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This paper mainly focuses on output feedback practical tracking controller design for stochastic nonlinear systems with polynomial
function growth conditions. Mostly, there are some studies on output feedback tracking control problem for general nonlinear
systems with parametric certainty in existing achievements. Moreover, we extend it to stochastic nonlinear systems with parametric
uncertainty and system nonlinear terms are assumed to satisfy polynomial function growth conditions which are more relaxed
than linear growth conditions or power growth conditions. Due to the presence of unknown parametric uncertainty, an output
feedback practical tracking controller with dynamically updated gains is constructed explicitly so that all the states of the closed-
loop systems are globally bounded and the tracking error belongs to arbitrarily small interval after some positive finite time. An
example illustrates the efficiency of the theoretical results.

1. Introduction

The problem of global output tracking control for nonlinear
systems has been extensively studied by academic researchers
and successfully applied in some practical nonlinear systems
(see [1-10]). According the existing papers, two types output
tracking have been concerned which are asymptotic output
tracking and practical tracking (see [11-16]). The asymptotic
output tracking focuses on the design of controller that forces
the controlled output of system to reach and follow a time-
parameterised reference track signal. However, for many
practical systems and control design, we can hardly achieve
good models, too expensive to derive, and the parameters are
not precisely known preventing the error signals from tend-
ing to zero, so the practical tracking has been proposed by
many researchers.

Consider the output feedback practical tracking control
problem for a class of nonlinear system which appears in past
research papers:

dx; = x;,dt + f;(x)dt i=1,---,n-1

dx, = udt + f, (x)dt

Y=X ")
)

where x = (x,...x,)", u € R, and y € R are the system
states, input, and output. Correspondingly, y, is given ref-
erence trajectory, and the nonlinear term f;(x) satisfies the
Lipschitz condition, whose initial value is f;(0) = 0. Some
related papers have studied the practical output feedback con-
trol problem for nonlinear system (1) (see [17-22]). In [17, 18],
the system nonlinear term satisfies lower triangular structure
and is limited to the following order of polynomial function
growth conditions:

CO(l+|x1|P)(|x1|+“'+|xi|)+Co (2)

where p > 1 and ¢, > 0 are known constants. Similarly,
the system nonlinear term satisfies the following growth
conditions which have contained known constants ¢ and 7 in
[22]:

c <|x1 |i1+1 . |x2|(i-r+1)/(7+1) . |xi|(ir+1)/((i—l)r+1)) N

+cC
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After introducing the unknown parameters into the growth
condition of system (1), [19] has studied output feedback
tracking control research on this kind of uncertain nonlin-
ear system by introducing coordinate transformation, using
Nussbaum gain method and adding power integral method
so as to obtain a continuous adaptive controller and ensure
that system tracking error converges to a small neighborhood
of zero after a limited time, while the closed-loop nonlinear
system meets the boundedness of the states. In [20], an
adaptive output feedback tracking controller is designed by
means of general control and dead zone method. It is pointed
out that the nonlinear term growth condition of the system
in [20] depends on the unmeasurable states and the growth
rate is unknown constant; meanwhile, the reference trajectory
signal and its first derivative have unknown upper bound.

However, all the mentioned references are only limited to
the nonlinear systems. Naturally, one may ask an interesting
and challenging question: If we consider the tracking control
problem for stochastic nonlinear system, how to design a
controller? As is well known, stochastic factor is a main
resource that contributes significantly to the system complex-
ity. In some practical fields, such as aerospace, biological, and
economic systems and health community, the output tracking
problem for these stochastic nonlinear systems has a wide
range of practical applications. The treatment of stochastic
items is the key to solving our problems in the stochastic
control system. To our knowledge, the existing research
results on the tracking problem for stochastic nonlinear sys-
tems are [23-27]. The work [23] has utilized a backstepping-
based control for a class of stochastic nonlinear systems
where the controller has ensured the overall system stability.
The works [24-27] further consider the states feedback
tracking controller design problem for high-order stochastic
nonlinear system, satisfying a more relax condition. As is
known to all, output feedback controller is more practical
than state feedback controller in the actual system because
states information of actual system is difficult to master. For
the stochastic nonlinear system where nonlinear vector fields
depend on the unmeasurable states besides the measurable
output, how to design an output feedback tracking controller?
This paper is focused on the problem of extending the results
of [25, 27] which has not yet been studied till now.

Meanwhile, some research has studied output feedback
practical tracking control problem for a class of stochastic
nonlinear system which satisfies the growth condition of
polynomial function, the nonlinear term of the system
depends on the state of unmeasurable, and the growth condi-
tion of the nonlinear term parameters is known (see [17, 18]).
This leads to some limitations; since parameter uncertainties
and structural uncertainties are common in practical systems
such as spaceflight control systems, navigation systems, and
bioengineering systems, this is far from sufficient for research
on output feedback tracking control problem for stochastic
nonlinear system under known parameters conditions.

This paper extends it to stochastic nonlinear systems and
proposes to set the corresponding parameters of stochastic
nonlinear system to be unknown and introduce the parame-
ter uncertainty factors, so as to generalize the output feedback
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practical tracking control research results in the previous
papers. The main contribution of this paper is as follows.

Use Ito differential mathematics theory to deal with com-
plex stochastic terms such that a high-order gain observer
and trajectory tracking error system are constructed. Then
the error system is analyzed by Lyapunov function and
the boundedness of system parameters is proved. The out-
put feedback practical tracking controller with dynamically
updated gains is constructed explicitly so that all the states of
the closed-loop system are bounded and the error converges
to any small neighborhood of the origin when the time goes
to infinity.

The paper is organized as follows. Section 2 provides
some problem description. In Section 3, an output feedback
practical tracking controller is designed and analyzed. A sim-
ulation example is provided in Section 4. Section 5 concludes
this paper.

2. Problem Description

In this paper, we consider the output feedback practical
tracking problem for following stochastic nonlinear system:

dx; = x;,dt + f; (x) dw
dx, = udt + f, (x) dw (4)

(i:l,...’n_l)

yle_yr(t)

where x = (x,,---,x,)’ € R"and u € R are the system
states and input, y is the system output that can be measured,
respectively, y, is given reference tracked unmeasured tra-
jectory, similarly, x,(f), ..., x,,(t) are unmeasurable, and w is
an m-dimensional standard Wiener process defined on the
complete probability space (), T, P) with Q being a sample
space, I being a filtration, and P being a probability measure.
The nonlinear functions f; : R* xR" - R™, i=1,--- ,n,are
continuous and assumed to satisfy locally Lipschitz condition
with £;(0) = 0.

According to the above description of system, it leads to
the objective of this paper: for any constant § > 0, all the
states of stochastic nonlinear system (4) are well defined and
bounded. In addition, there exists a finite time T > 0 such
that, for any ¢ > T, it can get

|x, ) -y, )| <6, Vt>T (5)

To achieve the above control performance, the following
assumptions are made for the nonlinear term in system (4).

Assumption 1. There exist unknown constants r7; > 0,7, > 0

and known integer p > 1 such that the following inequality
holds:

|fi (x)| < (1 + ’x1|P) (m (|x1| Tt |xi|) +1,)  (6)
Next traced trajectory y, satisfies the following assumption.

Assumption 2. The reference output trajectory y, of stochas-
tic nonlinear system (4) is continuously differentiable and
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there exists unknown constant # > 0 such that the following
inequality holds:

SARRAEY 7)

Assumption 1 can be further extended to the following more
general assumption conditions.

Assumption 3. There exist unknown constants ¢ > 0,d > 0
(d/c = 1) and known constants p > 1,0 < u < 1, such that
the following inequality holds:

s |f1 (%) ot st | ()]

(8)
< (1 + |x1|p) (c(s0 |y |+ - +s"! |xn|) +d)

where s (0 < s < p) is any constant.

This paper will focus on stochastic nonlinear system
under more general Assumption 3 and then construct an
output feedback practical tracking controller such that output
of system (4) can be gradually converged to zero.

3. System Analysis and Output Feedback
Controller Design

The emphasis of this section is to design the global output
feedback tracking controller in order to achieve asymptotic
stability of system output (4) under Assumptions 2 and
3.

Remark 4. From Assumption 3, we can clearly see that the
unknown parameter ¢ > 0 appears in the product term in the
front of unmeasurable states (x,, - - - , x,,), which leads to the
fact that the conventional observer design method difficultly
works because the constructed observer contains initial states
of the system which contains unknown parameters such that
the traditional method is no longer applicable. Inspired by
[21, 22], this paper develops a new type of output tracking
controller which consists of two dynamic factors, and it will
be described in detail below.

3.1. Time Varying High-Order Gain Observer Design. First,
make a general assumption as follows:

d

—>1 9)
C

and for the sake of convenience of formula derivation, the
following states transformation is introduced:

21 =X = )r

ZZ = x2
(10)

:xn

and then stochastic nonlinear system (4) is converted to

dz; = z;,dt + g; (2)dw  (i=1,---,n—1)

dz, = udt + g, (z) dw

Y=z
(11)

where g; is the nonlinear term after conversion and is
constructed as follows:
dy,

91(Z)=f1(zl+yr’22"”’Z”)_% (12)

9:2) = fi(2) + Yo Zgpe++52,) (=2, 1)

Next, the output feedback tracking controller design
process is initiated. With unmeasurable states x,,---,x,
characteristics of system (4), states observer of system (4) is
established

2i =Zi +hi(AB)i(z1 -z) (=1-,n-1)
(13)

Z,=u+h,(AB)" (z, - ;)

where Z; is the estimate value of z; and the high-order gain
term consists of two variables A(t) and B(t) as follows:

. A 1 1
A(t)=—2b<2f+ef—§62), A(O):AOZ_
(AB) (14)
. 2
B(t)=-wB +mwB(1+|x|")", B(0)=1
where e, = z; — Z, is error state, h; > 0 (i = 1,--- ,n) is the

coefficient of the Hurwitz polynomial with s™ + 1, s + - - -+
h,_,s + h,, and the unknown parameters b, y,, u, satisfy 0 <
b<1/4p,0 < y; < py.

3.2. Lyapunov Analysis of Closed-Loop Systems. According to
(14) on the definition of e}, it can be generalized to all states;
that is, definition of e; = z;—%; (i = 1,--- ,n) and the available
system error equation can be obtained:
de; = e;,,dt — h; (AB) e,dt + g; (z) dw
(15)
de, = —h, (AB)" e,dt + g, (z) dw

In order to facilitate the output feedback practical tracking
controller design, the transformation of estimated states Zz;
and error states e; is introduced:

[

(Xi=(143)ﬁ (izl,"',i’l)
. (16)
b= g =1

Where o = (061,"' )(xn)T) ﬁ = (ﬁl)"‘ aﬁn)T) h = (hla"' >
hn)T. By (16), stochastic nonlinear systems (11) and (13) can
be converted to

da = ABHadt — (M > Cyadt
AB
+G(z, A, B)dw (17)

f = ABH,B + ABha, — (%) C,p



4
where
-hy 1 0
H= ,
~h,_, 0 1
~h, 0 -0
0 1 0
(18)
Hb =
0o 0 --- 1
-h, -h, --- —h,
C, =diag(b,b+1,----- ,b+n-1)
T
G(Z,A,B)z( gl b’ gzb S, gZ )
(AB)” (AB)""! (A"

From (14) on the definition of A(t) and B(t), it can be
generally obtained that

At)2A(0)>—>1, Vt=0 (19)

R

and defining E = B?, the following can be obtained:
E>2umE(1-VE), E(0)=1 (20)

According to the comparison lemma in [28], the following
can be drawn:

1
B(t)=1, 0< ———=<u, Vi>0
(t) “A0B0 < (21)
By (16), it can be obtained that
z; = (AB)"" o, + (AB)" B, (22)

and according to (21)-(22) and Assumptions 2 and 3, the
inequality for nonlinear G(z, A, B) can be deduced:

|G (z, A, B)|

g\ g 2\
- 1 _In
) (((AB)E) T ((AB)"*“) >
p 1
< (1+|x1| ) c

— 1 |l +C’1+d>
< (14 ]xf”) (1ol + 8] + 1)<C(’7+ g))

n
= (AB)b+i—1
where ¢ = c(y + d/c).

Then a systematic Lyapunov analysis is performed. First,
the existence and uniqueness of the system solution are given
where, since closed-loop stochastic nonlinear system (17) is
continuous and satisfies locally Lipschitz condition on the

(23)
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initial point, the corresponding solution («, 3, A, B) of the
system can be considered as existence and uniqueness.
Define the following Lyapunov function:

Vo (., B) = &' P+ BTQB (24)

and positive definite matrices P,Q satisfy the following
relation:

H'P+PH<-I,
T’lln < CbP + Pcb < rZIn
(25)
H;Q+QH] < -2I,
7’31,1 < CbQ + ch < T4In
where 7;(i = 1,2,3,4) is positive constant and I, is n-

dimensional judgment matrix.
By (23), the following can be obtained:

20" PG|
<217 <c (r] + f)) (14 ?) (ad + 1) (lad + |B]) (26)

2
< (1 + |x1|P) (loc|2 + lﬁlz) +1 (loc|2 + 1)
where 1, = (c(y + d/c))*|P|I? is unknown constant.
Further, by (25) and (26), the trajectory of (24) along the

Ito differentiation for nonlinear stochastic system (17) can be
obtained as follows:

LV, (e, B)

+Tr (G"PG) - 2AB|B|* + 2ABa, B h

AB + BA
AB

) (B (C,Q+QC,) B)
< —AB|a|* - 2AB|B[’

1P (1+ | P (el + 8]+ 1)° (C <'7 + g))z

<AB+BA

B ) (r2 laf® +7, |/3|2) +2a’ PG

+2ABa, fTQh

< -AB|af* - 24B|B|’
1P (1+ o) (ld+ [+ 1)° (C (’7 " g))z

AB+ BA
(R54) i



Mathematical Problems in Engineering

(14 Y (1o + [BP) + 1, (1ed? +1)
+ AB(laf” + |B[*)
< -ABlal’ ~2AB|B[* + 1, (ja” + 1)
+ B (ry lal” + 74 |°)
(14 xa?) (1 + |B])
g (1+ |xl|p)2 (Il + |8 +1)°
< -B(A-(Qny +mry +mry)) (o +|B°) +my

(27)

and Ito differentiation results after simplifying can be
obtained:

LV, < -B(A-n,) (Jaf* + |:3|2)
(28)

1
+ 5 (1 = (r2 +14))

where 1, = 21, + y, (r, + r,). Since matrices P, Q are positive,
the following can be easily obtained:

A (o P+ BTQB) < ol + |

<A, (ocTPoc + ﬁTQﬁ)
where 0 < A, < A,. Moreover, by (29), (28) be deduced into

(29)

1
LV, < -MB(A-n,) Vy + 5 (1, = (ry + 1))

it (A-n,>0)
(30)

1
LVy < -A,B(A-1,) Vo + 5 (1 =ty (ry +14))
if (A-n,<0)

3.3. Boundedness Analysis of System States and Gain. Accord-
ing to (30), it is easy to observe that if 77, is a known constant,
then system (17) can be guaranteed as asymptotically stable
by requiring high-gain A to be as large as possible which has
been studied by some existing papers. However, in this paper,
the parameter 7, is an unknown constant which requires
complex and rigorous analysis to determine the boundedness
of the system on the maximum time interval [0, T') and ensure
the asymptotical stability of system tracking output.

This section mainly focuses on the boundedness of high-
gains A, B and system states o, 3. By (14), the following can
be obtained:

At) > ‘é t€[0,T) (31)

Accordingly, a hypothetical judgment can be drawn:

limA (t) € [l,+oo> (32)
t—T u

To verify the above judgment (32), we make use of the
negative proof technology; that is, if conclusion (32) does not
hold, there exists a finite time ¢; € [0,T) such that

A(t) = Ay,
A(t) = 21, (33)
vt e [t,,T)
By (30), it can be concluded that, for any time t € [t;, T), the
following Ito differential inequality holds:

A 1
Lv, < —71ABV0 + 5 (12 =ty (ry +14)) (34)

According to (34), the inequality with Vj(«, ) on time
interval ¢ € [t;,T) can be obtained:

(1 = (rp +14))
M (35)
+V, (a) /3) e(—(M/Z)(t—tl))

Vo (a, B) <

By observing (35), it is easy to infer that V,(«, ) is bounded
ont € [t;,+00) and continuous on t € [0,¢,]; then it can be
generalized that V(«, ) is bounded on t € [0, T). Therefore,
two cases of time T need to be discussed.

The first case: T < +00.

If Vo(a, B) = hy > 0 when t € [t;,T], then it can obtain
the following inequality according to (34):

Ak, (T
#J B(S)dSSl(ﬂz_ﬂ1(r2+”4))(T_t1)
2 )y 2 (36)

+V (a, B)

By observing (36) and (14), simultaneously, using o; = e,/
(AB)” and B, = Z,/(AB)", one has

At = (2 +e}-0%) < Ml g (37)

(AB)?

According to (36) and (37) again, one can get
T
A(T) = A(0) < % J B(s)ds (38)
t

At the moment, by observing (38), it can find that A(T) -
A(0) = 400 on the left and (A,h,/2) _LT B(s)ds is constant
on the right, which contradicts (38). Therefore, it is a wrong
judgment that conclusion (32) does not hold.

If Vo(et, ) = 0 when t € [t,,T], by definition o as any
positive constant and according to lim, ,A(t)B(t) = +oo,
there exists t, > t; such that, V¢ € [¢t,, T), it can obtain

2
A({t)B(t) > —
CEIOEE= (39)
In addition, since V(e 8) = 0, there exists t; > t, such that
Vola(tsy), B(t;)) < o/2. Through the above analysis, (34) can
be converted to

2 1
LV, < —%Vo S (= (n+ry), Veelt,T) (40)



According to (40), the inequality with Vj(«, 8) on time
interval t € [t;,T) can be obtained:

V(wp) < g +%(’72_P‘1 (ry +14))
+V (e (t3), B(t5)) (41)

1
5‘7+E(’72‘1/‘1(”2+r4))

and this proves that lim, ,;V;(«, ) = 0.
Suppose the following inequality holds:

Alt)<9,(t)B(t), te[o,T) (42)

where 9, () = (a? + 82 ~8?/2(AB)®)%, t € [0,T). By (4), (14),
and (16), the following can be obtained:

x, = (AB)’ (aq + 1) + ¥, (43)
and, correspondingly, one has
[, (B)] < 1+ 9, (t) (AB)’ (44)

where 9,(t) = |a,(¢) + B, (#)]. By (14) and Young’ inequality,
one can obtain

B<uwB(1+ |x1|p)2 <2,B(1+n+9,() (AB)b)Zp (45)

and after further simplification one has

21,B(1+9, (1) (AB))”
(46)
< 2Pu, P B+ 222, 93P AB?
Then (46) can be converted to
B(@t) < (2[,12 + 22P‘1427]2P71) B+ 22py29§P_1ABz,
(47)

te[0,T)

Next define the function Q = ABV], and then by (34), (42),
(47), and Ito differential theorem, one has

2 1
LO < -AB (%VO + 5 (1= (ry + r4))>
2m, 2p o2p-1
<-AB((T2 -0, - 27m® )V, @)

+ % (1, = iy (ry + "4)))

According to (42) and (47), it can be concluded that there
exists t, > t; such that the following inequality can hold:

2o < g, (49)

Further, it can get

i

LO < —AB(—Q - % (g (ry +1y) - ;72)>, t>t, (50)
o
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which shows that ) is bounded. According to the definition
of 9,(t) = (@ + 2 - 8%/2(AB)®)%, t € [0,T) and through
inequality amplification, one has

MAsh

(ABY (e} +2}) < (51)

which can prove that limHT(Zf + ef) = 0 holds. Thence, there
exists ¢ such that, for t € [t;, T), it can obtain
h 2
AMAshy - 8

Zi(t)+e () < TR (52)

By (52) and (14), it can get A(t) = 0, t € [t5,T) which
obviously conflicts with description of (14). Therefore, this is
a false assertion that conclusion (32) does not hold.

The second case: T = +00.

Definition ¢ is any positive constant; by lim, ,A(t)B(t) =
+00 it can be seen that there exist £, > ¢, such that, Vt €
[t,, T), one has

ADB®) > 2L
oAy
(53)

-A({t)B(t)A, < _2m
o

Then (34) can be converted to

2n,

1
LVO < —7V0 + 5 (112 - W (7"2 + T4)) N Vt > t2 (54)

By (53) and (54), the following can be obtained:

Vo (. B) < % (12 = iy (ry +14))

+V (a(ty), B (t,)) e /D), (55)
t>t,

and then there exists t; > t, such that the following inequality
holds:

V, (e (ty), B(ty)) eT /0D

| (56)
SE(Wz_Hl(erFH))’ Vt=t;
Accordingly, it can obtain
V(wp) iy —p(ry+ry), VExty (57)

Summarize the above analysis and it can be considered that
lim,_,;V,(e, f) = 0, then available A(t) = 0, which is also
contradictory with (14).

Therefore, through the above two cases of analysis, it is a
false assertion that conclusion (32) does not hold. Similarly,
hypothetical judgment (32) is correct and system gain A is
bounded on t € [0, T) which satisfies

limA (£) € [l,+oo> (58)
t—>T ‘[,l

Next, we discuss boundedness for states «, 8 on [0, T).
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By (24), (29), and Ito differential theorem, define function

v, (B) = B'Qp (59)

and then one has

Lv,
< Tr(G"PG) - 2AB |B|* + 2ABo, ' Qh

(AB+AB

3 )ﬁT (GQ+QG,) B

1P (1 + i) (lod+ ]+ 1)° (C (’7 ! ?))2

< -AB|B[" + ABa] - gﬁT (CQ+QC,) B (60)

P\? 2 ANY
HIPI(L+ ") Clad+ |8+ 1)* (e [+~
< —AB|B|* + ABoj + ;B B[’
2
— UGy (1 + |xllp) |ﬁ|2
P2 2 d\\*
+1PI(1+ ) (ol + [B] + 1) (c(n+ ;))
By (60) and choosing the appropriate parameter y,, it gets
LV,
< -B|B[* + AB&
V)2 (61)
+IPI(1+ |x1|P)2 (Il + B +1)° <c<11 + Z))

2
< -B(A - (21, +wry + pyry)) |/5| +m t AB“%

and then by (14), one has

2 2 2 82 82
o < | o] + - +
! ( 1A 2 (AB)® ) 2(AB)®

, 5 ) (62)
9 9
2, @2
<l +fi—-—— | +=+1
( A 2(AB)2b> 2
such that the following inequality can be derived:
, 8
ABocfsAA+AB(1+7) (63)
Thence, the following can be obtained:
ABa: < AA + By, (64)

where p; = A(1 + 5%/2). By (64) and (61), the following can
be derived:

LV, < =B(A = (21, + wyry + pyry)) |ﬁ|2 +AA + usB  (65)

According to the comparison theorem, one has
B < 1B + (V2 (Bo) + (4% () - 40)%))

(2 pry +ry)

(66)

It has been shown above that A is bounded on [0, T'). Further,
(66) can prove that 3 is bounded on [0, T').

According to the description of system (17), the state
transition is introduced again:

1
IT; = (ZB)W% (67)

where A = 2¢°||P|1*/c, .
Then the system error equation is converted to

A _ B
IT = ABLII + ABIL, ~ ABThIL, — -Gyl

(68)
+G (z, u, Z, B)

where G = (g,/(AB)’, g,/(AB)"", -+, g,/(AB)"" ), T =
diag(1, A/A, -+ (AJA)" ).
Define Lyapunov function

V, (I1) = 1" PI1 (69)

and according to Ito’s theorem, the trajectory of (69) along the
system (68) is

LV, < —AB|TI|* + 2I1, ABh" PII + 2GPII
T B T
— 2I1, ABh TPII - EH (C,P + PC,) 11
< —AB|TJ* + 211, ABh" PT1 - 211, ABK'TPTT ~ (70)
—_T )
+2G PII + p,6,B|1I]
2
G (1 + |x1|p) l3(§
Furthermore, by the inequalities

|11, B Pri| < A'B|H"P| 122 + B I

(71)
211, ABK'TPII < A>B|h|* |TP|* IT; + B|TI|?
(70) can be converted to
LV, < -B|TI[* + €BIT: + ¢B || + ¢ (72)

where ¢ is unknown constant. Simultaneously, by (63) and
(64), one has

LV, < -ABV, + LAA+ eB|B| +€(1+ ;)  (73)

Since the above analysis has proved that 8 is bounded on
[0, T), then (73) can be converted to

LV, < -A,BV, + ¢AA + ¢B (74)



where ¢ = £ max(sup IIﬁIIZ,l + 3). Simultaneously, by (16)
and (17), one has

T 7 (A% (1) - A(0))

te[0,T)

Since the above analysis has proved that A is bounded on
[0,T), then it can be inferred that IT is bounded on [0, T),
Furthermore, combined with the above conclusions, it can be
obtained that « is bounded on [0, T).
Finally, we discuss the boundedness of state B on [0, T').
Since it has been concluded that system states « and f3 are
bounded on [0, T), then it can obtain

|“1 + ﬁ1| <k (76)

where k is positive constant and depends on the state initial
value «(0), 3(0). By (14), it can deduce

B < —u,B* +2u,B + 2u,c’’B (77)

Using Young’s inequality, (77) can be split to get the following
relation form:

2u,B<EB* +C
(78)
2u,¢’?B < FB* + D

where C, D, E, F are suitable coefficients or parameters.
It is equivalent to

B<EB*+C (79)

where C, E are suitable coefficients or parameters again.
According to (67), it can be concluded that the state B is
bounded on [0, T).

In summary, system high-gains A, B and states «, S are all
bounded on [0, T'). The boundedness of the system has been
judged.

3.4. Output Feedback Tracking Controller Design. Based on
the analysis of above, this section first gives the output
feedback tracking controller.

Theorem 5. Consider a class of stochastic nonlinear system (4)
whose output is y = x, — y, under Assumptions 2 and 3 and
then the following output feedback practical tracking controller
can be designed:

u=-((AB)"kz, +---+ (AB)k,z,) (80)

where A, B are defined by (14); k; > 0 is coefficient of Hurwitz
polynomial s" + hys"™" + -+ + h,_s + h, with h; = k,_;,,.
Then, for any & > 0, there exists a finite time T such that
|x, — v, <6, Vt > T, and all the states of stochastic nonlinear
system (1) and (13) are bounded on [0, T) under the action of
output feedback practical tracking controller (80).

The proof process of Theorem 5 is given.
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Using the inequality theorem

|max (x,0)* — max(y, 0)2' <|x-yf (81)
It can be easily inferred that
2
B 2 82>
——|zj+ej-—= ], xyeR (82)
(AB)" ( 1ta T Y

is consistently continuous; that is, A is consistent and contin-
uous.

Since system high-gains A, B and states «, f are all
bounded on [0, T), it is easy to conclude that é, Z, A, Barealso
bounded on [0, T'). According to the Barbalat lemma in [28],
one has lim,_,,  A(t) = 0. By the above analysis, it can be
deduced that there exists T such that

(e (t)+2: (1) < CONSTANT, t>T  (83)
Therefore, it can also be inferred that
lx, =y, = |z < les]| + 21| €6, t>T (84)

The proof of Theorem 5 is over such that output feedback
practical tracking controller design is achieved.

4. Simulation Example

This section considers two-dimensional stochastic nonlinear
systems as described below which are used extensively in oft-
shore engineering valve models to verify the output feedback
practical tracking controller designed in Section 3:

dx, = x,dt
dx, = udt - 0, (1 + xf) |x,|” dw (85)
y=xX1=Y

where 0,, 0, are unknown parameters. System (85) satisfies
Assumptions 2 and 3 with the corresponding parameters 77, =
0,05, 1, = 0,(1 —03,), p = 2. wis the m-dimensional standard
Brownian motion defined on the probability space (Q2, T, P),
which Q is the sample space, I is the algebra, and P is the
probability measure. The given tracking trajectory is y,(t) =
1.5sin(2t)(1 — e_O‘OStS).

In numerical simulation, define f,(x) 0, f,(x) =
—0,(1+x7)|x,]” and then, using inequality transform, it can
get

|fa] < (1+xf)(0102 ;| + 0, (1-0,)) (86)

Next start the system simulation and select the initial
value and related parameters:

x, (0) = 0.035,
x,(0) = 2.5,
z,(0) =0,
Z,(0) =0,

8 =0.5,

hy =2,
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FIGURE 1: The trajectory of system state x;.
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FIGURE 2: The trajectory of system state x,.

h, =5,

ky = 45,
ky =55,
t =10,
Uy, = 20,

(87)

Figures 1-3 show the response characteristics of the closed-
loop system (85). By observing the simulation graph, the
practical states of the two-dimensional system (85) are
bounded and gradually converged. Simultaneously, it can
be observed that the output tracking error of the system
gradually converges after 2 s and finally adjusts to near zero.
The results verify the effectiveness of the designed output
feedback practical tracking controller.

5. Conclusion and Future Prospects

In this paper, we study the tracking problem of output
feedback for a class of stochastic nonlinear systems which
remove the more stringent growth conditions and satisfy
polynomial function growth conditions. The parameters
of the output polynomial function growth conditions are

—4 1 1 I I
0 1 2 3 4

Time (Sec)

FIGURE 3: The trajectory of system output y.

unknown which leads to the uncertainty of the parame-
ters and generalizes the previous output feedback practical
tracking control research results. Finally, an output feedback
practical tracking controller with dynamically updated gains
is constructed explicitly so that all the states of the closed-loop
systems are globally bounded and the tracking error belongs
to arbitrarily small interval after some positive finite time. A
numerical example illustrates the efficiency of the theoretical
results.

This paper has made some valuable research results, but
also produced some further in-depth research of problem. We
consider whether it can generalize it to stochastic nonlinear
systems with uncertain control coefficients and expand it
to time-delay systems. How to design the output feedback
practical tracking controller for this type of extended system?
It is worth studying the problem.
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