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Source depth estimation is always a problem in underwater acoustic area, because depth estimation is a nonlinear problem.
Traditional depth estimation methods use a vertical line array, which has disadvantage of poor mobility due to the size of sensor
array. In order to estimate source depth with a horizontal line array, we propose a matched-mode depth estimation method based
on autoregressive (AR) wavenumber estimation for a moving source in shallow water waveguides. First, we estimate the mode
wavenumbers using the improved AR modal wavenumber spectrum. Second, according to the mode wavenumber estimation,
we estimate the mode amplitudes by the wavenumber spectrum, which is obtained by generalized Hankel transform. Finally, we
estimate source depth estimation by the peak of source depth function wherein the data mode best matches the replica mode that
is calculated using a propagation model. Compared with synthetic aperture beamforming, the proposed method exhibits a better
performance in source depth estimation under low signal-to-noise ratio or the small range span. The robustness of the proposed
method is illustrated by simulating the performance in mismatched environment.

1. Introduction

Matched field processing (MFP) [1–3] is a popularmethod for
localizing the source in complex propagation environments.
Conventional MFP obtains the range depth function, that
is, the correlation between the replica and the measured
fields. The source location is determined by the peak of the
range depth function. MFP can localize source accurately in
a range-independent or slowly varying environment without
considering any environmental mismatches. However, when
the sound propagation is not exactly modeled, the range
and depth estimated by MFP generally present an error,
which is referred to as the environmental mismatch problem
[4]. The need for depth estimation is more pressing than
range estimation for some applications. The source range
and depth are estimated simultaneously by MFP, which
indicates that depth estimation depends on range estimation.
The robustness of depth estimation decreases because of
the sensitivity of range estimation to sound speed profile

(SSP). MFP always requires a vertical line array (VLA) or
horizontal line array (HLA) with large aperture. However,
real application of large aperture array is difficult because of
the installation platform.The application of MFP is restricted
by the aperture problem and the environmental mismatch
problem. Consequently, an active area of research in recent
years has been devoted to estimate source depth robustly by
a single sensor or a short line array [5–8].

A class of methods that has shown some promise in
passive location exploits the properties of the reliable acoustic
path (RAP) [8]. Such methods reduce the requirement of
array aperture.The difficulty associated with the propagation
of RAP limits the application of the method in shallow
water. Depth estimation for shallow water waveguides is
generally performed in two steps: mode filtering first and
then MMP [3]. The modal amplitudes are determined by
mode filters, and then MMP is used to estimate the source
location based on the modal amplitude estimation. However,
the mode filters always require well-sampling of the water
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Figure 1: Array receiving schematic.

column by the VLA; otherwise, the mode filtering will
become an ill-posed problem. The difficulty in source depth
estimation using a short line array is the lack of spatial
information. Therefore, some previous studies have relied
on the multifrequency characteristics of wideband signals in
estimating source depth [9, 10]. Considering the dispersion
phenomenon of signals in shallow water, some scholars
have estimated source depth on the basis of the related
information of marine environment contained in dispersion
[11]. However, the aforementioned studies have restricted
the signal form to be broadband and few works on source
depth estimation for signal with low-frequency line spectrum
are available. Recently, data-based MMP is being proposed
for a moving source by using a full-spanning VLA, which
is free of the environmental mismatch problem in theory
[12, 13]. Yang [7] proposed a method based on the idea of
data-based MMP to estimate moving source depth, and this
method requires only a single hydrophone. It is more robust
than MFP for depth estimation because of not requiring
source range estimation. However, the method presents an
inherent drawback. The method requires source traveling a
sufficient range in radial direction owing to that the mode
wavenumbers are estimated by synthetic aperture modal
beamforming (SAB). Some of the horizontal wavenumbers
cannot be estimated, when the moving range does not meet
the requirement. Source depth estimation based on synthetic
aperture beaming may be incorrect.

T.C. Yangmentioned the issue and presented the high res-
olution algorithms to solve this issue [12]. Following his idea,
we propose a source depth estimation approach with a HLA
for a moving source in a range-independent environment,
without knowing source absolute range information in this
study. When beam steers to the source direction, the signal
is enhanced after beamforming. We apply the autoregressive
(AR) model to the signal enhanced by array gain to estimate
the wavenumbers. The AR wavenumber spectrum is unsuit-
able to estimate mode amplitudes. Therefore, the generalized
Hankel transform is applied to the data. The source depth
is estimated by the peak of the depth ambiguity function
wherein the mode depth functions best match the mode
amplitudes. Compared with SAB, the proposed method
effectively improves the depth estimation performance for the
data with short range span or low SNR, and exhibits better
adaptability to the notion of the observation platform. In
addition, the proposed method can be applied to underwater
unmanned vehicles or the autonomous underwater vehicles
because it identifies the peaks of wavenumber spectrum
automatically.

The remainder of the paper is organized as follows.
The wavenumber estimation for the beamforming output is
developed in Section 2. In Section 2.1, the generalized Hankel
transform is extended to beamforming output in a range-
independent environment [7]. A method for wavenumber
estimation based on an AR model without knowing the
source range is proposed in Section 2.2. Source depth esti-
mation based on wavenumber spectrum is introduced in
Section 3. The factors that influence the performance of the
algorithm are explored in Section 4. The performance of
the algorithm on the data with different SNRs and different
range spans is analyzed in Section 4.1. The performance
of the algorithm in mismatch environment is evaluated
in Section 4.2. A summary and discussion is provided in
Section 5.

2. Mode Wavenumber Estimation

We assume that source travels at a fixed depth during obser-
vation in a range-independent environment. The considered
HLApossesses 2𝐿+1 receivers that are uniformly spaced with𝑑 as shown in Figure 1.

The range between source and the center of HLA is 𝑟𝑖 at
the 𝑖th moment. The far-field source radiates the continuous
wave signal, with a look direction 𝜃𝑖. 𝜃𝑖 is the true value
of the look direction at the 𝑖th moment. In shallow water
waveguides, we suppress a time dependence of the form 𝑒𝑗𝜔𝑡
with 𝜔 positive; therefore, the pressure field of the sensor 𝑙
at the 𝑖th moment can be represented using normal mode
theory as

𝑝𝑙 (𝑟𝑖, 𝑧𝑟) = √2𝜋𝑒−𝑗(𝜋/4) 𝑀∑
𝑚=1

𝜙𝑚 (𝑧𝑠) 𝜙𝑚 (𝑧𝑟)

⋅ exp {−𝑗 (𝑘𝑚 − 𝑗𝛼𝑚) [𝑟𝑖 + 𝑙𝑑 sin 𝜃𝑖]}√𝑘𝑚 [𝑟𝑖 + 𝑙𝑑 sin 𝜃𝑖] ,
(1)

where 𝑘𝑚, 𝛼𝑚, and 𝜙𝑚 are the wavenumber, the attenuation
coefficient, and the mode depth function, respectively, which
all belong to the 𝑚th mode; 𝑧𝑠 and 𝑧𝑟 are the source and
HLA depths, respectively; and 𝑀 is the number of modes
considered in the propagation model.

The source is at the far field, such that 𝑟𝑖 + 𝑙𝑑 sin 𝜃𝑖 ≈ 𝑟𝑖.
Equation (1) is simplified as

𝑝𝑙 (𝑟𝑖, 𝑧𝑟) = √2𝜋𝑒−𝑗(𝜋/4) 𝑀∑
𝑚=1

𝜙𝑚 (𝑧𝑠) 𝜙𝑚 (𝑧𝑟)
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⋅ exp {−𝑗 (𝑘𝑚 − 𝑗𝛼𝑚) [𝑟𝑖 + 𝑙𝑑 sin 𝜃𝑖]}√𝑘𝑚𝑟𝑖
= 𝑀∑
𝑚=1

𝐴𝑚exp {−𝑗 (𝑘𝑚 − 𝑗𝛼𝑚) [𝑟𝑖 + 𝑙𝑑 sin 𝜃𝑖]} ,
(2)

where 𝐴𝑚 = √2𝜋𝑒−𝑗(𝜋/4)(𝜙𝑚(𝑧𝑠)𝜙𝑚(𝑧𝑟)/√𝑘𝑚𝑟𝑖). To improve
the SNR, beamforming is performed on the signal received on
the HLA at the 𝑖th moment. For conventional beamforming,
the output of beamforming is written as

𝐵 (𝜃𝑖) = 12𝐿 + 1
𝐿∑
𝑙=−𝐿

𝑒𝑗𝑘𝑙𝑑 sin 𝜃𝑖𝑝𝑙 (𝑟𝑖, 𝑧𝑟) . (3)

After substituting (2) into (3), let 𝑋𝑚 = −(𝑘𝑚 − 𝑗𝛼𝑚) sin 𝜃𝑖 +𝑘 sin 𝜃𝑖, and we obtain

𝐵 (𝜃𝑖) = 12𝐿 + 1
𝑀∑
𝑚=1

𝐴𝑚𝑒−𝑗𝑘𝑚𝑟𝑖−𝛼𝑚𝑟𝑖 𝐿∑
𝑙=−𝐿

𝑒𝑗𝑙𝑑𝑋𝑚

= 12𝐿 + 1
𝑀∑
𝑚=1

𝐴𝑚𝑒−𝑗𝑘𝑚𝑟𝑖−𝛼𝑚𝑟𝑖 sin [(𝐿 + 1/2) 𝑑𝑋𝑚]sin ((𝑑/2)𝑋𝑚) .
(4)

The estimation of the look direction 𝜃𝑖 can be obtained
by many methods [14]. In order to explain the algorithm
conveniently, we discuss the method of estimating the sound
source depth when source moves away from the HLA under
the assumption that 𝜃𝑖 = 𝜃𝑖 = 𝜃.
2.1.Wavenumber Estimation Using Generalized Hankel Trans-
form. In range-independent shallow water waveguides, a
Hankel transform pair presents the relationship between the
complex pressure field 𝑝(𝑟; 𝑧𝑠, 𝑧𝑟) and the Green’s function𝑔(𝑘𝑟; 𝑧𝑠, 𝑧𝑟) [15]

𝑝 (𝑟; 𝑧𝑠, 𝑧𝑟) = ∫+∞
0

𝑔 (𝑘𝑟; 𝑧𝑠, 𝑧𝑟) 𝐽0 (𝑘𝑟𝑟) 𝑘𝑟𝑑𝑘𝑟
𝑔 (𝑘𝑟; 𝑧𝑠, 𝑧𝑟) = ∫+∞

0
𝑝 (𝑟; 𝑧𝑠, 𝑧𝑟) 𝐽0 (𝑘𝑟𝑟) 𝑟𝑑𝑟,

(5)

where 𝐽0 is the zeroth-order Bessel function.
Considering the computation of Hankel transform, the

Green’s function is often approximated by an inverse Fourier
transform (FT) as [15]

𝑔 (𝑘𝑟; 𝑧𝑠, 𝑧𝑟) ∼ 𝑒𝑖(𝜋/4)
√2𝜋𝑘𝑟 ∫

+∞

−∞
𝑝 (𝑟; 𝑧𝑠, 𝑧𝑟) 𝑒𝑖𝑘𝑟𝑟√𝑟𝑑𝑟,

𝑘𝑟𝑟 ≫ 1.
(6)

We consider the source motion model, source range= 𝑟𝑖 = 𝑟0 + 𝑖VΔ𝑡, where Δ𝑡 is the sampling interval
and 𝑟0 is the unknown initial source range at 𝑡 = 0. We
assume that the source radiates a tone signal and the source
speed V is known as a priori [7, 12, 13]. According to (6),
the Hankel transform, which is used previously to estimate
the wavenumber, requires knowledge of the source range.

Therefore, we apply the generalized Hankel transform [7] to
the beamforming output. The generalized Hankel transform
for the beamforming output is described as

𝑔 (𝑘𝑟, 𝑧𝑟) = 𝑒𝑖(𝜋/4)
√2𝜋𝑘𝑟 ∫

𝑟0+𝑅

𝑟0

𝐵 (𝑟) 𝑒𝑖𝑘𝑟𝑟𝑆 (𝑟) 𝑑𝑟,
𝑘𝑟𝑟0 ≫ 1,

(7)

where 𝑅 is the range span wherein source moves during
the observation time. 𝑆(𝑟) is intended to compensate for the
cylindrical spreading loss and will be obtained directly from
the data.

𝑆 (𝑟) = ⟨|𝐵 (𝑟)|2⟩−1/2 , (8)

where ⟨ ⟩ is the range averaging or smoothing operation.
Equation (7) reduces to the original Hankel transform by
setting 𝑆(𝑟) = √𝑟. In the present discussion, 𝑆(𝑟) is
approximately proportional to √𝑟 using range averaging.
After substituting (4) into (7), while assuming 𝑆(𝑟) ∼ √𝑟, we
obtain

𝑔 (𝑘𝑟, 𝑧𝑟)
∼ 𝑀∑
𝑚=1

𝜙𝑚 (𝑧𝑠) 𝜙𝑚 (𝑧𝑟)√𝑘𝑟𝑘𝑚 sin b (𝑋𝑚) ∫𝑟0+𝑅
𝑟0

𝑒𝑗(𝑘𝑟−𝑘𝑚)𝑟−𝛼𝑚𝑟𝑑𝑟

= 𝑀∑
𝑚=1

𝑎𝑚 𝜙𝑚 (𝑧𝑠) 𝜙𝑚 (𝑧𝑟)𝑘𝑟 − 𝑘𝑚 + 𝑗𝛼𝑚 ,
(9)

where

𝑎𝑚 = 𝑒𝑗[(𝑘𝑟−𝑘𝑚)−𝛼𝑚](𝑟0+𝑅) − 𝑒𝑗[(𝑘𝑟−𝑘𝑚)−𝛼𝑚]𝑟0
𝑗√𝑘𝑟𝑘𝑚 sin b (𝑋𝑚) . (10)

When 𝑘𝑟 = 𝑘𝑚, the value of the𝑚th item is much larger than
the others in (9).Therefore, the wavenumber spectral peak at𝑘𝑟 = 𝑘𝑚 is given by

𝑔 (𝑘𝑚, 𝑧𝑟) ∼ 𝑏𝑚𝜙𝑚 (𝑧𝑟) , (11)

𝑏𝑚 = 2𝑒−𝛼0𝑟𝛼𝑚𝑘𝑚 sinh (
𝛼𝑚𝑅2 )𝜙𝑚 (𝑧𝑠) sin 𝑏 (𝑋𝑚) , (12)

where 𝑟 = 𝑟0 + 𝑅/2. This expression can be described by the
matrix form.

g = Φ ⋅ b, (13)

where

g = [𝑔 (𝑘1, 𝑧𝑟) , 𝑔 (𝑘2, 𝑧𝑟) , . . . , 𝑔 (𝑘𝑀, 𝑧𝑟)]𝑇 , (14)

Φ = diag ([𝜙1 (𝑧𝑟) , 𝜙2 (𝑧𝑟) , . . . , 𝜙𝑀 (𝑧𝑟)]) , (15)

b = [𝑏1, 𝑏2, . . . , 𝑏𝑀]𝑇 , (16)

The aforementioned wavenumber estimation method is
based on the FT and is convenient to be calculated by
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FFT. However, the FT-based approach presets some inherent
disadvantages: (1) the spectral resolution of FT is limited by
the range span. To resolve the modal wavenumbers between
the 𝑖th and 𝑗th modes, the range needs to be larger than the
interference distance, that is, 𝑑𝑖𝑗 = 2𝜋/|𝑘𝑖 − 𝑘𝑗|. If all the
wavenumbers are estimated, then the range must be larger
than all interference distances. (2) The spectrum leakage
occurs seriously when the method is applied to the data
with a short range span. The sidelobes of strong spectral
components can contaminate the weak spectral components
or generate a false spectral peak. With the increase in source
frequency or waveguide depth, the lowermodewavenumbers
will closely group together. As a result, the wavenumbers are
difficult to be estimated in this environment. Considering the
drawbacks of FT, the modern spectral estimation methods
can be applied to wavenumber estimation.

2.2. Wavenumber Estimation Using AR Model. Several meth-
ods have been developed to extract the mode wavenumbers,
such as Prony’s method, the signal subspace algorithms,
and matrix-pencil [16, 17]. However, these methods regard
the number of wavenumbers as a priori. The number of
wavenumbers cannot be known correctly in practice. The
AR spectral estimators based on an all-pole model are often
used to extract the spectral peaks in frequency estimation
[18]. The AR estimator does not need to know the number of
wavenumbers and is thus attractive to estimatewavenumbers.
However, the source range must be known for the AR
estimator. Consequently, improved AR estimator should be
used to extract the mode wavenumbers.

Themethod can be divided into three steps. First, data are
preprocessed by

𝑦 [𝑖] = 𝐵 (𝑟𝑖) 𝑆 (𝑟𝑖) 𝑖 = 1, 2 . . . 2𝐿 + 1 (17)

Second, considering that 𝑦[𝑖] can be described as the output
of a linear system, we construct the AR model as

𝑦 [𝑖] = − 𝑝∑
𝑘=1

𝑎 [𝑘] 𝑦 [𝑖 − 𝑘] + 𝑢 [𝑖] , (18)

where 𝑝 is the order of the AR model to represent the data
and is often set to (2/3)(2𝐿 + 1) [18]. Finally, we assume that𝑢[𝑖] is a zero mean white noise sequence with 𝜎2. Therefore,
the wavenumber spectral density 𝑃𝐴𝑅 is expressed as

𝑃𝐴𝑅 (𝑙) = 𝜎21 + ∑𝑝𝑘=1 𝑎 [𝑘] exp [−𝑖𝑙𝑘] . (19)

𝑃𝐴𝑅 is obtained by estimating the coefficients 𝑎[1], 𝑎[2],. . . , 𝑎[𝑝] and 𝜎2. The above-mentioned coefficients can be
estimated in different ways. We select the modified covari-
ance approach because it avoids the spectral line splitting
effectively [18]. The locations of peaks in 𝑃𝐴𝑅 yield the
wavenumbers estimated by AR model. The peak levels
estimated by AR estimator possess large variances [18].
Therefore, AR estimator is unsuitable to estimate the modal
amplitudes.

3. Matched-Mode Source Depth Estimation

As discussed above, the wavenumbers can be estimated by
AR spectrum. However, AR spectrum is unsuitable to esti-
mate the modal amplitudes. The performance of estimating
wavenumbers degrades by using the generalized Hankel
transform.Theperformance is affected by false spectral peaks
and spectral resolution. To combine the advantages of two
methods, the modal amplitudes are estimated by generalized
Hankel transform with a prior knowledge of wavenumbers
that are estimated by AR model. Therefore, we estimate the
wavenumber 𝑘𝑚 by AR model and then obtain 𝑔(𝑘𝑚, 𝑧𝑟) in
the wavenumber spectrum on the basis of the generalized
Hankel transform.

According (13), we use a source depth ambiguity function
to estimate source depth, and this function is expressed as

𝐷(𝑧) = 𝜑 (𝑧) 𝑏𝑏𝐻𝜑𝐻 (𝑧) , (20)

where

𝜑 (𝑧) = [𝜙1 (𝑧) , 𝜙2 (𝑧) , . . . , 𝜙𝑀 (𝑧)] . (21)

𝑏 can be solved by

𝑏 = (Φ +𝑈)−1 𝑔, (22)

𝑈 = diag([ Δ𝜙1 (𝑧𝑟) ,
Δ𝜙2 (𝑧𝑟) , . . . ,

Δ𝜙𝑀 (𝑧𝑟)]) . (23)

where Δ is a small amount (on the order of one-half of the
maximum value of the mode function) for preventing the
singularity of Φ. Wavenumbers 𝑘𝑚 and 𝜙𝑚(𝑧) are calculated
by KRAKEN on the basis of a given frequency and envi-
ronmental information (SSP and bottom properties). Some
modes cannot be resolved even if we use the AR spectrum,
such that the number of 𝑔(𝑘𝑚, 𝑧𝑟) is less than𝑀. We assume
that only 𝑀0 order is estimated. 𝜙𝑚(𝑧) with the same order
of 𝑔(𝑘𝑚, 𝑧𝑟) can be determined by solving the problem as
follows:

min (𝑘 − 𝑘0)𝐻 (𝑘 − 𝑘0)
𝑠.𝑡. 𝑘0 (1) < 𝑘0 (2) < ⋅ ⋅ ⋅ < 𝑘0 (𝑀0) , (24)

where

𝑘 = [𝑘1, 𝑘2, . . . , 𝑘𝑀0]𝑇 , (25)

𝑘
 = [𝑘1, 𝑘2 . . . , 𝑘𝑀]𝑇 , (26)

𝑘0 ⊆ 𝑘. (27)

𝑘 is an𝑀0×1 vector, 𝑘 is an𝑀×1 vector, and 𝑘0 is an𝑀0×1
vector.

4. Numerical Simulation

4.1. Depth Estimation in Exactly Known Environment. This
section presents comparisons of the source depth estima-
tion results of the SAB and the proposed matched-mode
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Figure 2: Sound speed profile.

autoregressive depth estimation method (MMAR) in a series
of realistic test cases. For SAB, source depth can be estimated
using only a single hydrophone under the assumption that
source moves away from receiver at a constant speed during
the observation time. For convenient comparison, we assume
the source of SAB moves along the beam direction of HLA.

The pressure field is generated using the KRAKEN pro-
gram. The SSP for simulation is shown in Figure 2, and the
bottom properties are referred to [7]. The considered HLA
possesses 2𝐿 + 1 receivers that are uniformly spaced with 𝑑,
where𝑑 = 𝜆/2, 𝐿 = 5.TheHLAdepth is 70m. In studying the
difference in depth estimation performance, we consider two
sources depths of 4 and 50 m, which correspond to shallow
and deep sources, respectively. The initial source range is
5010 m, but this information is assumed to be unknown. The
performance influenced by the unknown initial source range
has been discussed in [7]. We assume that each source moves
away from the HLA with a speed of 2.5 m/s and radiates
the narrowband signal with 350 Hz. To compiling the source
depth estimation results, three different SNRs of 20, 5, and -5
dB are considered, where the SNR is defined as

𝑆𝑁𝑅 = 10 lg𝑃𝑠𝑃𝑛
𝑟=𝑟0 . (28)

According to (28), when source range is 5010 m, the SNR is
described by the ratio of signal power𝑃𝑠 andnoise power𝑃𝑛 at
receiver. The array gain is already considered in SNR. Source
depth estimation results are also compiled for different range
spans (insufficient and sufficient range span).

Before examining the source depth estimation, it is
necessary to consider the wavenumber estimation results
for different range spans and SNRs. A unified description
is given to avoid duplication; that is, the deep source is
expressed by the blue line and the shallow source is expressed
by the red line. Figure 3 shows the wavenumber estimation
with a sufficient range span (4990 m) for different SNRs.
Figures 3(a), 3(c), and 3(e) show that the wavenumbers are
estimated by the method in SAB with SNR = 20, 5, and

-5 dB. With the decreasing SNR, spectral peaks are more
difficult to identify accurately. When the SNR is around -
5 dB, too many false spectral peaks are identified as the
true ones. For example, there is no true spectral peak from
range 1.3–1.36 in wavenumber domain. However, the false
spectral peaks are identified as true ones in Figure 3(e),
because the levels of false spectral peaks are high (especially
for the deep source). Figures 3(b), 3(d) and 3(f) show that
thewavenumbers are estimated by the proposedwavenumber
estimation method with SNR = 20 dB, 5 dB, and -5 dB.
Compared with Figure 3(e), the number of false spectral
peaks, which are identified as the true ones, is obviously
decreased in Figure 3(f).

Figure 4 shows the wavenumber estimation with the
insufficient range span (1990 m) for different SNRs. Com-
paring Figures 3(a), 3(c), and 3(e) with Figures 4(a), 4(c),
and 4(e), we see that when the range span is insufficient,
wavenumber spectrum in SAB is more broadening. It makes
more difficult to identify the spectral peaks. Comparing
Figure 4(b) with Figure 4(a), the spectral peaks can be iden-
tified more easily, because the proposed method has a higher
resolution.

Figure 5 shows the source depths are estimated by SAB
and MMAR with a sufficient range span for different SNRs.
From Figures 5(a) and 5(b), both SAB and MMAR can
estimate source depths accurately, whether the source is
shallow or deep. With the decreasing SNR, the source depth
estimation results are obviously worse by using SAB as
shown in Figures 5(c) and 5(e). The main reason for the bad
depth estimation is the false spectral peak problem, which is
discussed in Figure 3. Compared with the depth estimation
in Figures 5(c) and 5(e), MMAR can estimate source depths
effectively for SNR = 5 and -5 dB as shown in Figures 5(d) and
5(f).

Figure 6 shows the source depths are estimated by SAB
and MMAR with an insufficient range span for different
SNRs. Since the spectral peaks are difficult to identify, SAB
fails to estimate source depth as shown in Figures 6(a), 6(c),
and 6(e). When SNR is high (20 dB), MMAR can estimate
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Figure 3: Wavenumber spectrum estimation with a sufficient range span at 350 Hz. The wavenumber estimation methods in SAB with SNR
= 20, 5, and -5 dB are shown in (a), (c), and (e), respectively. The wavenumber estimation methods proposed in this paper with SNR = 20, 5,
and -5 dB are shown in (a), (c), and (e), respectively.
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Figure 4: Wavenumber spectrum estimation with an insufficient range span at 350 Hz. The wavenumber estimation methods in SAB with
SNR = 20, 5, and -5 dB are shown in (a), (c), and (e), respectively. The wavenumber estimation methods proposed in this paper with SNR =
20, 5, and -5 dB are shown in (a), (c), and (e), respectively.



8 Mathematical Problems in Engineering

90

80

70

60

50

40

30

20

10

0

D
ep

th
 (m

)

0.02 0.04 0.06 0.08 0.1 0.12 0.140
Normalized Distribution

Zs=50m
Zs=4m

(a)

0.02 0.04 0.06 0.08 0.1 0.12 0.140
Normalized Distribution

90

80

70

60

50

40

30

20

10

0

D
ep

th
 (m

)

Zs=50m
Zs=4m

(b)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160
Normalized Distribution

90

80

70

60

50

40

30

20

10

0

D
ep

th
 (m

)

Zs=50m
Zs=4m

(c)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160
Normalized Distribution

90

80

70

60

50

40

30

20

10

0

D
ep

th
 (m

)

Zs=50m
Zs=4m

(d)

90

80

70

60

50

40

30

20

10

0

D
ep

th
 (m

)

0.01 0.02 0.03 0.04 0.050
Normalized Distribution

Zs=50m
Zs=4m

(e)

0.02 0.04 0.06 0.08 0.1 0.120
Normalized Distribution

90

80

70

60

50

40

30

20

10

0

D
ep

th
 (m

)

Zs=50m
Zs=4m

(f)

Figure 5: Normalized depth ambiguity functions with a sufficient range span for the shallow (Zs = 4m) and deep (Zs = 50m) sources. Source
depths are estimated by SAB with SNR = 20 dB, 5 dB, and -5 dB in (a), (c), and (e), respectively. Source depths are estimated by MMAR with
SNR = 20 dB, 5 dB, and -5 dB in (b), (d), and (f), respectively.
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Figure 6: Normalized depth ambiguity functions with an insufficient range span for the shallow (Zs = 4 m) and deep (Zs = 50 m) sources.
Source depths are estimated by SAB with different SNR in (a), (c), and (e). Source depths are estimated by MMARwith different SNR in (b),
(d), and (f).
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source depth accurately, whether the source is shallow or
deep.When SNR decreases to 5 dB,MMAR can also estimate
the shallow source depth. However, the deep source depth
is estimated with a bias. Figure 6(d) shows the false spectral
peaks have high spectral levels, which make difficult to
identify the true spectral peaks. When SNR decreases to -
5 dB, MMAR fails to estimate the deep source depth and
estimates the shallow one with a bias as shown in Figure 6(f),
because false spectral peaks inwavenumber spectrumof deep
source have higher spectral level than that of shallow ones.

The depth estimation results in Figures 5 and 6 are
for a single realization of random noise on the data. To
obtain meaningful general comparisons between the two
depth estimation methods, 500 independent random noise
realizations are added to the acoustic signal for 𝑧𝑠 = 50 𝑚.
The performance of the two methods is quantified the
estimated probability of correct depth 𝑃, which is defined as

𝑃 = 𝐶𝐶0 , (29)

where𝐶 is the times that the estimated source depth within a
suitably small region about the true depth.The small region is
defined as±5 𝑚 in depth in this paper.𝐶0 is the total number
of the realizations. In this paper, 𝐶0 = 500. Ninety-percent
confidence intervals for the probability of correct localization
are [19]

[𝑃 − 1.645√𝑃 (1 − 𝑃)𝐶0 , 𝑃 + 1.645√𝑃 (1 − 𝑃)𝐶0 ] . (30)

The estimated probabilities of correct depth for SAB and
MMAR for known environment with error bars denoting
90% confidence limits are shown in Figure 7. Figures 7(a),
7(b), and 7(c) are corresponding to SNRs of 20, 5, and -
5 dB, respectively. Figure 7(a) shows that, at SNR = 20 dB
with 4490 m –4990 m range span, both methods yield a
high estimated probability of correct depth. However, with a
range span from 1990m to 3990m, MMAR has an obviously
higher probability than SAB. Figure 7(b) shows that MMAR
performs well for 2490m or larger range span, when SNR = 5
dB. Figure 7(c) shows that, for SNR= -5 dB,MMAR estimates
depth well for 2990 m or larger range span.

4.2. Depth Estimation in Mismatch Environment. In
Section 4.1, it has been assumed that the environmental
parameters are known exactly for all depth estimation
examples. In practical applications, the properties of the
environment (water-column sound speed profile (SSP) and
seabed geoacoustic parameters) are not known exactly.
We focus on the performance of MMAR and SAB in
mismatch environment in this Section. We discuss the
performance of MMAR and SAB with SSP mismatch, seabed
geoacoustic parameters mismatch, and the combination of
SSP mismatch and seabed geoacoustic parameters mismatch
in Sections 4.2.1, 4.2.2, and 4.2.3, respectively. The acoustic
data considered in this Section were generated by KRAKEN
using the environment model described in Section 4.1.
The matched modes are computed for the environment

with different types of mismatches (SSP mismatch, seabed
geoacoustic parameters mismatch and combination of SSP
mismatch, and seabed geoacoustic parameters mismatch).
The performance of the proposed method is evaluated by
carrying out Moute Carlo sampling over random realizations
of environmental mismatches.

4.2.1. Sound Speed ProfileMismatch. Adding the randomper-
turbation to the SSP depth by depth, the additive perturbation
is modeled as zero-mean Gaussian processes. The standard
deviations of the perturbations are 5 m/s and 10 m/s, which
are denoted by 𝛿 = 5 m/s and 𝛿 = 10 m/s, respectively.
As in Section 4.1, depth estimation results for MMAR and
SAB are considered for three SNRs (20, 5 and -5 dB). Figure 8
shows how the probabilities of correct estimated depth vary
with the range span for these cases. In comparing Figure 8
with Figure 7 (no mismatch), it is clear that the probability
of correct depth estimation decreases with SSP mismatch, in
some cases (such as Figures 8(b), 8(d), 8(e), and 8(f)) by a
substantial amount. Comparing the performance of MMAR
with that of SAB, the results of MMAR are generally superior
to that of SAB in Figure 8. Also, from Figures 8(a), 8(c), and
8(e) or 8(b), 8(d) and 8(f), we can see that the probability of
correct depth estimation based onMMARand SABdecreases
with SNR.

4.2.2. Seabed Geoacoustic Properties Mismatch. Seabed geoa-
coustic properties mismatch includes mismatches of sed-
iment sound speed, density, and attenuation. The density
and attenuation of sediment have few effects on the stability
of MFP [20]. The conclusion can be obviously extended
to MMAR and SAB. Therefore, we focus on the effects of
sediment sound speed mismatch on the performance of
MMAR and SAB.

Also a random perturbation is added to the sediment
sound speed, which is considered as the mismatch of sed-
iment sound speed. The standard deviations of additive
perturbation are 30m/s and 50m/s, which are denoted byΔ =30 m/s and Δ = 50 m/s, respectively. As in the previous
section, depth estimation results for MMAR and SAB are
considered for three SNRs with different range span. Figure 9
shows that the probabilities of correct depth estimation for
those cases with different sediment sound speed mismatch.
Like the discussion in Section 4.2.1, the probabilities of
correct depth estimation decrease with varying the mismatch
of sediment sound speed. From Figure 9, it is apparent that as
SNR decreases the depth estimation results for two methods
degrade, regardless of the range span. One should note that
although the magnitude of sediment sound speed mismatch
is larger than that of SSP mismatch, the performance of the
two methods in sediment sound speed mismatch case is
better than that in SSP mismatch cases. It means that the
two methods are more sensitive to the SSP mismatch than
sediment sound speed mismatch.

4.2.3. Environmental Mismatch. For the realistic scenarios,
the environmental mismatch is always complicated. There-
fore, we consider the environmental mismatch, which com-
bines SSP mismatch and seabed sound speed mismatch.
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Figure 7: Estimated probability of correct depth 𝑃 with known environmental parameters for SAB (the blue line with open circles) and
MMAR (the red line with crosses). (a), (b), and (c) give results with different range spans (from 1990 m to 4990 m) at SNRs of 20, 5, and -5
dB, respectively.

Compared with Figures 8 and 9, the performance of the two
method decreases in Figure 9 as another mismatch exists.
Also, the performance of MMAR is generally superior to that
of SAB in Figure 10. When the environmental mismatch is
relatively large as shown in Figures 10(b), 10(d), and 10(f), two
methods fail to work. When the environmental mismatch is
relatively small as shown in Figures 10(a), 10(c), and 10(e), the
estimated probability of MMAR is relatively high at relatively
high SNR (SNR=20 and 5 dB). Even if SNR is low,MMARcan
estimate source depth effectively with relatively large range
span.

5. Summary and Discussion

A matched-mode method based on AR using an HLA
to estimate the moving source depth is developed in this
study. The modal wavenumber spectrum is obtained using
generalized Hankel transform with the data from the
moving source. The mode amplitudes can be extracted
by combining the information based on AR modal
wavenumber spectrum and the FT wavenumber spectrum.
The amplitudes contain the information of source depth.
The source depth is estimated by matching the mode
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Figure 8: Estimated probability of correct depth 𝑃with SSPmismatch forMMAR (red cross) and SAB (blue open circle). (a), (c), and (e) give
results for SSP mismatch 𝛿 = 5 𝑚/𝑠 cases at SNRs of 20, 5, and -5 dB, respectively; (b), (d), and (f) give results for SSP mismatch 𝛿 = 10 𝑚/𝑠
cases at the same SNRs. Error bars denote 90% confidence intervals.
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Figure 9: Estimated probability of correct depth 𝑃 with seabed geoacoustic properties mismatch for MMAR (red cross) and SAB (blue open
circle). (a), (c), and (e) give results for seabed geoacoustic properties mismatchΔ = 30 𝑚/𝑠 cases at SNRs of 20, 5, and -5 dB, respectively; (b),
(d), and (f) give results for seabed geoacoustic properties mismatch Δ = 50 𝑚/𝑠 cases at the same SNRs. Error bars denote 90% confidence
intervals.
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Figure 10: Estimated probability of correct depth 𝑃 with environmental mismatch, which combines SSP and seabed sound speed mismatch,
for MMAR (red cross) and SAB (blue open circle). (a), (c), and (e) give results for the combination of SSP mismatch 𝛿 = 5 𝑚/𝑠 and seabed
geoacoustic properties mismatchΔ = 30 𝑚/𝑠 cases at SNRs of 20, 5 and -5 dB, respectively; (b), (d), and (f) give results for the combination
of SSP mismatch 𝛿 = 10 𝑚/𝑠 and seabed geoacoustic properties mismatch Δ = 50 𝑚/𝑠 cases at the same SNRs. Error bars denote 90%
confidence intervals.
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estimation with the mode depth function calculated by the
KRAKEN.

The method proposed in this study is evaluated using the
simulated data. For the data with a small range span or low
SNR, the proposed method can achieve source depth estima-
tion with better performance than SAB. The performance of
the proposed method is evaluated in mismatch environment.
The proposed method performs better than SAB in different
environmental mismatch cases. The proposed method is
insensitive to the environmental mismatch.

Compared with that in SAB, the requirement of the mov-
ing source traveling range decreases in proposed method.
The proposed method can also be applied to the data with
low SNR and in environmental mismatch cases. However,
this method is limited because it assumes the source depth
fixed during the observation time. The effectiveness of this
method degrades sharply, when the source depth varies
rapidly. Therefore, additional work is needed for its future
application in source depth tracking.
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