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In this paper, we first propose restarted homotopy perturbation methods (RHPM) for multiplicative noise removal of the RLO
and AA2models.Themain difficulty in applying the RHPM to the nonlinear denoising problem is settled by using binomial series
techniques.Wenext propose the split Bregmanmethods formultiplicative noise removal of the RLO andAA2models.The difficulty
in applying the split Bregman method to the nonlinear denoising problem can be handled by transforming ill-conditioned linear
systems into well-conditioned linear systems using splitting techniques of singular matrices. Lastly, numerical experiments for
several test problems are provided to demonstrate the efficiency and reliability of the RHPM and split Bregman methods.

1. Introduction

Image denoising which is one of the fundamental problems
in image processing is to recover an original image from a
given noisy image. Let Ω be an open rectangular domain
in R2, let 𝑧 : Ω → 𝑅 be an observed noisy image to be
denoised, and let 𝑢 be the original unknown image to restore.
The mathematical models of noisy images can be classified
into additive or multiplicative ones according to the relations
of noises and clean images, i.e.,𝑧 = 𝑢 + 𝜂

or 𝑧 = 𝑢 ⋅ 𝜂, (1)

where 𝜂 and 𝜂 are unknown additive and multiplicative noise
functions, respectively. In this paper, we focus on multiplica-
tive noise removal for the observed images corrupted by
multiplicative Gaussian white noise or Gamma noise with
mean equal to one.

There are a lot of investigations for additive model (1)
using the following general nonlinear variationalmodel [1, 2]:

min
𝑢

{𝐸 (𝑢) = ∫
Ω

𝜑 (|∇𝑢|) 𝑑𝑥 + 𝛼2 ∫
Ω

(𝑢 − 𝑧)2 𝑑𝑥} , (2)

where the first term of the right-hand side is a regularizer
in general form to ensure the smoothness of the desired
image with edge preserving, the second term is a data fitting
term which reflects the fidelity between the original image
and observed noisy image, and 𝛼 > 0 is a regularization
parameter.

Many approaches have been proposed to remove the
additive noise, like variational approaches [3, 4], the stochas-
tic approach [5, 6], wavelet approaches [7, 8], framelet
approaches [9, 10], and RHPMapproaches [11], to name a few.
It is well known that the model introduced by Rudin, Osher,
and Fatemi [12] (called the ROF model) is a popular model
for image denoising due to its property of preserving edges.
If 𝜑(|∇𝑢|) = |∇𝑢| in (2), then (2) reduces to the ROF model
using Total Variation (TV):

min
𝑢

{𝐸 (𝑢) = ∫
Ω

|∇𝑢| 𝑑𝑥 + 𝛼2 ∫
Ω

(𝑢 − 𝑧)2 𝑑𝑥} . (3)

Since the images restored by the ROF model are in the space
of bounded variation functions, the ROF model preserves
sharp edges or object boundaries, and it is especially effective
on restoring the piecewise constant images. However, the
ROF model does not preserve the details and textures since
it yields staircase effects.
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Multiplicative noise models occur in the study of sev-
eral coherent imaging systems, such as synthetic aperture
radar (SAR) and sonar (SAS), ultrasound or laser imaging,
and magnetic resonance imaging (MRI). The researches
on variational models of additive noise removal have been
successful, but the investigations on variational models of
multiplicative noise removal have not been done much. The
difference between a variational model of additive and that
of multiplicative noise removal is that the data fitting term
depends on noise distributions, such as Gamma, Poisson,
Rayleigh, and Gauss distributions due to different means
of image acquisition. SAR images are Gamma distributions
[13], medical ultrasound or resonance images fit Rayleigh
distributions [14], and astronomical microscopy images and
medical SPECT/PET images fit Poisson distributions [15, 16].
If the multiplicative noise is not too strong, the abovemen-
tioned noise can be considered approximately to the Gauss
distributions [17].

For the multiplicative Gaussian white noise with mean
equal to one, Rudin, Lions, and Osher [17] proposed the fol-
lowing variational diffusion model (called the RLOmodel):

min
𝑢

[𝐸 (𝑢) = ∫
Ω

|∇𝑢| 𝑑𝑥
+ ∫
Ω

{𝛼 𝑧𝑢 + 𝛽2 ( 𝑧𝑢 − 1)2} 𝑑𝑥] , (4)

where 𝛼 and 𝛽 are weighted parameters.
For the multiplicative Gamma noise with mean equal to

one, Jin and Yang [18] applied the exponential transformation𝑢 → 𝑒𝑢 introduced by Huang et al. [19] with the fitting term
of the AA model [13] and proposed the following variational
model (called the AA2 model in this paper):

min
𝑢

{𝐸 (𝑢) = ∫
Ω

|∇𝑢| 𝑑𝑥 + 𝛼 ∫
Ω

(𝑢 + 𝑧 ⋅ 𝑒−𝑢) 𝑑𝑥} , (5)

where 𝛼 is a weighted parameter.
The investigations on the algorithm design of the classic

TVmodel have attracted a lot of interest since it was invented
to improve its computation efficiency and the quality of
restored images, such as the artificial time marching method
[12], fixed-point iterative method [20], primal-dual method
[21], dual method [22], split method [23], Bregman iterative
method [24], split Bregman method [25], and unbiased
Box-Cox transformation method [26]. Among them, the
split Bregman method combines the advantages of the split
method in easy implementation and the Bregman iterative
method in good quality of restored images. The variational
models of multiplicative noise removal are more complex
than the corresponding ones of additive noise removal, but
its previous studies focused on models according to different
noise distributions. Some researchers pay their attention to
algorithm design, such as [12, 20, 27, 28].The starting point of
our investigation is the RLO model of (4) and AA2 model of
(5)with theTV regularization term.Thepurpose of this paper
is to propose restarted homotopy perturbation methods
(RHPM) and split Bregman methods for multiplicative noise
removal models (4) and (5).

The paper is organized as follows. In Section 2, we review
the TM (time marching) method for multiplicative noise
removal models. In Section 3, we briefly review a restarted
homotopy perturbation method (RHPM). In Section 4, we
propose RHPM algorithms for the multiplicative noise
removal models. In Section 5, we propose split Bregman
algorithms for the multiplicative noise removal models. In
Section 6, we provide numerical experiments for several test
problems in order to evaluate the performance of the RHPM
and split Bregman methods. Lastly we provide concluding
remarks.

2. Review of the TM Method for Multiplicative
Noise Removal

The Euler-Lagrange equations corresponding to RLO model
(4) and AA2 model (5) lead to the following nonlinear
elliptic PDEs with the homogeneous Neumann boundary
conditions, respectively:

∇ ⋅ ( ∇𝑢 (𝑥, 𝑦)∇𝑢 (𝑥, 𝑦)) + (𝛼 − 𝛽) 𝑧 (𝑥, 𝑦)𝑢 (𝑥, 𝑦)2 + 𝛽 𝑧 (𝑥, 𝑦)2𝑢 (𝑥, 𝑦)3= 0, (𝑥, 𝑦) ∈ Ω,∇𝑢 (𝑥, 𝑦) ⋅ →𝑛 = 0, (𝑥, 𝑦) ∈ 𝜕Ω,
(6)

∇ ⋅ ( ∇𝑢 (𝑥, 𝑦)∇𝑢 (𝑥, 𝑦)) − 𝛼 {1 − 𝑧 (𝑥, 𝑦) 𝑒−𝑢(𝑥,𝑦)} = 0,(𝑥, 𝑦) ∈ Ω,∇𝑢 (𝑥, 𝑦) ⋅ →𝑛 = 0, (𝑥, 𝑦) ∈ 𝜕Ω,
(7)

where →𝑛 is the unit normal vector exterior to the boundary𝜕Ω.
We briefly describe the TM (time marching) method

[12] only for AA2 model (7). To avoid division by zero in
numerical implementation, we replace the nondifferentiable
term |∇𝑢(𝑥, 𝑦)| in (7) with a smooth approximation term∇𝑢 (𝑥, 𝑦)𝜀 = √∇𝑢 (𝑥, 𝑦)2 + 𝜀 for a small 𝜀 > 0. (8)

Then (7) is transformed into

∇ ⋅ ( ∇𝑢 (𝑥, 𝑦)∇𝑢 (𝑥, 𝑦)𝜀) − 𝛼 {1 − 𝑧 (𝑥, 𝑦) 𝑒−𝑢(𝑥,𝑦)} = 0,
(𝑥, 𝑦) ∈ Ω,∇𝑢 (𝑥, 𝑦) ⋅ →𝑛 = 0,(𝑥, 𝑦) ∈ 𝜕Ω.

(9)

In order to apply the TM method to (9), we consider the
following time-dependent nonlinear parabolic PDE corre-
sponding to (9):
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1: MAE(0) = 255, 𝑢0𝑖,𝑗 = 𝑧𝑖,𝑗 for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛
2: for 𝑘 = 0 to 𝑚𝑎𝑥𝑖𝑡 do
3: Compute 𝜅(𝑢𝑘𝑖,𝑗) using Equation (12) for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛
4: Compute 𝑢𝑘+1𝑖,𝑗 using Equation (11) for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛
5: if MAE(𝑘) < MAE(𝑘 + 1) then
6: Stop
7: end if
8: end for

Algorithm 1: TM algorithm for the AA2 model.

𝜕𝑢 (𝑥, 𝑦; 𝑡)𝜕𝑡 = ∇ ⋅ ( ∇𝑢 (𝑥, 𝑦; 𝑡)∇𝑢 (𝑥, 𝑦; 𝑡)𝜀)− 𝛼 {1 − 𝑧 (𝑥, 𝑦) 𝑒−𝑢(𝑥,𝑦;𝑡)} , (𝑥, 𝑦) ∈ Ω∇𝑢 ⋅ →𝑛 = 0, (𝑥, 𝑦) ∈ 𝜕Ω,
(10)

where 𝑢(𝑥, 𝑦, 0) is given.
For numerical implementation, let us assume that the

domain Ω has been split into 𝑚 × 𝑛 cells where the grid
points are located at (𝑥𝑖 = 𝑖ℎ𝑥, 𝑦𝑗 = 𝑗ℎ𝑦), 1 ≤ 𝑖 ≤ 𝑚, 1 ≤𝑗 ≤ 𝑛, 𝑡𝑘 = k△t, where △𝑡 and 𝑘 = 1, 2, . . . denote the
time step and iteration number, respectively. We denote the
values of 𝑢(𝑥, 𝑦; 𝑡) at the grid points (𝑥𝑖, 𝑦𝑗; 𝑡𝑘) by 𝑢𝑘𝑖,𝑗 and𝑢0𝑖,𝑗 = 𝑧(𝑥𝑖, 𝑦𝑗).

Without loss of generality, we can assume that ℎ𝑥 = ℎ𝑦 =1. Then, nonlinear PDE (10) can be approximated by the
following finite difference formula:𝑢𝑘+1𝑖,𝑗 = 𝑢𝑘𝑖,𝑗 + △𝑡 {𝜅 (𝑢𝑘𝑖,𝑗) − 𝛼 (1 − 𝑧𝑖,𝑗𝑒−𝑢𝑘𝑖,𝑗)} , (11)

where for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝜅 (𝑢𝑘𝑖,𝑗) = [∇ ⋅ ( ∇𝑢|∇𝑢|𝜀)]𝑘
𝑖,𝑗

= [ 𝜕𝜕𝑥 ( 𝑢𝑥|∇𝑢|𝜀)
+ 𝜕𝜕𝑦 ( 𝑢𝑦|∇𝑢|𝜀)]𝑘

𝑖,𝑗

= [[[[△𝑥−( △𝑥+𝑢𝑘𝑖,𝑗√(△𝑥+𝑢𝑘𝑖,𝑗)2 + (△𝑦+𝑢𝑘𝑖,𝑗)2 + 𝜀)
+ △𝑦−( △𝑦+𝑢𝑘𝑖,𝑗√(△𝑥+𝑢𝑘𝑖𝑗)2 + (△𝑦+𝑢𝑘𝑖,𝑗)2 + 𝜀)]]]]𝑖,𝑗

(12)

with △𝑥+𝑢𝑘𝑖,𝑗 = 𝑢𝑘𝑖+1,𝑗 − 𝑢𝑘𝑖,𝑗,△𝑥−𝑢𝑘𝑖,𝑗 = −𝑢𝑘𝑖−1,𝑗 + 𝑢𝑘𝑖,𝑗

△𝑦+𝑢𝑘𝑖,𝑗 = 𝑢𝑘𝑖,𝑗+1 − 𝑢𝑘𝑖,𝑗,△𝑦−𝑢𝑘𝑖,𝑗 = −𝑢𝑘𝑖,𝑗−1 + 𝑢𝑘𝑖,𝑗,𝑢𝑘0,𝑗 = 𝑢𝑘1,𝑗,𝑢𝑘𝑚+1,𝑗 = 𝑢𝑘𝑚,𝑗,𝑢𝑘𝑖,0 = 𝑢𝑘𝑖,1,𝑢𝑘𝑖,𝑛+1 = 𝑢𝑘𝑖,𝑛.
(13)

In a similar way as was done for the AA2 model, we can
obtain the following formula for the RLO model:𝑢𝑘+1𝑖,𝑗 = 𝑢𝑘𝑖,𝑗

+ △𝑡 [[𝜅 (𝑢𝑘𝑖,𝑗) + 𝑧𝑖,𝑗 {(𝛼 − 𝛽) 𝑢𝑘𝑖,𝑗 + 𝛽𝑧𝑖,𝑗}(𝑢𝑘𝑖,𝑗)3 + 𝜀 ]] , (14)

where 𝜅(𝑢𝑘𝑖,𝑗) and the boundary conditions are defined the
same as those in the AA2 model.

Hence, we obtain TM Algorithms 1 and 2 for the AA2
and RLO models. 𝑚𝑎𝑥𝑖𝑡 denotes the maximum number of
iterations, 𝑧 denotes the noisy image, 𝑢𝑘 denotes the restored
image at the 𝑘th iteration, and MAE(𝑘) denotes the mean
absolute error at the 𝑘th iteration, i.e.,

MAE (𝑘) = 𝑢𝑘 − 𝑢𝑘−11𝑚 ⋅ 𝑛 , (15)

where ‖ ⋅ ‖1 stands for the 𝑙1-norm.

3. Review of the Restarted Homotopy
Perturbation Method (RHPM)

We briefly describe the homotopy perturbation method
(HPM) for solving nonlinear partial differential equation𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω (16)

with the boundary conditions𝐵 (𝑢, 𝜕𝑢𝜕𝑛 ) = 0, 𝑟 ∈ Γ, (17)



4 Mathematical Problems in Engineering

1: MAE(0) = 255, 𝑢0𝑖,𝑗 = 𝑧𝑖,𝑗 for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛
2: for 𝑘 = 0 to 𝑚𝑎𝑥𝑖𝑡 do
3: Compute 𝜅(𝑢𝑘𝑖,𝑗) using Equation (12) for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛
4: Compute 𝑢𝑘+1𝑖,𝑗 using Equation (14) for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛
5: if MAE(𝑘) < MAE(𝑘 + 1) then
6: Stop
7: end if
8: end for

Algorithm 2: TM algorithm for the RLO model.

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytic function, and Γ is the
boundary of the domain Ω. The operator 𝐴 can be divided
into two parts 𝐿 and 𝑁, where 𝐿 is linear and 𝑁 is nonlinear.
Therefore, (16) can be written as𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (18)

By using the homotopy technique, one can construct a
homotopy V(𝑟, 𝑝) : Ω × [0, 1] → R which satisfies𝐻 (V, 𝑝) = (1 − 𝑝) [𝐿 (V) − 𝐿 (𝑢0)] + 𝑝 [𝐴 (V) − 𝑓 (𝑟)]= 0, (19)

or, equivalently,𝐻 (V, 𝑝) = 𝐿 (V) − 𝐿 (𝑢0) + 𝑝𝐿 (𝑢0)+ 𝑝 [𝑁 (V) − 𝑓 (𝑟)] = 0, (20)

where 𝑝 ∈ [0, 1] is an embedding parameter and 𝑢0 is the
initial approximation of (16) which satisfies the boundary
conditions. Clearly, we have𝐻 (V, 0) = 𝐿 (V) − 𝐿 (𝑢0) = 0,𝐻 (V, 1) = 𝐴 (V) − 𝑓 (𝑟) = 0. (21)

The changing process of 𝑝 from zero to unity is just that of
V(𝑟, 𝑝) changing from𝑢0(𝑟) to 𝑢(𝑟).This is called deformation
and also 𝐿(V) − 𝐿(𝑢0) and 𝐴(V) − 𝑓(𝑟) are called homotopic in
topology. If the embedding parameter 0 ≤ 𝑝 ≤ 1 is considered
as a ”small parameter” applying the classical perturbation
technique, then the solution of (20) can be expressed as a
power series in 𝑝, that is,

V = V (𝑟, 𝑝) = V0 + 𝑝V1 + 𝑝2V2 + ⋅ ⋅ ⋅ . (22)

Setting 𝑝 → 1, the solution 𝑢 of (16) can be expressed as the
sum of an infinite series𝑢 = lim

𝑝→1
V (𝑟, 𝑝) = V0 + V1 + V2 + ⋅ ⋅ ⋅ . (23)

Generally speaking, the computation of V𝑘 in the HPM
becomes more complicated as 𝑘 increases. To circumvent
this problem, the restarted homotopy perturbation method
(RHPM) proposed by Han and Yun [11] repeats the HPM

process by computing only the first few terms instead of
computing infinite terms of V𝑘. This is a big advantage of the
RHPM as compared with the HPM. The general procedure
of the RHPM for solving a nonlinear equation is described
below (see [11] for more details).

Let𝑢00 be an initial approximation of a nonlinear equation.
First, we compute the first 𝑘-th term approximation 𝑢10 in the
following way:

V00 = 𝑢00
Compute V01, V02, . . . , V0𝑘 using (20) and (22)𝑢10 = V00 + V01 + V02 + ⋅ ⋅ ⋅ + V0𝑘. (24)

Following the above computational process with 𝑢10 as an
initial approximation, a new approximation 𝑢20 is computed
as follows:

V10 = 𝑢10
Compute V11, V12, . . . , V1𝑘 using (20) and (22)𝑢20 = V10 + V11 + V12 + ⋅ ⋅ ⋅ + V1𝑘. (25)

By repeating the above process, a new approximation 𝑢ℓ+10 can
be computed from the initial approximation 𝑢ℓ0, which was
obtained at the ℓth step, in the following way:

Vℓ0 = 𝑢ℓ0
Compute Vℓ1, Vℓ2, . . . , Vℓ𝑘 using (20) and (22)𝑢ℓ+10 = Vℓ0 + Vℓ1 + Vℓ2 + ⋅ ⋅ ⋅ + Vℓ𝑘. (26)

Notice that Vℓ0, Vℓ1, . . . , Vℓ𝑘 are coefficients of 𝑝0, 𝑝1, . . . , 𝑝𝑘,
respectively. Then the exact solution 𝑢 can be approximated
by 𝑢ℓ+10 , that is, under some appropriate conditions 𝑢 =
limℓ→∞ 𝑢ℓ0. The RHPM which computes only 𝑘 vectors
Vℓ1, Vℓ2, . . . , Vℓ𝑘 every step is called the RHPM(𝑘) method.

4. RHPM Algorithms for Multiplicative
Noise Removal

In this section, we describe an application of the RHPM
to multiplicative denoising problems of the RLO and AA2
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models. Before doing this, we describe the binomial series
which is used for an application of the RHPM.The difficulty
in applying the RHPM to the TV-based image denoising
problem comes from (36) and (62) (i.e., (V2𝑥 + V2𝑦)−1/2, (V2𝑥 +
V2𝑦)−3/2, 𝑢−2, and 𝑢−3). In order to handle this difficulty, the
following binomial series is used: for |𝑥| < 1,

(1 + 𝑥)𝑛 = ∞∑
𝑘=0

(𝑛𝑘) 𝑥𝑘
= 1 + 𝑛𝑥 + 𝑛 (𝑛 − 1)2! 𝑥2 + 𝑛 (𝑛 − 1) (𝑛 − 2)3! 𝑥3+ ⋅ ⋅ ⋅ .

(27)

If 𝑛 = −1/2 in (27), then(1 + 𝑥)−1/2 = 1√1 + 𝑥 = 1 − 12𝑥 + 38𝑥2 − 516𝑥3 + ⋅ ⋅ ⋅ . (28)

Letting 𝑥 = 𝜏 − 1 in (28), for 0 < 𝜏 < 2 𝜏−1/2 can be
approximated by𝜏−1/2 = 1√𝜏 ≈ 1 − 12 (𝜏 − 1) + 38 (𝜏 − 1)2

= 158 − 54𝜏 + 38𝜏2. (29)

If 𝜏 > 0 is large, then, by introducing a small parameter 𝜀 > 0
and using (29),𝜏−1/2 = 1√𝜏 = √𝜀√𝜀𝜏 ≈ √𝜀 (158 − 5𝜀4 𝜏 + 3𝜀28 𝜏2) . (30)

Similarly, if 𝑛 = −3/2 and 𝑥 = 𝜏 − 1 in (27), then, by
introducing a small parameter 𝜀 > 0,𝜏−3/2 = 1√𝜏3 = √𝜀3√(𝜀𝜏)3

≈ √𝜀3 (358 − 21𝜀4 𝜏 + 15𝜀28 𝜏2) . (31)

Note that a small parameter 𝜀 > 0 in (30) and (31) is used to
guarantee convergence of the binomial series when 𝜏 > 0 is
large.

We first describe how to apply the RHPMto the following
time-dependent nonlinear parabolic PDE corresponding to
AA2 model (7):𝜕𝑢 (𝑥, 𝑦; 𝑡)𝜕𝑡 = ∇ ⋅ ( ∇𝑢 (𝑥, 𝑦; 𝑡)∇𝑢 (𝑥, 𝑦; 𝑡))− 𝛼 {1 − 𝑧 (𝑥, 𝑦) 𝑒−𝑢(𝑥,𝑦;𝑡)} , (𝑥, 𝑦) ∈ Ω∇𝑢 ⋅ →𝑛 = 0, (𝑥, 𝑦) ∈ 𝜕Ω.

(32)

For simplicity of exposition, we describe the computational
process for RHPM(2) (i.e., 𝑘 = 2). We use three terms of

binomial series (27) for numerical computation of (36) and
(62), so division by zero does not occur. Let the operators 𝐿,𝑁, and 𝑓 be defined as

𝐿 (V) = 𝜕V (𝑥, 𝑦; 𝑡)𝜕𝑡 , 𝑓 (𝑥, 𝑦) = 0,
𝑁 (V) = −∇ ⋅ ( ∇V (𝑥, 𝑦; 𝑡)∇V (𝑥, 𝑦; 𝑡))+ 𝛼 {1 − 𝑧 (𝑥, 𝑦) 𝑒−V(𝑥,𝑦;𝑡)} ,

(33)

where ∇V (𝑥, 𝑦; 𝑡) = ( 𝜕V𝜕𝑥 , 𝜕V𝜕𝑦)𝑇 ,
∇V (𝑥, 𝑦; 𝑡) = √(V𝑥)2 + (V𝑦)2. (34)

From (20), one obtains𝜕V𝜕𝑡 = 𝜕𝑢0𝜕𝑡 − 𝑝𝜕𝑢0𝜕𝑡 + 𝑝∇ ⋅ ( ∇V (𝑥, 𝑦; 𝑡)∇V (𝑥, 𝑦; 𝑡))− 𝑝𝛼 {1 − 𝑧 (𝑥, 𝑦) 𝑒−V(𝑥,𝑦;𝑡)} , (35)

where ∇ ⋅ ( ∇V|∇V| ) = V𝑥𝑥 + V𝑦𝑦√(V𝑥)2 + (V𝑦)2
− (V𝑥)2 V𝑥𝑥 + (V𝑦)2 V𝑦𝑦√{(V𝑥)2 + (V𝑦)2}3 . (36)

Using the Taylor series expansion of 𝑒−V with the second order
and power series expansion of V of form (22), 𝑒−V can be
approximated as𝑒−V ≈ 1 − V + 12V2= 1 − (V0 + 𝑝V1 + 𝑝2V2 + ⋅ ⋅ ⋅)+ 12 (V0 + 𝑝V1 + 𝑝2V2 + ⋅ ⋅ ⋅)2

= {1 − V0 + 12 (V0)2} − 𝑝 (1 − V0) V1 + ⋅ ⋅ ⋅ .
(37)

Since the solution V of (35) is of form (22), by simple
computation

V𝑥 = (V0)𝑥 + 𝑝 (V1)𝑥 + 𝑝2 (V2)𝑥 + ⋅ ⋅ ⋅ ,
V𝑥𝑥 = (V0)𝑥𝑥 + 𝑝 (V1)𝑥𝑥 + 𝑝2 (V2)𝑥𝑥 + ⋅ ⋅ ⋅ ,
V𝑦 = (V0)𝑦 + 𝑝 (V1)𝑦 + 𝑝2 (V2)𝑦 + ⋅ ⋅ ⋅ ,
V𝑦𝑦 = (V0)𝑦𝑦 + 𝑝 (V1)𝑦𝑦 + 𝑝2 (V2)𝑦𝑦 + ⋅ ⋅ ⋅ ,
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(V𝑥)2 = (V0)2𝑥 + 2 {(V0)𝑥 (V1)𝑥} 𝑝 + ⋅ ⋅ ⋅ ,(V𝑦)2 = (V0)2𝑦 + 2 {(V0)𝑦 (V1)𝑦} 𝑝 + ⋅ ⋅ ⋅ .
(38)

From these equations, one easily obtains(V𝑥)2 + (V𝑦)2 = (𝐷1) + 2 (𝐷2) 𝑝 + ⋅ ⋅ ⋅ ,{(V𝑥)2 + (V𝑦)2}2 = (𝐷1)2 + 4 (𝐷1) (𝐷2) 𝑝 + ⋅ ⋅ ⋅ ,
V𝑥𝑥 + V𝑦𝑦 = (𝐷3) + (𝐷4) 𝑝 + ⋅ ⋅ ⋅ ,(V𝑥)2 V𝑥𝑥 + (V𝑦)2 V𝑦𝑦 = (𝐷5) + (𝐷6) 𝑝 + ⋅ ⋅ ⋅ ,

(39)

where (𝐷1)←= (V0)2𝑥 + (V0)2𝑦 ,(𝐷2)←= (V0)𝑥 (V1)𝑥 + (V0)𝑦 (V1)𝑦 ,(𝐷3)←= (V0)𝑥𝑥 + (V0)𝑦𝑦 ,(𝐷4)←= (V1)𝑥𝑥 + (V1)𝑦𝑦 ,(𝐷5)←= (V0)2𝑥 (V0)𝑥𝑥 + (V0)2𝑦 (V0)𝑦𝑦 ,(𝐷6)←= (V0)2𝑥 (V1)𝑥𝑥 + (V0)2𝑦 (V1)𝑦𝑦+ 2 (V0)𝑥 (V0)𝑥𝑥 (V1)𝑥+ 2 (V0)𝑦 (V0)𝑦𝑦 (V1)𝑦 .

(40)

Substituting 𝜏 = (V𝑥)2 + (V𝑦)2 into (30) and using (39), one
obtains1|∇V| = √𝜀√𝜀𝜏 = √𝜀√𝜀 {(V𝑥)2 + (V𝑦)2} ≈ √𝜀 [158

− 5𝜀4 {(V𝑥)2 + (V𝑦)2} + 3𝜀28 {(V𝑥)2 + (V𝑦)2}2]
= √𝜀 {158 − 5𝜀4 (𝐷1) + 3𝜀28 (𝐷1)2} + √𝜀3 {−52+ 3𝜀2 (𝐷1)} (𝐷2) 𝑝 + ⋅ ⋅ ⋅ = (𝐴1) + (𝐵1) (𝐷2) 𝑝+ ⋅ ⋅ ⋅ ,

(41)

where (𝐴1)←=√𝜀{15/8 − (5𝜀/4)(𝐷1) + (3𝜀2/8)(𝐷1)2} and(𝐵1)←=√𝜀3{−5/2 + (3𝜀/2)(𝐷1)}.
Hence, the first term of the right-hand side in (36) can be

written as
V𝑥𝑥 + V𝑦𝑦|∇V| ≈ (𝐴1) (𝐷3) + (𝐴1) (𝐷4) 𝑝+ (𝐵1) (𝐷2) (𝐷3) 𝑝 + ⋅ ⋅ ⋅ . (42)

Substituting 𝜏 = (V𝑥)2 + (V𝑦)2 into (31) and using (39), one
obtains1|∇V|3 = √𝜀3√(𝜀𝜏)3 = √𝜀3√𝜀3 {(V𝑥)2 + (V𝑦)2}3 ≈ √𝜀3 [358

− 21𝜀4 {(V𝑥)2 + (V𝑦)2} + 15𝜀28 {(V𝑥)2 + (V𝑦)2}2]
= √𝜀3 {358 − 21𝜀4 (𝐷1) + 15𝜀28 (𝐷1)2}
+ √𝜀5 {−212 + 15𝜀2 (𝐷1)} (𝐷2) 𝑝 + ⋅ ⋅ ⋅ = (𝐴2)+ (𝐵2) (𝐷2) 𝑝 + ⋅ ⋅ ⋅ ,

(43)

where (𝐴2)←=√𝜀3{35/8 − (21𝜀/4)(𝐷1) + (15𝜀2/8)(𝐷1)2} and(𝐵2)←=√𝜀5{−21/2 + (15𝜀/2)(𝐷1)}.
Hence, the second term of the right-hand side in (36) can

be written as(V𝑥)2 V𝑥𝑥 + (V𝑦)2 V𝑦𝑦|∇V|3≈ (𝐴2) (𝐷5) + (𝐵2) (𝐷2) (𝐷5) 𝑝 + (𝐴2) (𝐷6) 𝑝+ ⋅ ⋅ ⋅ .
(44)

From (36), (37), (42), and (44), (35) can be expressed as𝜕V0𝜕𝑡 + 𝑝𝜕V1𝜕𝑡 + 𝑝2 𝜕V2𝜕𝑡 + ⋅ ⋅ ⋅ = 𝜕𝑢0𝜕𝑡 − 𝑝𝜕𝑢0𝜕𝑡
+ 𝑝 (V𝑥𝑥 + V𝑦𝑦|∇𝑛V| − (V𝑥)2 V𝑥𝑥 + (V𝑥)2 V𝑦𝑦|∇V|3 ) − 𝑝 [1
− 𝑧 {1 − V0 + 12 (V0)2}] 𝛼 − 𝑝2𝑧 (1 − V0) V1𝛼
≈ 𝜕𝑢0𝜕𝑡 − 𝑝 [𝜕𝑢0𝜕𝑡 − {(𝐴1) (𝐷3) − (𝐴2) (𝐷5)}]+ 𝑝2 [(𝐴1) (𝐷4) − (𝐴2) (𝐷6)+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷2)] − 𝑝𝛼 [1
− 𝑧 {1 − V0 + 12 (V0)2}] − 𝑝2𝛼𝑧 (1 − V0) V1 + ⋅ ⋅ ⋅ .

(45)

Comparing coefficients of 𝑝0, 𝑝1, and 𝑝2 in (44),𝑝0 : 𝜕V0𝜕𝑡 = 𝜕𝑢0𝜕𝑡 ⇒ V0 = 𝑢0 = 𝑧 :
given an initial approximation

(46)

𝑝1 : 𝜕V1𝜕𝑡 = −𝜕V0𝜕𝑡 + {(𝐴1) (𝐷3) − (𝐴2) (𝐷5)} − 𝛼 [1
− 𝑧 {1 − V0 + 12 (V0)2}] (47)
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𝑝2 : 𝜕V2𝜕𝑡 = [(𝐴1) (𝐷4) − (𝐴2) (𝐷6)+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷2)] − 𝛼𝑧 (1 − V0) V1. (48)

Notice that the initial approximation 𝑢0 is set to 𝑧 which is a
noisy image. Applying the inverse operator of 𝐿 to (47), one
obtains

V1 = (𝑧 − V0) + [{(𝐴1) (𝐷3) − (𝐴2) (𝐷5)}− 𝛼 [1 − 𝑧 {1 − V0 + 12 (V0)2}]] 𝑡 = (V10) + (V11) 𝑡, (49)

where (V10)←=𝑧 − V0,(V11)←= {(𝐴1) (𝐷3) − (𝐴2) (𝐷5)}− 𝛼 [1 − 𝑧 {1 − V0 + 12 (V0)2}] . (50)

From (49), the partial derivatives of V1 are(V1)𝑥 = (V10)𝑥 + 𝑡 (V11)𝑥 ,(V1)𝑦 = (V10)𝑦 + 𝑡 (V11)𝑦 ,(V1)𝑥𝑥 = (V10)𝑥𝑥 + 𝑡 (V11)𝑥𝑥 ,(V1)𝑦𝑦 = (V10)𝑦𝑦 + 𝑡 (V11)𝑦𝑦 .
(51)

Using (51), (𝐷2), (𝐷4), and (𝐷6) can be expressed as(𝐷2) = {(V0)𝑥 (V10)𝑥 + (V0)𝑦 (V10)𝑦} + {(V0)𝑥 (V11)𝑥+ (V0)𝑦 (V11)𝑦} 𝑡 = (𝐷20) + (𝐷21) 𝑡,(𝐷4) = {(V10)𝑥𝑥 + (V10)𝑦𝑦} + {(V11)𝑥𝑥 + (V11)𝑦𝑦} 𝑡= (𝐷40) + (𝐷41) 𝑡,(𝐷6) = [(V0)2𝑥 (V10)𝑥𝑥 + (V0)2𝑦 (V10)𝑦𝑦+ 2 {(V0)𝑥 (V0)𝑥𝑥 (V10)𝑥 + (V0)𝑦 (V0)𝑦𝑦 (V10)𝑦}]+ [(V0)2𝑥 (V11)𝑥𝑥 + (V0)2𝑦 (V11)𝑦𝑦+ 2 {(V0)𝑥 (V0)𝑥𝑥 (V11)𝑥 + (V0)𝑦 (V0)𝑦𝑦 (V11)𝑦}] 𝑡= (𝐷60) + (𝐷61) 𝑡,

(52)

where(𝐷20) ←= (V0)𝑥 (V10)𝑥 + (V0)𝑦 (V10)𝑦 ,(𝐷21) ←= (V0)𝑥 (V11)𝑥 + (V0)𝑦 (V11)𝑦 ,(𝐷40) ←= (V10)𝑥𝑥 + (V10)𝑦𝑦 ,(𝐷41) ←= (V11)𝑥𝑥 + (V11)𝑦𝑦 ,

(𝐷60)←= (V0)2𝑥 (V10)𝑥𝑥 + (V0)2𝑦 (V10)𝑦𝑦+ 2 {(V0)𝑥 (V0)𝑥x (V10)𝑥 + (V0)𝑦 (V0)𝑦𝑦 (V10)𝑦} ,(𝐷61)←= (V0)2𝑥 (V11)𝑥𝑥 + (V0)2𝑦 (V11)𝑦𝑦+ 2 {(V0)𝑥 (V0)𝑥𝑥 (V11)𝑥 + (V0)𝑦 (V0)𝑦𝑦 (V11)𝑦} .
(53)

Substituting (49) and (52) into (48) and applying the inverse
operator of 𝐿 to (48), one obtains

V2 = [(𝐴1) (𝐷40) − (𝐴2) (𝐷60)+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷20)] 𝑡+ 12 [(𝐴1) (𝐷41) − (𝐴2) (𝐷61)+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷21)] 𝑡2 − 𝛼𝑧 {1 − V0}⋅ (V10) 𝑡 − 𝛼2 𝑧 {1 − V0} (V11) 𝑡2 = (V21) 𝑡 + (V22) 𝑡2,
(54)

where(V21) ←= [(𝐴1) (𝐷40) − (𝐴2) (𝐷60)+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷20)] − 𝛼𝑧 {1 − V0}⋅ (V10) ,(V22) ←= 12 [(𝐴1) (𝐷41) − (𝐴2) (𝐷61)+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷21)] − 𝛼2 𝑧 {1 − V0}⋅ (V11) .
(55)

Now update 𝑢0 whose new value is set to V0 + V1 + V2. By
repeating the aforementioned process with the new updated𝑢0, we obtain the RHPM(2) method for the AA2 model.

For numerical implementation of the RHPM(2) method,
let us assume that the domain Ω has been split into 𝑚 × 𝑛
cells where the grid points are located at (𝑥𝑖 = 𝑖ℎ𝑥, 𝑦𝑗 = 𝑗ℎ𝑦),1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. Let 𝑡𝑘 = k△t, where △𝑡 and 𝑘 = 1, 2, . . .
refer to the time step and iteration number, respectively. We
denote the values of 𝑢(𝑥, 𝑦; 𝑡) at the grid points (𝑥𝑖, 𝑦𝑗; 𝑡𝑘) by(𝑢𝑘)𝑖,𝑗. Without loss of generality, we can assume that ℎ =ℎ𝑥 = ℎ𝑦 = 1. For simplicity of exposition, we define the
following notation:

V𝑘0 = {(V𝑘0)𝑖,𝑗 = V0 (𝑥𝑖, 𝑦𝑗; 𝑡𝑘) | 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑘= 1, 2, . . .} ,
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V𝑘1 = {(V𝑘1)𝑖,𝑗 = V1 (𝑥𝑖, 𝑦𝑗; 𝑡𝑘) | 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑘= 1, 2, . . .} ,
V𝑘2 = {(V𝑘2)𝑖,𝑗 = V2 (𝑥𝑖, 𝑦𝑗; 𝑡𝑘) | 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑘= 1, 2, . . .} .

(56)

The boundary conditions are defined the same as those in the
TM method. Assume that (𝑢00)𝑖,𝑗 = 𝑧(𝑥𝑖, 𝑦𝑗) = 𝑧𝑖,𝑗 and (𝑢𝑘0)𝑖,𝑗
has been computed for all 𝑖 and 𝑗. Then (V𝑘0)𝑖,𝑗 = (𝑢𝑘0)𝑖,𝑗 and
discretization of (49) is given by(V𝑘1)𝑖,𝑗 = (V10)𝑖,𝑗 + (V11)𝑖,𝑗 ⋅ 𝑡𝑘, (57)

where(V10)𝑖,𝑗 = 𝑧𝑖,𝑗 − (V𝑘0)𝑖,𝑗 ,(V11)𝑖,𝑗 = {(𝐴1)𝑖,𝑗 (𝐷3)𝑖,𝑗 − (𝐴2)𝑖,𝑗 (𝐷5)𝑖,𝑗}− 𝛼 [1 − 𝑧𝑖,𝑗 {1 − (V𝑘0)𝑖,𝑗 + 12 (V𝑘0)2𝑖,𝑗}] . (58)

Also, discretization of (54) is given by(V𝑘2)𝑖,𝑗 = (V21)𝑖,𝑗 ⋅ 𝑡𝑘 + (V22)𝑖,𝑗 ⋅ (𝑡𝑘)2 , (59)

where(V21)𝑖,𝑗 = [(𝐴1)𝑖,𝑗 (𝐷40)𝑖,𝑗 − (𝐴2)𝑖,𝑗 (𝐷60)𝑖,𝑗+ {(𝐵1)𝑖,𝑗 (𝐷3)𝑖,𝑗 − (𝐵2)𝑖,𝑗 (𝐷5)𝑖,𝑗} (𝐷20)𝑖,𝑗]− 𝛼𝑧𝑖,𝑗 {1 − (V𝑘0)𝑖,𝑗} (V10)𝑖,𝑗 ,(V22)𝑖,𝑗 = 12 [(𝐴1)𝑖,𝑗 (𝐷41)𝑖,𝑗 − (𝐴2)𝑖,𝑗 (𝐷61)𝑖,𝑗+ {(𝐵1)𝑖,𝑗 (𝐷3)𝑖,𝑗 − (𝐵2)𝑖,𝑗 (𝐷5)𝑖,𝑗} (𝐷21)𝑖,𝑗] − 𝛼2⋅ 𝑧𝑖,𝑗 {1 − (V𝑘0)𝑖,𝑗} (V11)𝑖,𝑗 .
(60)

Wenow compute𝑢𝑘+10 = V𝑘0 + V𝑘1 + V𝑘2 . Repeating the above
process with 𝑢𝑘+10 as an initial approximation, we can obtain
the RHPM(2) method, called Algorithm 3, for multiplicative
noise removal of the AA2 model.

We next describe how to apply RHPM(2) to the following
time-dependent nonlinear parabolic PDE corresponding to
RLOmodel (6):𝜕𝑢 (𝑥, 𝑦; 𝑡)𝜕𝑡 = ∇ ⋅ ( ∇𝑢 (𝑥, 𝑦; t)∇𝑢 (𝑥, 𝑦; 𝑡))+ (𝛼 − 𝛽) 𝑧 (𝑥, 𝑦)𝑢 (𝑥, 𝑦; 𝑡)2

1: MAE(0) = 1, (𝑢00)𝑖,𝑗 = 𝑧𝑖,𝑗 for all 𝑖 and 𝑗
2: for 𝑘 = 0 to 𝑚𝑎𝑥𝑖𝑡 do
3: Set V𝑘0 = 𝑢𝑘0
4: Compute V𝑘1 using (57) for all 𝑖 and 𝑗
5: Compute V𝑘2 using (59) for all 𝑖 and 𝑗
6: 𝑢𝑘+10 = V𝑘0 + V𝑘1 + V𝑘2
7: if MAE(𝑘) < MAE(𝑘 + 1) then
8: Stop
9: end if
10: end for

Algorithm 3: RHPM(2) algorithm for the AA2 model.

+ 𝛽 𝑧 (𝑥, 𝑦)2𝑢 (𝑥, 𝑦; 𝑡)3 , (𝑥, 𝑦) ∈ Ω
∇𝑢 ⋅ →𝑛 = 0, (𝑥, 𝑦) ∈ 𝜕Ω,

(61)

where 𝑢(𝑥, 𝑦, 0) is given. Let the operators 𝐿, 𝑁, and 𝑓 be
defined as𝐿 (V) = 𝜕V (𝑥, 𝑦; 𝑡)𝜕𝑡 , 𝑓 (𝑥, 𝑦) = 0,

𝑁 (V) = −∇ ⋅ ( ∇V (𝑥, 𝑦; 𝑡)∇V (𝑥, 𝑦; 𝑡)) − (𝛼 − 𝛽) 𝑧 (𝑥, 𝑦)
V (𝑥, 𝑦; 𝑡)2

− 𝛽 𝑧 (𝑥, 𝑦)2
V (𝑥, 𝑦; 𝑡)3 .

(62)

In order to handle the difficulty in applying the RHPM to the
RLOmodel, we use three terms of binomial series (27) for V−2
and V−3 in (62). That is, for a small parameter 𝜀 > 0, V−2 and
V−3 can be approximated by1

V2
= 𝜀2(𝜀V)2 ≈ 𝜀2 (6 − 8𝜀V + 3𝜀2V2) ,

1
V3

= 𝜀3(𝜀V)3 ≈ 𝜀3 (10 − 15𝜀V + 6𝜀2V2) . (63)

Using (62) and (63), the RHPM(2) method for the RLO
model can be derived in a similar way as was done for the
AA2 model as follows:𝜕V0𝜕𝑡 + 𝑝𝜕V1𝜕𝑡 + 𝑝2 𝜕V2𝜕𝑡 + ⋅ ⋅ ⋅ = 𝜕𝑢0𝜕𝑡 − 𝑝𝜕𝑢0𝜕𝑡

+ 𝑝 (V𝑥𝑥 + V𝑦𝑦|∇V| − (V𝑥)2 V𝑥𝑥 + (V𝑥)2 V𝑦𝑦|∇V|3 ) + 𝑝 (𝛼
− 𝛽) 𝑧

V2
+ 𝑝𝛽𝑧2

V3
≈ 𝜕𝑢0𝜕𝑡 − 𝑝𝜕𝑢0𝜕𝑡+ 𝑝 [{(𝐴1) (𝐷3) − (𝐴2) (𝐷5)}+ 𝑧 {(𝛼 − 𝛽) (𝐴3) + 𝛽𝑧 (𝐴4)}]
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+ 𝑝2 [{(𝐴1) (𝐷4) − (𝐴2) (𝐷6)}+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷2)]+ 𝑝2𝑧 {(𝛼 − 𝛽) (𝐵3) + 𝛽𝑧 (𝐵4)} + ⋅ ⋅ ⋅ ,
(64)

where (𝐴1), (𝐴2), (𝐵1), (𝐵2), (𝐷2), (𝐷3), (𝐷4), and (𝐷5) are
defined the same as the AA2 model and (𝐴3), (𝐴4), (𝐵3), and(𝐵4) are defined as(𝐴3) = 𝜀2 {6 − 8𝜀 (V0) + 3𝜀2 (V0)2} ,(𝐵3) = −𝜀2 {8 − 6𝜀 (V0)} ,(𝐴4) = 𝜀3 {10 − 15𝜀 (V0) + 6𝜀2 (V0)2} ,(𝐵4) = −𝜀3 {15 − 12𝜀 (V0)} .

(65)

Comparing coefficients of 𝑝0, 𝑝1, and 𝑝2 in (64),𝑝0 : 𝜕V0𝜕𝑡 = 𝜕𝑢0𝜕𝑡 ⇒
V0 = 𝑢0 = 𝑧 : given an initial approximation

(66)

𝑝1 : 𝜕V1𝜕𝑡 = −𝜕V0𝜕𝑡 + {(𝐴1) (𝐷3) − (𝐴2) (𝐷5)}+ 𝑧 {(𝛼 − 𝛽) (𝐴3) + 𝛽𝑧 (𝐴4)} (67)

𝑝2 : 𝜕V2𝜕𝑡 = [(𝐴1) (𝐷4) − (𝐴2) (𝐷6)+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷2)]+ 𝑧 {(𝛼 − 𝛽) (𝐵3) + 𝛽𝑧 (𝐵4)} . (68)

Applying the inverse operator of 𝐿 to (67), one obtains

V1 = (𝑧 − V0) + [{(𝐴1) (𝐷3) − (𝐴2) (𝐷5)}+ 𝑧 {(𝛼 − 𝛽) (𝐴3) + 𝛽𝑧 (𝐴4)}] 𝑡 = (V10) + (V11) 𝑡, (69)

where (V10) is the constant term and (V11) is the coefficient of𝑡.
Substituting (69) and (52) into (68) and applying the

inverse operator of 𝐿 to (68), one obtains

V2 = [{(𝐴1) (𝐷40) − (𝐴2) (𝐷60)}+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷20)] 𝑡+ 12 [(𝐴1) (𝐷41) − (𝐴2) (𝐷61)+ {(𝐵1) (𝐷3) − (𝐵2) (𝐷5)} (𝐷21)] 𝑡2+ 𝑧 {(𝛼 − 𝛽) (𝐵3) + 𝛽𝑧 (𝐵4)} 𝑡 + 𝑧2 {(𝛼 − 𝛽) (𝐵3)+ 𝛽𝑧 (𝐵4)} 𝑡2 = (V21) 𝑡 + (V22) 𝑡2,
(70)

where (V21) and (V22) are coefficients of 𝑡 and 𝑡2, respectively.

1: MAE(0) = 1, (𝑢00)𝑖,𝑗 = 𝑧𝑖,𝑗 for all 𝑖 and 𝑗
2: for 𝑘 = 0 to 𝑚𝑎𝑥𝑖𝑡 do
3: Set V𝑘0 = 𝑢𝑘0
4: Compute V𝑘1 using (71) for all 𝑖 and 𝑗
5: Compute V𝑘2 using (72) for all 𝑖 and 𝑗
6: 𝑢𝑘+10 = V𝑘0 + V𝑘1 + V𝑘2
7: if MAE(𝑘) < MAE(𝑘 + 1) then
8: Stop
9: end if
10: end for

Algorithm 4: RHPM(2) algorithm for the RLO model.

For numerical implementation of the RHPM(2) method,
assume that (𝑢00)𝑖,𝑗 = 𝑧(𝑥𝑖, 𝑦𝑗) = 𝑧𝑖,𝑗 and (𝑢𝑘0)𝑖,𝑗 has
been computed for all 𝑖 and 𝑗. Then (V𝑘0)𝑖,𝑗 = (𝑢𝑘0)𝑖,𝑗, and
discretizations of (69) and (70) are given by(V𝑘1)𝑖,𝑗 = (V10)𝑖,𝑗 + (V11)𝑖,𝑗 ⋅ 𝑡𝑘, (71)(V𝑘2)𝑖,𝑗 = (V21)𝑖,𝑗 ⋅ 𝑡𝑘 + (V22)𝑖,𝑗 ⋅ (𝑡𝑘)2 , (72)

where(V10)𝑖,𝑗 = 𝑧𝑖,𝑗 − (V𝑘0)𝑖,𝑗(V11)𝑖,𝑗 = {(𝐴1)𝑖,𝑗 (𝐷3)𝑖,𝑗 − (𝐴2)𝑖,𝑗 (𝐷5)𝑖,𝑗}+ 𝑧𝑖,𝑗 {(𝛼 − 𝛽) (𝐴3)𝑖,𝑗 + 𝛽𝑧𝑖,𝑗 (𝐴4)𝑖,𝑗}(V21)𝑖,𝑗 = [{(𝐴1)𝑖,𝑗 (𝐷40)𝑖,𝑗 − (𝐴2)𝑖,𝑗 (𝐷60)𝑖,𝑗}+ {(𝐵1)𝑖,𝑗 (𝐷3)𝑖,𝑗 − (𝐵2)𝑖,𝑗 (𝐷5)𝑖,𝑗} (𝐷20)𝑖,𝑗]+ 𝑧𝑖,𝑗 {(𝛼 − 𝛽) (𝐵3)𝑖,𝑗 + 𝛽𝑧 (𝐵4)𝑖,𝑗}(V22)𝑖,𝑗 = 12 [(𝐴1)𝑖,𝑗 (𝐷41)𝑖,𝑗 − (𝐴2)𝑖,𝑗 (𝐷61)𝑖,𝑗+ {(𝐵1)𝑖,𝑗 (𝐷3)𝑖,𝑗 − (𝐵2)𝑖,𝑗 (𝐷5)𝑖𝑗} (𝐷21)𝑖,𝑗] + 12⋅ 𝑧𝑖,𝑗 {(𝛼 − 𝛽) (𝐵3)𝑖,𝑗 + 𝛽𝑧 (𝐵4)𝑖,𝑗} .

(73)

We now compute 𝑢𝑘+10 = V𝑘0 +V𝑘1 +V𝑘2 . Repeating the above
process with 𝑢𝑘+10 as an initial approximation, we can obtain
the RHPM(2) method, called Algorithm 4, for multiplicative
noise removal of the RLOmodel.

From RHPM(2) Algorithms 3 and 4, we can easily obtain
RHPM(1) Algorithms 5 and 6 whose computational costs per
iteration are much cheaper than those of Algorithms 3 and
4. In Algorithms 3–6, 𝑚𝑎𝑥𝑖𝑡, 𝑧, and 𝑢𝑘0 denote the maximum
number of iterations, the noisy image, and the restored image
at the 𝑘th iteration, respectively. Notice that all images are
assumed to have an intensity range of [0, 1] to guarantee
numerical stability of the RHPMmethods.
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1: MAE(0) = 1, (𝑢00)𝑖,𝑗 = 𝑧𝑖,𝑗 for all 𝑖 and 𝑗
2: for 𝑘 = 0 to 𝑚𝑎𝑥𝑖𝑡 do
3: Set V𝑘0 = 𝑢𝑘0
4: Compute V𝑘1 using (57) for all 𝑖 and 𝑗
5: 𝑢𝑘+10 = V𝑘0 + V𝑘1
6: if MAE(𝑘) < MAE(𝑘 + 1) then
7: Stop
8: end if
9: end for

Algorithm 5: RHPM(1) algorithm for the AA2 model.

1: MAE(0) = 1, (𝑢00)𝑖,𝑗 = 𝑧𝑖,𝑗 for all 𝑖 and 𝑗
2: for 𝑘 = 0 to 𝑚𝑎𝑥𝑖𝑡 do
3: Set V𝑘0 = 𝑢𝑘0
4: Compute V𝑘1 using (71) for all 𝑖 and 𝑗
5: 𝑢𝑘+10 = V𝑘0 + V𝑘1
6: if MAE(𝑘) < MAE(𝑘 + 1) then
7: Stop
8: end if
9: end for

Algorithm 6: RHPM(1) algorithm for the RLO model.

5. Split Bregman Algorithms for Multiplicative
Noise Removal

From (4) and (5), the general variational models based on TV
regularization for multiplicative noise removal can be written
as

min
𝑢

{𝐸 (𝑢) = ∫
Ω

|∇𝑢| 𝑑𝑥 + ∫
Ω

𝐻 (𝑢) 𝑑𝑥} . (74)

To derive the alternating split Bregman algorithm for
general multiplicative noise removal problem (74), we first
introduce an auxiliary vector w = (𝑤𝑥, 𝑤𝑦)𝑇 so that 𝑢 and
wminimize the following unconstrained problem:

min
𝑢,w

{∫
Ω

|w| 𝑑𝑥 + 𝜃2 ∫
Ω

|w − ∇𝑢|2 𝑑𝑥 + ∫
Ω

𝐻 (𝑢) 𝑑𝑥} , (75)

where |w| = √(𝑤𝑥)2 + (𝑤𝑦)2 and 𝜃 > 0 is a penalty
parameter. Then unconstrained minimization problem (75)
can be solved by the following split Bregman algorithm using
an auxiliary vector b = (𝑏𝑥, 𝑏𝑦)𝑇:(𝑢𝑘+1,w𝑘+1)= argmin

𝑢,w
∫
Ω

{|w| + 𝜃2 w − ∇𝑢 − b𝑘2 + 𝐻 (𝑢)} 𝑑𝑥, (76)

b𝑘+1 = b𝑘 + ∇𝑢𝑘+1 − w𝑘+1, (77)

where b0 = w0 = 0 and 𝑢0 is set to 𝑧 (noisy image).

Minimizing (76) alternatingly with respect to 𝑢 and w,
one obtains the alternating split Bregman algorithm intro-
duced in [25]:𝑢𝑘+1 = argmin

𝑢
∫
Ω

{𝐻 (𝑢) + 𝜃2 w𝑘 − ∇𝑢 − b𝑘2} 𝑑𝑥, (78)

w𝑘+1 = argmin
w

∫
Ω

{|w| + 𝜃2 w − ∇𝑢𝑘+1 − b𝑘2} 𝑑𝑥. (79)

The Euler-Lagrange equations corresponding to (78) and
(79) are as follows:𝜕𝜕𝑢𝐻 (𝑢𝑘+1) − 𝜃∇ ⋅ ∇𝑢𝑘+1 + 𝜃∇ ⋅ (w𝑘 − b𝑘) = 0 (80)1𝜃 ⋅ w𝑘+1w𝑘+1 + (w𝑘+1 − ∇𝑢𝑘+1 − b𝑘) = 0, (81)

where w𝑘 = (𝑤𝑘𝑥, 𝑤𝑘𝑦)𝑇, b𝑘 = (𝑏𝑘𝑥 , 𝑏𝑘𝑦)𝑇, and |w𝑘+1| =√(𝑤𝑘+1𝑥 )2 + (𝑤𝑘+1𝑦 )2.
First we consider how to solve (80) for 𝑢𝑘+1. For the case

of RLOmodel (4), 𝐻(𝑢) = 𝛼(𝑧/𝑢) + (𝛽/2)(𝑧/𝑢 − 1)2 and thus𝜕𝜕𝑢𝐻 (𝑢) = (𝛽 − 𝛼) 𝑧𝑢2 − 𝛽 𝑧2𝑢3 . (82)

To avoid division by zero or near-zero for 𝑧/𝑢2 and 𝑧2/𝑢3, 𝑢−2
and 𝑢−3 are approximated using four terms of binomial series
(27). That is, 1𝑢2 ≈ 10 − 20𝑢 + 15𝑢2 − 4𝑢3,1𝑢3 ≈ 20 − 45𝑢 + 36𝑢2 − 10𝑢3, (83)

where 𝑢 need to be scaled so that the value of 𝑢 lies between 0
and 2 to guarantee convergence of the binomial series. Thus(𝜕/𝜕𝑢)𝐻(𝑢) can be approximated as𝜕𝜕𝑢𝐻 (𝑢) ≈ (𝛽 − 𝛼) (10 − 20𝑢 + 15𝑢2 − 4𝑢3) 𝑧− 𝛽 (20 − 45𝑢 + 36𝑢2 − 10𝑢3) 𝑧2. (84)

From this approximate equation, (𝜕/𝜕𝑢)𝐻(𝑢𝑘+1) in (80) can
be approximated as𝜕𝜕𝑢𝐻 (𝑢𝑘+1) ≈ −10 (𝛼 − 𝛽) 𝑧 − 20𝛽𝑧2+ {20 (𝛼 − 𝛽) 𝑧 + 45𝛽𝑧2} 𝑢𝑘+1− {15 (𝛼 − 𝛽) 𝑧 + 36𝛽𝑧2} (𝑢𝑘)2+ {4 (𝛼 − 𝛽) 𝑧 + 10𝛽𝑧2} (𝑢𝑘)3 .

(85)

Substituting this approximate equation into (80), one obtains
the following approximate PDE for the RLOmodel:
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{20 (𝛼 − 𝛽) 𝑧 + 45𝛽𝑧2} 𝑢𝑘+1 − 𝜃∇ ⋅ ∇𝑢𝑘+1= {10 (𝛼 − 𝛽) 𝑧 + 20𝛽𝑧2}+ {15 (𝛼 − 𝛽) 𝑧 + 36𝛽𝑧2} (𝑢𝑘)2− {4 (𝛼 − 𝛽) 𝑧 + 10𝛽𝑧2} (𝑢𝑘)3 − 𝜃∇⋅ (w𝑘 − b𝑘) .
(86)

For the case of AA2 model (5), 𝐻(𝑢) = 𝛼(𝑢 + 𝑧𝑒−𝑢). Using
four terms of the Taylor series for 𝑒−𝑢, (𝜕/𝜕𝑢)𝐻(𝑢) can be
approximated as𝜕𝜕𝑢𝐻 (𝑢) = 𝛼 (1 − 𝑧𝑒−𝑢)

≈ 𝛼 {1 − 𝑧 (1 − 𝑢 + 12𝑢2 − 16𝑢3)} . (87)

From this approximate equation, (𝜕/𝜕𝑢)𝐻(𝑢𝑘+1) in (80)
can be approximated as𝜕𝜕𝑢𝐻 (𝑢𝑘+1)

≈ 𝛼 {1 − 𝑧 + 𝑧𝑢𝑘+1 − 12𝑧 (𝑢𝑘)2 + 16𝑧 (𝑢𝑘)3} . (88)

Substituting this approximate equation into (80), we can
obtain the following approximate PDE for the AA2 model:𝛼𝑧𝑢𝑘+1 − 𝜃∇ ⋅ ∇𝑢𝑘+1= −𝛼 {1 − 𝑧 − 12𝑧 (𝑢𝑘)2 + 16𝑧 (𝑢𝑘)3} − 𝜃∇⋅ (w𝑘 − b𝑘) . (89)

Now we consider the numerical approach for solving
PDE problems of RLO model (86) and AA2 model (89).
Let 𝑢𝑖,𝑗, 𝑧𝑖,𝑗, ((𝑏𝑥)𝑖,𝑗, (𝑏𝑦)𝑖,𝑗)𝑇, and ((𝑤𝑥)𝑖,𝑗, (𝑤𝑦)𝑖,𝑗)𝑇 be the(𝑖, 𝑗)−components of 𝑢, 𝑧, b, and w, respectively, where 1 ≤𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. For an 𝑚 × 𝑛 array V, let vec(V)
denote a long vector of size 𝑚𝑛 which is defined by vec(V) =(V𝑇∗1, V𝑇∗2, . . . , V𝑇∗𝑛)𝑇 and V∗𝑖 = (V1,𝑖, V2,𝑖, . . . , V𝑚,𝑖)𝑇. Let ∇̃ =(∇̃𝑥, ∇̃𝑦)𝑇 : R𝑚×𝑛 → R2𝑚×𝑛 be a discrete gradient operator
defined by (∇̃𝑢)

𝑖,𝑗
= ((∇̃𝑥𝑢)

𝑖,𝑗
, (∇̃𝑦𝑢)

𝑖,𝑗
)𝑇 ,

(∇̃𝑥𝑢)
𝑖,𝑗

= {{{0, 𝑖 = 1𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗, 1 < 𝑖 ≤ 𝑚,
(∇̃𝑦𝑢)

𝑖,𝑗
= {{{0, 𝑗 = 1𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1, 1 < 𝑗 ≤ 𝑛.

(90)

Then the discrete gradient operator ∇̃ can be represented by
a matrix operator 𝐵 of size 2𝑚𝑛 × 𝑚𝑛:

𝐵 = (𝐼𝑛 ⊗ 𝐷𝑚𝐷𝑛 ⊗ 𝐼𝑚) , (91)

where ⊗ denotes the Kronecker product, 𝐼𝑚 denotes the
identity matrices of order 𝑚, and 𝐷𝑚 denotes the following
matrix of order 𝑚:

𝐷𝑚 = (((
(

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0−1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0... d d d
...0 ⋅ ⋅ ⋅ −1 1 00 ⋅ ⋅ ⋅ 0 −1 1
)))
)𝑚×𝑚

. (92)

Using the matrix operator 𝐵, it is easy to show that ∇ ⋅ ∇𝑢 and∇ ⋅ w in (86) and (89) can be approximated as∇ ⋅ ∇𝑢 ≈ −𝐵𝑇𝐵 vec (𝑢) ,
∇ ⋅ w ≈ 𝐵𝑇(vec (𝑤𝑥)

vec (𝑤𝑦)) . (93)

Hence, we obtain the finite difference approximate equations
for RLO model (86) and AA2 model (89) which are given by
the following linear systems, respectively:[diag (20 (𝛼 − 𝛽) 𝑧 + 45𝛽𝑧2) + 𝜃𝐵𝑇𝐵] vec (𝑢𝑘+1)= vec ({10 (𝛼 − 𝛽) 𝑧 + 20𝛽2}+ {15 (𝛼 − 𝛽) 𝑧 + 36𝛽𝑧2} (𝑢𝑘)2− {4 (𝛼 − 𝛽) 𝑧 + 10𝛽𝑧2} (𝑢𝑘)3)

− 𝜃𝐵𝑇(vec (𝑤𝑘𝑥 − 𝑏𝑘𝑥)
vec (𝑤𝑘𝑦 − 𝑏𝑘𝑦)) ,

(94)

[diag (𝛼𝑧) + 𝜃𝐵𝑇𝐵] vec (𝑢𝑘+1)= vec (−𝛼 {1 − 𝑧 − 12𝑧 (𝑢𝑘)2 + 16𝑧 (𝑢𝑘)3})
− 𝜃𝐵𝑇(vec (𝑤𝑘𝑥 − 𝑏𝑘𝑥)

vec (𝑤𝑘𝑦 − 𝑏𝑘𝑦)) , (95)

where 𝑧2, (𝑢𝑘)2, and (𝑢𝑘)3 denote elementwise exponenti-
ations, 𝑢𝑘 denotes the restored image at the 𝑘th iteration,
all multiplications of two 𝑚 × 𝑛 arrays denote elementwise
multiplications, and diag(𝑧) is an 𝑚𝑛 × 𝑚𝑛 diagonal matrix
whose diagonal elements are the same as vec(𝑧).

Next, we consider how to solve (81) for w𝑘+1. Equation
(81) can be expressed as(1 + 1𝜃 ⋅ 1w𝑘+1) 𝑤𝑘+1𝑥 = ∇𝑥𝑢𝑘+1 + 𝑏𝑘𝑥

(1 + 1𝜃 ⋅ 1w𝑘+1) 𝑤𝑘+1𝑦 = ∇𝑦𝑢𝑘+1 + 𝑏𝑘𝑦 , (96)
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where ∇𝑢𝑘+1 = (∇𝑥𝑢𝑘+1, ∇𝑦𝑢𝑘+1)𝑇. By squaring and adding
two equations in (96), one can obtain

(1 + 1𝜃 ⋅ 1w𝑘+1)2 w𝑘+12 = ∇𝑢𝑘+1 + b𝑘2 , (97)

which implies w𝑘+1 = ∇𝑢𝑘+1 + b𝑘 − 1𝜃 . (98)

Substituting (98) into (96), we have a generalized shrinkage
formula

𝑤𝑘+1𝑥 = (∇𝑢𝑘+1 + b𝑘 − 1𝜃) ∇𝑥𝑢𝑘+1 + 𝑏𝑘𝑥∇𝑢𝑘+1 + b𝑘
𝑤𝑘+1𝑦 = (∇𝑢𝑘+1 + b𝑘 − 1𝜃) ∇𝑦𝑢𝑘+1 + 𝑏𝑘𝑦∇𝑢𝑘+1 + b𝑘 .

(99)

Generalized shrinkage formula (99) can be also found in [25,
29]. Tomake this paper self-contained, we provided a detailed
proof for (99). Numerical implementation for formula (99)
can be done as follows: for each (𝑖, 𝑗)-component of w𝑘+1 =(𝑤𝑘+1𝑥 , 𝑤𝑘+1𝑦 )𝑇,

(𝑤𝑘+1𝑥 )
𝑖,𝑗

= max {(∇̃𝑢𝑘+1 + b𝑘)
𝑖,𝑗

 − 1𝜃 , 0}

⋅ (∇̃𝑥𝑢𝑘+1)𝑖,𝑗 + (𝑏𝑘𝑥)𝑖,𝑗(∇̃𝑢𝑘+1 + b𝑘)
𝑖,𝑗

 , 000 = 0
(𝑤𝑘+1𝑦 )

𝑖,𝑗
= max {(∇̃𝑢𝑘+1 + b𝑘)

𝑖,𝑗

 − 1𝜃 , 0}
⋅ (∇̃𝑦𝑢𝑘+1) 𝑖, 𝑗 + (𝑏𝑘𝑦)𝑖,𝑗(∇̃𝑢𝑘+1 + b𝑘)

𝑖,𝑗

 , 000 = 0.
(100)

where (∇̃𝑢𝑘+1 + b𝑘)𝑖,𝑗 = ((∇̃𝑥𝑢𝑘+1)𝑖,𝑗 + (𝑏𝑘𝑥)𝑖,𝑗, (∇̃𝑦𝑢𝑘+1)𝑖,𝑗 +(𝑏𝑘𝑦)𝑖,𝑗)𝑇.
Lastly, numerical implementation for (77) can be done as

follows:

(vec (𝑏𝑘+1𝑥 )
vec (𝑏𝑘+1𝑦 )) = (vec (𝑏𝑘𝑥)

vec (𝑏𝑘𝑦)) + 𝐵 ⋅ vec (𝑢𝑘+1)
− (vec (𝑤𝑘+1𝑥 )

vec (𝑤𝑘+1𝑦 )) . (101)

Linear systems (94) and (95) are singular or ill-
conditioned problems, so direct or iterative methods fail to
get an approximate solution for these problems. For this
reason, we propose a new technique for solving linear systems
(94) and (95). Let

𝐴1 = diag (20 (𝛼 − 𝛽) 𝑧 + 45𝛽𝑧2) + 𝜃𝐵𝑇𝐵,𝐴2 = diag (𝛼𝑧) + 𝜃𝐵𝑇𝐵𝑟𝑘1 = right-hand side vector of (94) ,𝑟𝑘2 = right-hand side vector of (95)𝑢𝑘+1 = vec (𝑢𝑘+1) ,𝑢𝑘 = vec (𝑢𝑘)𝐷 = diagonal matrix whose diagonal elements are the same as those of 𝜃𝐵𝑇𝐵.
(102)

Then linear systems (94) and (95) can be rewritten as𝐴1𝑢𝑘+1 = 𝑟𝑘1 ,𝐴2𝑢𝑘+1 = 𝑟𝑘2 . (103)

In order to solve ill-conditioned linear systems (103) for 𝑢𝑘+1,
we propose the following iterative method:

Algorithm: SOLVER(𝑖)
Choose 𝑦1 = 𝑢𝑘
for ℓ = 1 to 𝑚𝑎𝑥𝑙

Solve (𝐴 𝑖 + 𝛿𝐷)𝑦ℓ+1 = 𝛿𝐷𝑦ℓ + 𝑟𝑘𝑖 for 𝑦ℓ+1

end for𝑢𝑘+1 = 𝑦ℓ+1
In it 𝑖 = 1 or 2, 𝑢𝑘 refers to the restored image computed
at the previous 𝑘th step, and 𝛿 > 0 is a parameter which
should be chosen so that the coefficient matrix 𝐴 𝑖 + 𝛿𝐷 is
well conditioned. To study semiconvergence of SOLVER(𝑖),
we first introduce some important properties for an iterative
method.

Theorem 1 (see [30, 31]). Let 𝑆 ∈ R𝑁×𝑁 be a symmetric
positive semidefinite matrix and 𝑏 ∈ R𝑁. Let 𝑆 = 𝑀 − 𝑁 with𝑀 nonsingular and let 𝐺 = 𝑀−1𝑁. If 𝑀𝑇 + 𝑁 is symmetric
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positive definite, then 𝐺 is semiconvergent, and an iterative
method 𝑦ℓ+1 = 𝐺𝑦ℓ + 𝑀−1𝑏, or equivalently 𝑀𝑦ℓ+1 = 𝑁𝑦ℓ + 𝑏,
is semiconvergent. In other words, 𝑦ℓ generated by the iterative
method converges to some solution to 𝑆𝑦 = 𝑏 for each 𝑦1.
Lemma 2. Let 𝛼 ≥ 𝛽 ≥ 0 and 𝛿 > 0. �en 𝐴 𝑖 (𝑖 = 1, 2) are
symmetric positive semidefinite, and 𝐷 and 𝐴 𝑖 + 𝛿𝐷 (𝑖 = 1, 2)
are symmetric positive definite.

Proof. It can be easily shown that all diagonal elements of𝐵𝑇𝐵
are positive. Hence all properties of this lemma clearly hold
from the assumptions.

Theorem 3. Let 𝛼 ≥ 𝛽 ≥ 0 and 𝛿 > 0. �en 𝑦ℓ generated by
SOLVER(𝑖) converges to a solution 𝑢𝑘+1 to 𝐴 𝑖 𝑢 = 𝑟𝑘𝑖 .
Proof. Note that 𝐴 𝑖 = (𝐴 𝑖 + 𝛿𝐷) − 𝛿𝐷. Let 𝑀 = 𝐴 𝑖 + 𝛿𝐷
and 𝑁 = 𝛿𝐷. From Lemma 2, 𝐴 𝑖 is symmetric positive
semidefinite, and 𝑀 and 𝑁 are symmetric positive definite.
Hence, 𝑀 is nonsingular and 𝑀𝑇 + 𝑁 is symmetric positive
definite. From Theorem 1, the iterative method 𝑀𝑦ℓ+1 =𝑁𝑦ℓ + 𝑟𝑘𝑖 , which is equivalent to (𝐴 𝑖 + 𝛿𝐷)𝑦ℓ+1 = 𝛿𝐷𝑦ℓ + 𝑟𝑘𝑖 ,
is semiconvergent. Hence the proof is complete.

Since 𝐴 𝑖 + 𝛿𝐷 is symmetric positive definite for 𝛼 ≥𝛽 ≥ 0 and 𝛿 > 0, the linear systems in SOLVER(𝑖) can be
solved using the CG (Conjugate Gradient) method [32, 33].
Notice that convergence rate of the CG method depends
on the condition number of coefficient matrix 𝐴 𝑖 + 𝛿𝐷. So
we next provide some conditional properties for 𝐴 𝑖 + 𝛿𝐷
in SOLVER(𝑖). For a square matrix 𝐺, let 𝜅(𝐺) denote the
condition number of 𝐺. For a symmetric matrix 𝑆 ∈ R𝑁×𝑁,
let 𝜆𝑘(𝑆) denote the 𝑘th largest eigenvalue of the matrix 𝑆 for1 ≤ 𝑘 ≤ 𝑁.

Lemma 4 (see [34]). Let 𝑆 ∈ R𝑁×𝑁 and 𝑆 + 𝐸 ∈ R𝑁×𝑁 be
symmetric matrices. �en for each 1 ≤ 𝑘 ≤ 𝑁𝜆𝑘 (𝑆) + 𝜆𝑁 (𝐸) ≤ 𝜆𝑘 (𝑆 + 𝐸) ≤ 𝜆𝑘 (𝑆) + 𝜆1 (𝐸) . (104)

Lemma 5. Let 𝛼 ≥ 𝛽 ≥ 0, 𝛿 > 0, and 𝑁 = 𝑚𝑛. �en for each𝑖 = 1, 2𝜆1 (𝐴 𝑖) + 𝛿𝜆𝑁 (𝐷)𝜆𝑁 (𝐴 𝑖) + 𝛿𝜆1 (𝐷) ≤ 𝜅 (𝐴 𝑖 + 𝛿𝐷)
≤ 𝜆1 (𝐴 𝑖) + 𝛿𝜆1 (𝐷)𝜆𝑁 (𝐴 𝑖) + 𝛿𝜆𝑁 (𝐷) . (105)

Proof. Since 𝐴 𝑖 and 𝐴 𝑖 + 𝛿𝐷 are symmetric, from Lemma 4
one obtains𝜆1 (𝐴 𝑖) + 𝛿𝜆𝑁 (𝐷) ≤ 𝜆1 (𝐴 𝑖 + 𝛿𝐷)≤ 𝜆1 (𝐴 𝑖) + 𝛿𝜆1 (𝐷)𝜆𝑁 (𝐴 𝑖) + 𝛿𝜆𝑁 (𝐷) ≤ 𝜆𝑁 (𝐴 𝑖 + 𝛿𝐷)≤ 𝜆𝑁 (𝐴 𝑖) + 𝛿𝜆1 (𝐷) .

(106)

From Lemma 2, 𝐴 𝑖 + 𝛿𝐷 is symmetric positive definite and
thus 𝜅 (𝐴 𝑖 + 𝛿𝐷) = 𝜆1 (𝐴 𝑖 + 𝛿𝐷)𝜆𝑁 (𝐴 𝑖 + 𝛿𝐷). (107)

From (106) and (107), this lemma follows.

Lemma 6. Let 𝛼 ≥ 𝛽 ≥ 0, 𝛿 > 0, and 𝑁 = 𝑚𝑛. �en for each𝑖 = 1, 2𝜆1 (𝐴 𝑖) + 2𝛿𝜆𝑁 (𝐴 𝑖) + 4𝛿 ≤ 𝜅 (𝐴 𝑖 + 𝛿𝐷) ≤ 𝜆1 (𝐴 𝑖) + 4𝛿𝜆𝑁 (𝐴 𝑖) + 2𝛿 . (108)

Proof. Note that all diagonal elements of the diagonal matrix𝐷 belong to a set {2, 3, 4}. Hence 𝜆1(𝐷) = 4 and 𝜆𝑁(𝐷) = 2.
From Lemma 5, this lemma follows.

Theorem 7. Let 𝛼 ≥ 𝛽 ≥ 0, 𝛿 > 0, and 𝑁 = 𝑚𝑛. If 2𝜆𝑁(𝐴 𝑖) <𝜆1(𝐴 𝑖), then, for a given 𝜖 > 0, there exists 𝛿 > 0 such that1/2 < 𝜅(𝐴 𝑖 + 𝛿𝐷) < 2 + 𝜖.
Proof. For 𝛿 > 0, let

𝑓 (𝛿) = 𝜆1 (𝐴 𝑖) + 4𝛿𝜆𝑁 (𝐴 𝑖) + 2𝛿 ,
𝑔 (𝛿) = 𝜆1 (𝐴 𝑖) + 2𝛿𝜆𝑁 (𝐴 𝑖) + 4𝛿 . (109)

From Lemma 6, 𝑔(𝛿) < 𝜅(𝐴 𝑖 + 𝛿𝐷) < 𝑓(𝛿). By simple
calculation, one has𝑓 (𝛿) = 4𝜆𝑁 (𝐴 𝑖) − 2𝜆1 (𝐴 𝑖)(𝜆𝑁 (𝐴 𝑖) + 2𝛿)2 ,

𝑔 (𝛿) = 2𝜆𝑁 (𝐴 𝑖) − 4𝜆1 (𝐴 𝑖)(𝜆𝑁 (𝐴 𝑖) + 4𝛿)2 . (110)

Since 2𝜆𝑁(𝐴 𝑖) < 𝜆1(𝐴 𝑖), from (110) 𝑓(𝛿) < 0 and 𝑔(𝛿) < 0.
Also note that lim𝛿→∞𝑓(𝛿) = 2 and lim𝛿→∞𝑔(𝛿) = 1/2.
Thus 𝑓 is a decreasing function which converges to 2, and𝑔 is a decreasing function which converges to 1/2. It follows
that 𝑔(𝛿) > 1/2 for any 𝛿 > 0, and for a given 𝜖 > 0 there
exists a large 𝛿 > 0 such that 2 < 𝑓(𝛿) < 2 + 𝜖. Since 𝑔(𝛿) <𝜅(𝐴 𝑖 + 𝛿𝐷) < 𝑓(𝛿), for a given 𝜖 > 0 there exists a large𝛿 > 0 such that 1/2 < 𝜅(𝐴 𝑖 + 𝛿𝐷) < 2 + 𝜖. Hence the proof is
complete.

Notice that the condition 2𝜆𝑁(𝐴 𝑖) < 𝜆1(𝐴 𝑖) in
Theorem 7 usually holds when 𝐴 𝑖 is a singular or ill-
conditioned matrix. Theorem 7 implies that the condition
number of 𝐴 𝑖 + 𝛿𝐷 is small if a large number of 𝛿 > 0 is
chosen. In other words, for a suitably chosen large 𝛿 > 0 the
coefficient matrix 𝐴 𝑖 + 𝛿𝐷 in SOLVER(𝑖) is well conditioned,
so that the CG method for solving the linear systems in
SOLVER(𝑖) converges fast to the exact solution. The split
Bregmanmethod is an iterativemethodwhichmonotonically
decreases the residual norm between the original image and
noisy image, so we do not have to get an accurate solution
every iteration. For this reason, we have used 𝑚𝑎𝑥𝑙 = 1
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1: b0 = w0 = 0 and 𝑢0 = 𝑧
2: for 𝑘 = 0 to 𝑚𝑎𝑥𝑖𝑡 do
3: Compute 𝑢𝑘+1 using SOLVER(1)
4: Compute w𝑘+1 using Equation (100)
5: Compute b𝑘+1 using Equation (101)

6: if ‖𝑢𝑘 − 𝑢𝑘+1‖2‖𝑢𝑘+1‖2 < 𝑡𝑜𝑙 then
7: Stop
8: end if
9: end for

Algorithm 7: Split Bregman algorithm for the RLO model.

1: b0 = w0 = 0 and 𝑢0 = 𝑧
2: for 𝑘 = 0 to 𝑚𝑎𝑥𝑖𝑡 do
3: Compute 𝑢𝑘+1 using SOLVER(2)
4: Compute w𝑘+1 using Equation (100)
5: Compute b𝑘+1 using Equation (101)

6: if ‖𝑢𝑘 − 𝑢𝑘+1‖2‖𝑢𝑘+1‖2 < 𝑡𝑜𝑙 then
7: Stop
8: end if
9: end for

Algorithm 8: Split Bregman algorithm for the AA2 model.

and the CG method with tolerance set to 1 × 10−3 to get
an approximate solution of the linear system in SOLVER(𝑖).
Notice that the CG method always achieves the desired
tolerance within 15 iterations.

Finally, one can obtain the split Bregman algorithms for
the RLO and AA2 models. In Algorithms 7 and 8, maxit
denotes the maximum number of outer iterations, ‖⋅‖2 stands
for the 𝑙2-norm, and tol denotes the tolerance of the stopping
criterion which is set to 3 × 10−3 for the test problems used
in this paper. Notice that all images are assumed to have
an intensity range of [0, 1] to guarantee convergence of the
binomial series used in the split Bregman algorithm.

6. Numerical Experiments

In this section, we provide numerical performance results of
the TM, split Bregman, RHPM(2), and RHPM(1)methods for
multiplicative noise removal problems. Numerical tests are
performed using MATLAB R2016a on a personal computer
with 3.6GHz CPU and 8GB RAM. The multiplicative noisy
images are generated by multiplying Gaussian white noise or
Gamma noise to the clean image using the built-in MATLAB
function randn or randg. More specifically, the multiplicative
noisy images 𝑧 are generated by𝜂 = 1 + √0.01 × randn (𝑚, 𝑛) ; 𝑧 = 𝑢 ⋅ 𝜂,𝜂 = 0.01 × randg ( 10.01 , (𝑚, 𝑛)) ; 𝑧 = 𝑢 ⋅ 𝜂, (111)

where 𝑢 is the clean image, 𝜂 = 1 + √0.01 × 𝑟𝑎𝑛𝑑𝑛(𝑚, 𝑛)
generates the Gaussian white noise with mean 1 and variance0.01, 𝜂 = 0.01 × 𝑟𝑎𝑛𝑑𝑔(1/0.01, (𝑚, 𝑛)) generates the Gamma
noise with mean 1 and variance 0.01, and 𝑢 ⋅ 𝜂 is componen-
twise multiplication of 𝑢 and 𝜂.

In order to illustrate the efficiency and reliability of
the proposed denoising algorithms (i.e., Algorithms 1–8),
we provide numerical results for 4 test images such as the
Caribou, Boat, Jet Plane, and Lake. The pixel size of the
Caribou image is 256 × 256, and the pixel size of the other 3
test images is 512×512. To evaluate the quality of the restored
images, we use the peak signal-to-noise ratio (PSNR) between
the restored image and original image which is defined by

PSNR = 10 log10(𝑚 ⋅ 𝑛 ⋅ max𝑖,𝑗
𝑢𝑖,𝑗2‖𝑢 − �̃�‖2𝐹 ) , (112)

where ‖ ⋅ ‖𝐹 refers to the Frobenius norm and 𝑢 and �̃� are the
original and restored images, respectively. Also 𝑢𝑖,𝑗 stands for
the value of the original image 𝑢 at the pixel point (𝑖, 𝑗) and𝑚 ⋅ 𝑛 is the total number of pixels. It is generally true that
the larger PSNR stands for the better quality of the denoised
image.

For numerical experiments, the TMmethod uses the test
images with an intensity range of [0, 255], the split Bregman
and RHPM methods use the test images with an intensity
range of [0, 1], and the noise 𝜂 is Gaussian white noise or
Gamma noise with mean 1 and variance 0.01 or 0.03. For all
test problems, an initial image was set to the observed noisy
image 𝑧, and we have used 𝑚𝑎𝑥𝑖𝑡 = 200, 𝛼 = 0.2, and 𝛽 = 0.1
for the RLO model and 𝛼 = 10−4 for the AA2 model. For the
TM and RHPMmethods (i.e., Algorithms 1–6), we have used△𝑡 = 0.35, and the iteration was terminated when MAE(𝑘),
defined in Section 2, started to increase. For the split Bregman
method (i.e., Algorithms 7 and 8), we have used 𝜃 = 255,
and the iteration was terminated when the following stopping
criterion was satisfied:𝑢𝑘 − 𝑢𝑘+12𝑢𝑘+12 < 𝑡𝑜𝑙 (113)

where 𝑡𝑜𝑙 = 3 × 10−3 for all test problems.
Tables 1 and 2 provide numerical results for the TM, split

Bregman, RHPM(1), and RHPM(2) methods corresponding
to the AA2 model with multiplicative Gamma noise and
the RLO model with multiplicative Gaussian white noise,
respectively. In Tables 1 and 2, 𝑃0 represents the PSNR values
for the noisy images, Psnr represents the PSNR values for the
restored images, parameters 𝜖 and 𝛿 are chosen as the best one
by numerical tries, Iter denotes the number of iterations, and
Time denotes the elapsed CPU time in seconds.

Figures 1–4 show the denoised images by the TM, split
Bregman, RHPM(1), and RHPM(2) methods for the AA2
model with multiplicative Gamma noise of variance 0.03.
Figures 5–8 show the denoised images by the TM, split
Bregman, RHPM(1), and RHPM(2) methods for the RLO
model with multiplicative Gaussian white noise of variance0.03.The first-row images are the original image, noisy image,



Mathematical Problems in Engineering 15

Table 1: Numerical results of multiplicative noise removal for the AA2 model.

Variance= 0.01 Variance= 0.03
Method Image Caribou Boat Jet Plane Lake Caribou Boat Jet Plane Lake

P0 24.89 25.34 22.12 24.65 20.12 20.58 17.34 19.90

TM

𝜀 0.012 0.011 0.011 0.033 0.05 0.049 0.072 0.2
Iter 41 39 53 48 63 67 99 91
Psnr 28.25 29.33 27.77 27.25 25.57 26.12 23.95 23.60
Time 1.27 4.81 6.55 6.08 1.75 7.32 10.71 11.75

Split
Bregman

𝛿 24 30 16 28 17 21 12 22
Iter 16 16 14 16 20 21 18 22
Psnr 30.18 29.82 28.94 29.38 27.82 27.48 26.50 27.03
Time 0.45 1.91 1.65 1.82 0.55 2.52 2.05 2.51

RHPM(1)

𝜀 0.00062 0.0008 0.0008 0.00082 0.00014 0.00014 0.00014 0.00014
Iter 23 21 21 21 53 53 53 53
Psnr 29.67 29.58 27.82 29.06 26.18 26.34 23.76 25.76
Time 0.03 1.08 0.93 1.01 1.47 2.81 2.77 2.73

RHPM(2)

𝜀 0.052 0.039 0.067 0.044 0.071 0.07 0.078 0.073
Iter 3 3 3 3 3 3 3 3
Psnr 30.38 29.92 29.05 29.49 27.53 27.36 25.58 26.94
Time 0.12 0.49 0.49 0.49 0.14 0.5 0.5 0.5

Table 2: Numerical results of multiplicative noise removal for the RLO model.

Variance= 0.01 Variance= 0.03
Method Image Caribou Boat Jet Plane Lake Caribou Boat Jet Plane Lake

P0 24.83 25.35 22.10 24.67 20.05 20.58 17.33 19.90

TM

𝜀 0.0004 0.00021 0.00019 0.00019 0.0004 0.00042 0.0004 0.038
Iter 40 39 53 47 63 66 97 84
Psnr 28.36 29.38 27.76 27.33 25.60 26.24 24.10 23.97
Time 1.57 6.50 8.69 8.00 2.70 11.24 16.53 14.33

Split
Bregman

𝛿 24 30 16 28 18 22 12 22
Iter 16 16 14 16 21 22 18 22
Psnr 30.20 29.84 28.92 29.39 27.84 27.53 26.52 27.03
Time 0.58 2.43 2.41 2.39 0.59 2.40 2.06 2.47

RHPM(1)

𝜀 0.0005 0.00045 0.00045 0.00045 0.00014 0.00014 0.00014 0.00014
Iter 27 29 28 29 53 53 53 53
Psnr 29.71 29.60 27.75 29.06 26.14 26.38 23.78 25.76
Time 0.30 1.38 1.38 1.39 0.64 2.48 2.24 2.45

RHPM(2)

𝜀 0.053 0.039 0.067 0.044 0.071 0.07 0.077 0.073
Iter 3 3 3 3 3 3 3 3
Psnr 30.40 29.95 29.03 29.50 27.51 27.40 25.59 26.93
Time 0.14 0.41 0.42 0.40 0.59 0.36 0.46 0.42

and the denoised image by the TM method. The second-
row images are the images denoised by the split Bregman,
RHPM(1), and RHPM(2) methods.

As can be seen in Tables 1 and 2, the split Bregman
method denoises best for variance 0.03, while RHPM(2)
denoises best for variance 0.01. That is, the split Bregman
method has the highest PSNR values for variance 0.03,
while RHPM(2) has the highest PSNR values for variance

0.01. Observe that RHPM(1) computes 2 vectors V0, V1 every
iteration, while RHPM(2) computes 3 vectors V0, V1, V2 every
iteration. It means that the computational cost of RHPM(2)
per iteration is more expensive than RHPM(1). However, the
convergence rate of RHPM(2) is much faster than RHPM(1),
so that total CPU time of RHPM(2) is much less than
RHPM(1). In addition, RHPM(2) denoises much better than
RHPM(1), and RHPM(2) has the smallest CPU time of all
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(a) True image (b) Noisy image (c) TM denoising

(d) Split Bregman denoising (e) RHPM(1) denoising (f) RHPM(2) denoising

Figure 1: Denoising of multiplicative Gamma noise for the Caribou image with a 256 × 256 size.

(a) True image (b) Noisy image (c) TM denoising

(d) Split Bregman denoising (e) RHPM(1) denoising (f) RHPM(2) denoising

Figure 2: Denoising of multiplicative Gamma noise for the Boat image with a 512 × 512 size.
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(a) True image (b) Noisy image (c) TM denoising

(d) Split Bregman denoising (e) RHPM(1) denoising (f) RHPM(2) denoising

Figure 3: Denoising of multiplicative Gamma noise for the Jet Plane image with a 512 × 512 size.

(a) True image (b) Noisy image (c) TM denoising

(d) Split Bregman denoising (e) RHPM(1) denoising (f) RHPM(2) denoising

Figure 4: Denoising of multiplicative Gamma noise for the Lake image with a 512 × 512 size.
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(a) True image (b) Noisy image (c) TM denoising

(d) Split Bregman denoising (e) RHPM(1) denoising (f) RHPM(2) denoising

Figure 5: Denoising of multiplicative Gaussian white noise for the Caribou image with a 256 × 256 size.

(a) True image (b) Noisy image (c) TM denoising

(d) Split Bregman denoising (e) RHPM(1) denoising (f) RHPM(2) denoising

Figure 6: Denoising of multiplicative Gaussian white noise for the Boat image with a 512 × 512 size.
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(a) True image (b) Noisy image (c) TM denoising

(d) Split Bregman denoising (e) RHPM(1) denoising (f) RHPM(2) denoising

Figure 7: Denoising of multiplicative Gaussian white noise for the Jet Plane image with a 512 × 512 size.

(a) True image (b) Noisy image (c) TM denoising

(d) Split Bregman denoising (e) RHPM(1) denoising (f) RHPM(2) denoising

Figure 8: Denoising of multiplicative Gaussian white noise for the Lake image with a 512 × 512 size.
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the methods considered in this paper. Overall, the split
Bregman and RHPM(2) methods perform better than the
RHPM(1) and TM methods. The split Bregman method
denoises almost as well as RHPM(2) for most cases, while it
denoises significantly better than RHPM(2) for the Jet Plane
image with variance 0.03. In this regard, the split Bregman
method performs more stably than RHPM(2).

7. Conclusion

In this paper, we have proposed restarted homotopy per-
turbation methods (RHPM) and split Bregman methods for
multiplicative noise removal of theRLOandAA2models. For
the RHPMmethod, we have used binomial series techniques
to settle the main difficulty in handling nonlinear terms. For
the split Bregman method, we have used splitting techniques
of singular matrices to handle the difficulty in solving ill-
conditioned linear systems. Numerical experiments have
shown that these techniques work well for all test problems.
More specifically, the split Bregman and RHPM methods
perform better than the TMmethod.

Numerical experiments also showed that the split Breg-
man and RHPM(2) methods perform better than RHPM(1).
In addition, the split Bregman method denoises almost as
well as RHPM(2) for most cases, but it performs more stably
than RHPM(2) for noisy images with large variance. Notice
that RHPM(2) has the smallest execution time because of the
fastest convergence rate. Based on these facts, the RHPM(2)
and split Bregman methods are preferred over RHPM(1),
and the split Bregman method is preferred over RHPM(2)
for noisy images with large variance. The proposed RHPM
and split Bregman methods are only compared with the
TM method, so future work will include comparison studies
between the proposed methods and other existing methods
for multiplicative noise removal models.

Data Availability

All the data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-
2016R1D1A1A09917364).

References

[1] G. Aubert and P. Kornprobst, Mathematical Problems in Image
Processing: Partial Differential Equations and the Calculus of
Variations, Springer, NY, USA, 2006.

[2] T. F. Chan and J. Shen, Image Processing and Analysis: Varia-
tional, PDE, Wavelet, and Stochastic Methods, SIAM, Pa, USA,
2005.

[3] K. Bredies, K. Kunisch, and T. Pock, “Total generalized varia-
tion,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 492–
526, 2010.

[4] A. Chambolle and P.-L. Lions, “Image recovery via total vari-
ation minimization and related problems,” Numerische Mathe-
matik, vol. 76, no. 2, pp. 167–188, 1997.

[5] J. Besag, “Digital image processing: Towards Bayesian image
analysis,” Journal of Applied Statistics, vol. 16, no. 3, pp. 395–407,
1989.

[6] S. Geman and D. Geman, “Stochastic relaxation, gibbs distri-
butions, and the Bayesian restoration of images,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6,
pp. 721–741, 1984.

[7] J. Lu, Y. Xu, J. B. Weaver, and D. M. Healy, Noise Reduction by
Constrained Reconstructions in the Wavelet-Transform Domain,
Dartmouth Math Department, Lake Placid, NY, USA, 1992.

[8] S. Mallat and W. L. Hwang, “Singularity detection and process-
ing with wavelets,” IEEE Transactions on Information �eory,
vol. 38, no. 2, pp. 617–643, 1992.

[9] J. Cai, S. Osher, and Z. Shen, “Split bregmanmethods and frame
based image restoration,”MultiscaleModeling and Simulation: A
SIAM Interdisciplinary Journal, vol. 8, no. 2, pp. 337–369, 2009.

[10] B. Dong and Z. Shen, “MRA Based Wavelet Frames and
Applications,” in IAS Lecture Notes Series, Summer Program on
�e Mathematics of Image Processing, Park City Mathematics
Institute, Salt Lake City, 2010.

[11] Y. D. Han and J. H. Yun, “Performance of Restarted Homotopy
PerturbationMethod for TV-Based Image Denoising Problem,”
Mathematical Problems in Engineering, vol. 2015, Article ID
207541, 18 pages, 2015.

[12] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D: Nonlinear Phenom-
ena, vol. 60, no. 1–4, pp. 259–268, 1992.

[13] G. Aubert and J. Aujol, “A variational approach to removing
multiplicative noise,” SIAM Journal on Applied Mathematics,
vol. 68, no. 4, pp. 925–946, 2008.

[14] A. Sarti, C. Corsi, E. Mazzini, and C. Lamberti, “Maximum
likelihood segmentation of ultrasound images with rayleigh
distribution,” IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, vol. 52, no. 6, pp. 947–960, 2005.

[15] E. Bratsolis and M. Sigelle, “A spatial regularization method
preserving local photometry for Richardson-Lucy restoration,”
Astronomy & Astrophysics , vol. 375, no. 3, pp. 1120–1128, 2001.

[16] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction
for emission tomography,” IEEE Transactions on Medical Imag-
ing, vol. 1, no. 2, pp. 113–122, 1982.

[17] L. Rudin, P.-L. Lions, and S. Osher, “Multiplicative denoising
and deblurring: theory and algorithms,” in Geometric Level Set
Methods in Imaging, Vision, and Graphics, pp. 103–119, Springer,
NY, USA, 2003.

[18] Z. Jin and X. Yang, “Analysis of a new variational model for
multiplicative noise removal,” Journal of Mathematical Analysis
and Applications, vol. 362, no. 2, pp. 415–426, 2010.

[19] Y. Huang, M. K. Ng, and Y.Wen, “A new total variation method
for multiplicative noise removal,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 20–40, 2009.

[20] T. F. Chan and P. Mulet, “On the convergence of the lagged dif-
fusivity fixed pointmethod in total variation image restoration,”



Mathematical Problems in Engineering 21

SIAM Journal on Numerical Analysis, vol. 36, no. 2, pp. 354–367,
1999.

[21] T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-
dual method for total variation-based image restoration,” SIAM
Journal on Scientific Computing, vol. 20, no. 6, pp. 1964–1977,
1999.

[22] A. Chambolle, “An algorithm for total variation minimization
and applications,” Journal of Mathematical Imaging and Vision,
vol. 20, no. 1-2, pp. 89–97, 2004.

[23] Y.Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternatingmin-
imization algorithm for total variation image reconstruction,”
SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 248–272,
2008.

[24] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An
iterative regularization method for total variation-based image
restoration,”Multiscale Modeling & Simulation, vol. 4, no. 2, pp.
460–489, 2005.

[25] T. Goldstein and S. Osher, “The Split Bregman Method for L1
Regularized Problems,” SIAM Journal on Imaging Sciences, vol.
2, no. 2, pp. 323–343, 2009.

[26] Y.-M. Huang, H.-Y. Yan, and T. Zeng, “Multiplicative noise
removal based on unbiased Box-Cox transformation,” Commu-
nications in Computational Physics, vol. 22, no. 3, pp. 803–828,
2017.

[27] S. Setzer, G. Steidl, and T. Teuber, “Deblurring Poissonian
images by split Bregman techniques,” Journal of Visual Commu-
nication and Image Representation, vol. 21, no. 3, pp. 193–199,
2010.

[28] J. Shi and S. Osher, “A nonlinear inverse scale space method for
a convex multiplicative noise model,” SIAM Journal on Imaging
Sciences, vol. 1, no. 3, pp. 294–321, 2008.

[29] Y. Wang, W. Yin, and Y. Zhang, “A Fast Algorithm for Image
Deblurring with total variation regularization,” CAAMTechni-
cal Report TR07-10, Rice University, Houston, USA, 2007.

[30] A. Berman and R. J. Plemmons, Nonnegative Matrices in
Mathematical Sciences, Academic Press, NY, USA, 1979.

[31] H. B. Keller, “On the solution of singular and semidefinite linear
systems by iteration,” SIAM Journal on Numerical Analysis, vol.
2, pp. 281–290, 1965.

[32] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients
for solving linear systems,” Journal of Research of the National
Bureau of Standards, vol. 49, pp. 409–436 (1953), 1952.

[33] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS
Publishing Company, Boston, USA, 2nd edition, 1996.

[34] J. H. Wilkinson, �e Algebraic Eigenvlaue Problem, Clarendon
Press, Oxford, UK, 1965.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

