is positive constant and depends on the state initial
value 𝛼(0), 𝛽(0). By (14), it can deduce�̇� ≤ −𝜇1𝐵2 + 2𝜇2𝐵 + 2𝜇2𝑐2𝑝𝐵 (77)

Using Young’s inequality, (77) can be split to get the following
relation form: 2𝜇2𝐵 ≤ 𝐸𝐵2 + 𝐶2𝜇2𝑐2𝑝𝐵 ≤ 𝐹𝐵2 + 𝐷 (78)

where 𝐶,𝐷, 𝐸, 𝐹 are suitable coefficients or parameters.
It is equivalent to �̇� ≤ 𝐸𝐵2 + 𝐶 (79)

where 𝐶, 𝐸 are suitable coefficients or parameters again.
According to (67), it can be concluded that the state 𝐵 is
bounded on [0, 𝑇).

In summary, system high-gains𝐴, 𝐵 and states 𝛼, 𝛽 are all
bounded on [0, 𝑇). The boundedness of the system has been
judged.

3.4. Output Feedback Tracking Controller Design. Based on
the analysis of above, this section first gives the output
feedback tracking controller.

Theorem 5. Consider a class of stochastic nonlinear system (4)
whose output is 𝑦 = 𝑥1 − 𝑦𝑟 under Assumptions 2 and 3 and
then the following output feedback practical tracking controller
can be designed:𝑢 = − ((𝐴𝐵)𝑛 𝑘1�̂�1 + ⋅ ⋅ ⋅ + (𝐴𝐵) 𝑘𝑛�̂�𝑛) (80)

where 𝐴, 𝐵 are defined by (14); 𝑘𝑖 > 0 is coefficient of Hurwitz
polynomial 𝑠𝑛 + ℎ1𝑠𝑛−1 + ⋅ ⋅ ⋅ + ℎ𝑛−1𝑠 + ℎ𝑛 with ℎ𝑖 = 𝑘𝑛−𝑖+1.
Then, for any 𝛿 > 0, there exists a finite time 𝑇 such that|𝑥1 −𝑦𝑟| ≤ 𝛿, ∀𝑡 ≥ 𝑇, and all the states of stochastic nonlinear
system (1) and (13) are bounded on [0, 𝑇) under the action of
output feedback practical tracking controller (80).

The proof process of Theorem 5 is given.

Using the inequality theoremmax (𝑥, 0)2 −max (𝑦, 0)2 ≤ 𝑥 − 𝑦2 (81)

It can be easily inferred that𝐵(𝐴𝐵)4𝑏 (𝑧21 + 𝑒21 − 𝛿22 )2 , 𝑥, 𝑦 ∈ 𝑅 (82)

is consistently continuous; that is, �̇� is consistent and contin-
uous.

Since system high-gains 𝐴, 𝐵 and states 𝛼, 𝛽 are all
bounded on [0, 𝑇), it is easy to conclude that ̇𝑒, ̇̂𝑧, �̇�, �̇� are also
bounded on [0, 𝑇). According to the Barbalat lemma in [28],
one has lim𝑡→+∞�̇�(𝑡) = 0. By the above analysis, it can be
deduced that there exists 𝑇 such that(𝑒21 (𝑡) + �̂�21 (𝑡))1/2 ≤ 𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇, 𝑡 ≥ 𝑇 (83)

Therefore, it can also be inferred that𝑥1 − 𝑦𝑟 = 𝑧1 ≤ 𝑒1 + �̂�1 ≤ 𝛿, 𝑡 ≥ 𝑇 (84)
The proof of Theorem 5 is over such that output feedback

practical tracking controller design is achieved.

4. Simulation Example

This section considers two-dimensional stochastic nonlinear
systems as described below which are used extensively in off-
shore engineering valve models to verify the output feedback
practical tracking controller designed in Section 3:𝑑𝑥1 = 𝑥2𝑑𝑡𝑑𝑥2 = 𝑢𝑑𝑡 − 𝜎1 (1 + 𝑥21) 𝑥2𝜎2 𝑑𝜔𝑦 = 𝑥1 − 𝑦𝑟 (85)

where 𝜎1, 𝜎2 are unknown parameters. System (85) satisfies
Assumptions 2 and 3with the corresponding parameters 𝜂1 =𝜎1𝜎2, 𝜂2 = 𝜎1(1−𝜎2), 𝑝 = 2. 𝜔 is the𝑚-dimensional standard
Brownian motion defined on the probability space (Ω, Γ, Ρ),
which Ω is the sample space, Γ is the algebra, and Ρ is the
probability measure. The given tracking trajectory is 𝑦𝑟(𝑡) =1.5 sin(2𝑡)(1 − 𝑒−0.05𝑡3).

In numerical simulation, define 𝑓1(𝑥) = 0, 𝑓2(𝑥) =−𝜎1(1 + 𝑥21)|𝑥2|𝜎2 and then, using inequality transform, it can
get 𝑓2 ≤ (1 + 𝑥21) (𝜎1𝜎2 𝑥2 + 𝜎1 (1 − 𝜎2)) (86)

Next start the system simulation and select the initial
value and related parameters:𝑥1 (0) = 0.035,𝑥2 (0) = −2.5,�̂�1 (0) = 0,�̂�2 (0) = 0,𝛿 = 0.5,ℎ1 = 2,
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Figure 1: The trajectory of system state 𝑥1.
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Figure 2: The trajectory of system state 𝑥2.
ℎ2 = 5,𝑘1 = 45,𝑘2 = 55,𝜇1 = 10,𝜇2 = 20,

(87)

Figures 1–3 show the response characteristics of the closed-
loop system (85). By observing the simulation graph, the
practical states of the two-dimensional system (85) are
bounded and gradually converged. Simultaneously, it can
be observed that the output tracking error of the system
gradually converges after 2 s and finally adjusts to near zero.
The results verify the effectiveness of the designed output
feedback practical tracking controller.

5. Conclusion and Future Prospects

In this paper, we study the tracking problem of output
feedback for a class of stochastic nonlinear systems which
remove the more stringent growth conditions and satisfy
polynomial function growth conditions. The parameters
of the output polynomial function growth conditions are
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−2

0
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4

Time (Sec)

Figure 3: The trajectory of system output 𝑦.
unknown which leads to the uncertainty of the parame-
ters and generalizes the previous output feedback practical
tracking control research results. Finally, an output feedback
practical tracking controller with dynamically updated gains
is constructed explicitly so that all the states of the closed-loop
systems are globally bounded and the tracking error belongs
to arbitrarily small interval after some positive finite time. A
numerical example illustrates the efficiency of the theoretical
results.

This paper has made some valuable research results, but
also produced some further in-depth research of problem.We
consider whether it can generalize it to stochastic nonlinear
systems with uncertain control coefficients and expand it
to time-delay systems. How to design the output feedback
practical tracking controller for this type of extended system?
It is worth studying the problem.
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