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Copyright © 2018 Armando Céspedes-Mota et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Resource efficiency in wireless ad hoc networks has become a widely studied NP-problem. This problem may be suboptimally
solved by heuristic strategies, focusing on several features like the channel capacity, coverage area, and more. In this work,
maximizing coverage area and minimizing energy consumption are suboptimally adjusted with the implementation of two of
Storn/Price’s Multiobjective Differential Evolution (DE) algorithm versions. Additionally, their extended representations with the
use of random-𝑀parameter into themutation operator were also evaluated.These versions optimize the initial randomdistribution
of the nodes in different shaped areas, by keeping the connectivity of all the network nodes by using the Prim–Dijkstra algorithm.
Moreover, the Hungarian algorithm is applied to find the minimum path distance between the initial and final node positions
in order to arrange them at the end of the DE algorithm. A case base is analyzed theoretically to check how DE is able to find
suboptimal solutions with certain accuracy. The results here computed show that the inclusion of random-𝑀 and completion of
the algorithm, where the area is pondered with 60% and the energy is pondered with 40%, lead to energy optimization and a total
coverage area higher than 90%, by considering the best results on each scenario. Thus, this work shows that the aforementioned
strategies are feasible to be applied on this problem with successful results. Finally, these results are compared against two typical
bioinspired multiobjective algorithms, where the DE algorithm shows the best tradeoff.

1. Introduction

Nowadays, it is well known that the distribution of sensors
in a wireless ad hoc sensor network (WAHSN) is a challenge
in the research of wireless communications, because it is
necessary to increase both lifetime and coverage area demand
of the network. Furthermore, it is required to avoid a weak
connectivity.

A WAHSN contains a number of geographically dis-
persed mobile sensors. Each sensor node has wireless com-
munication, collaborative signal processing, and network
capabilities subject to some technical constraints. Themobile
sensor nodes are free to move and self-organize in an
arbitrary way while the communication is made via radio
transceivers. Therefore, a WAHSN is able to determine the

value of different parameters such as temperature and geo-
graphic coordinates of a given location, detect the occurrence
of events, classify a detected object, and track an object.
In consequence, it is necessary that the required data be
disseminated to the proper end users [1, 2]. It is important
to remark that wireless sensor networks (WSN) are a type of
ad hoc network composed of a large number of sensor nodes,
which are densely deployed either inside the sense perception
area or very close to it. The nodes are not connected to
each other. Basically, they are stationary or at most slowly
moving [1]. In contrast, a mobile ad hoc network (MANET)
is an autonomous collection of mobile users connected
by one to one wireless links. The MANETs topology may
change continuously in an unpredictably way over time. The
mobile nodes in MANETs can renew, replace, or recharge
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their batteries or source of energy. Although WAHSNs,
WSNs, and MANETs involve multihop communications,
many end-to-end routing schemes proposed for MANETs
are inappropriate for WAHSN and WSNs for the previously
mentioned reasons [3]. Nevertheless, sensor distribution
schemes between WAHSNs and MANETs can be compared.
A key factor that distinguishes the WAHSNs from MANETs
is that the end goal is detection and estimation of some events
of interest and not just communication [1, 2].

In spite of the fact that our work is applicable to WAH-
SNs, MANETs, and also WSNs under certain modifications,
the analysis on WAHSNs due to some characteristics and
resource constraints such as energy, coverage area, and
connectivity optimization is made.

Sensor distribution is one of the fundamental problems
in WAHSNs and regularly has been suboptimally solved
by heuristic strategies such as genetic algorithms, among
several others as shown by [4–8]. It is worth mentioning
that sensor distribution with minimum energy connectivity
is an NP-complete problem [9–12]. In the literature, different
strategies for wireless ad hoc and sensor networks related to
topology control [2], node localization [13, 14], distributed
coverage [15], and network lifetime [16] are described to
provide solutions for sensor distribution, coverage area, and
energy consumption problems. Additional related problems
in wireless communication such as frequency allocation and
interference have been also solved by bioinspired algorithms
as it is reported in [17, 18] or in [19], where the authors show an
efficient way of solving the minimum number of hops among
nodes to be communicated.

To optimize the sensor distribution, DE algorithm is
used. DE is a very simple but very powerful stochastic global
optimizer for a continuous search domain. It was proposed
by [20] and represents a very complex evolution process.
Cleverly using the differences between the populations, a
simple but fast linear operator called differentiation is created,
whichmakesDEunique. A survey of the applications ofDE to
different optimization problems shows that DE generally out-
performs other evolutionary algorithms [21–23]. An updated
reference with novel DE algorithm versions and additional
applications are found at [24, 25]. DE exploits a population
of potential solutions to effectively probe the search spaces.
The algorithm is initialized with a population of random
candidate solutions, which are conceptualized as individuals.
In this work, an individual includes the coordinates of the
sensor nodes (𝑥, 𝑦) followed by its communication radii
values. For each individual in the population, a descendant
is created from three parents. One parent, called the main
parent, is disturbed by the vector of the difference of the other
two parents. If the descendant has a better performance as
measured by the objective function, it replaces the individual;
otherwise, the original individual is retained and is passed on
to the next generation of the algorithm and the descendant
is discarded. This process is repeated until it reaches the
termination condition. For a complete theoretical analysis of
the DE algorithm, the reader is referred to [20].

Node distribution optimization in mobile sensor net-
works is presented in [26], where they analyze the sensor
network coverage area and its coverage redundant area using

DE. Moreover, the optimal power allocation in WSNs using
DE is given in [27]. Also, in [28], DE is applied to maximize
the lifetime of the WSNs using disjoint sets of sensors to
cover a set of targets. However, it is important tomention that
[26–28] do not consider ad hoc sensor networks. They use
the DE algorithm only for WSNs. On the other hand, a DE
based topology control mechanism in MANETs is presented
in [29] to deploy the nodes with the maximum coverage
area. Here, the topology control is managed with the use of a
Markov chain model. A similar approach is followed in [30]
to evaluate the node distribution, but now based on Voronoi
regions for each node. However, [29, 30] do not consider
optimization of energy consumption for maintaining the
network connectivity and coverage area simultaneously in a
multiobjective fitness function.

The approach followed in [31] analyzed the coverage area
of sensor networks, where the main goal is to maximize
the coverage area in presence of obstacles such as walls. In
[32] the same approach of maximizing the coverage area in
the presence of obstacles is extended, including the energy
consumed in the objective function. The redundant area
is also considered in the objective function. In [33], an
improved DEA version based on a best-optimal-solution
sorting technique is compared with the classical DEA and
the Nondominated Sorting Genetic Algorithm II (NSGA-
II), showing that the first one has the best performance
when computing the coverage area. Additionally, the number
of nodes needed to obtain the maximum coverage area is
diminished to determine the minimum feasible. In [34], the
coverage area is optimized by using the improved versions of
DEA such as the Self-Adaptive Differential Evolution (jDE)
and the Adaptive Differential Evolution (JADE). As expected,
the jDE and JADE have better performance than the classical
DEA versions. In [35], DEA is applied for node position
estimation in convex and nonconvex configurations.

Other aspects of wireless sensor networks can be tackled
by implementing other bioinspired algorithms. For instance,
in [6], the coverage area is optimized with Particle Swarm
Optimization (PSO). Coverage area and energy are consid-
ered in amultiobjective version of PSO as shown in [5], where
the parameters are controlled with a clustering approach. For
routing management, Ant Colony is implemented in [36] as
well as in [8]. Routing is also solved by the Strength Pareto
Evolutionary algorithm (SPEA2) as shown in [37]. Optimal
path problem is treated in [38], where DEA is the best
solution compared to the classical PSO and GA strategies.
Node anchors can be deployed with bioinspired techniques
as shown in [39] with Ant Colony. Such scenario is found
when RFID readers are deployed to detect tags. In [40], a
combination of GA and PSO is generated to do so.

Additionally, in [41], two multiobjective algorithms are
compared, the Multiobjective Simulated Annealing (MOSA)
and NSGA-II. Such comparison is done to determine the
algorithm that gives the best distribution output with fewer
nodes. In [42], two algorithms are compared to solve WSN
scenarios: SPEA2 and NSGA-II. The objective function
includes the energy consumption, the coverage area, and the
network reliability, where the energy component is analyzed
against the elapsed time. For scenarios where the complexity
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is increased, SPEA2 is better than NSGA-II and vice versa.
In [43] different WSN scenarios are tested, where NSGA-II
and Learning Automata (LA) are combined to create a hybrid
multiobjective algorithm. This hybrid version outperforms
NSGA-II. The main goal is to minimize the number of
active sensors that cover the maximum possible area and
minimize the energy consumption while maintaining the
network connectivity. In [44] the Multiobjective Evolution
algorithm based on Decomposition (MOEA/D) and NSGA-
II are compared to determine which is the best option
to maximize the coverage area and minimize the energy
consumption in WSN, where it is claimed that MOEA/D
gives better results than NSGA-II. In [45], three optimization
strategies are evaluated, the Multiobjective Particle Swarm
Optimization (MOPSO),NSGA-II, and a proposed optimiza-
tion denoted as Heuristic 3-Phases (H3P). H3P is formed by
3 steps: clustering, Pareto construction, and disassembly. The
goal is to minimize the number of sensors when maximizing
the number of targets to be detected, where H3P presents
the best performance among the presented optimization
strategies. In [46], NSGA-II is implemented and compared
with MOEA/D to obtain the best routing combination by
minimizing the energy consumption while detecting a large
number of targets as possible, where it is shown that NSGA-
II is better than MOEA/D. In [47], a discrete DEA version
and NSGA-II are implemented to reach the best compromise
among three goals: the delay of a packet from the origin to the
destiny in the network, the packet delivery ratio, and the flow
conservation. It is done to help the routing process with time
efficiency, where it is shown that DEA outperforms NSGA-II.
A detailed survey for more available techniques applied on
WSN can be consulted in [48].

Compared to the existing bioinspired techniques in the
open literature [26, 32] and the method here presented,
the followed approach is based on a simplified version of
the MOEA/D techniques presented in [49], where a set of
weights is assigned on each function to be optimized and
the summation of them is equal to 1. Such variant is known
as Weighted Sum Approach [49, 50]. For the sake of clarity,
the method here implemented is denoted as Multiobjective
Differential Evolution algorithm (MODEA).

MODEA is applied to the optimization of network energy
consumption to maintain the network connectivity and
network coverage area inWAHSNs, following a convexmodel
[35]. The algorithm makes sensor radius adjustments and
assumes the mobility of the sensors in order optimize two
objectives: maximizing the network coverage area and reduc-
ing network energy consumption. It is worthmentioning that
consequently also the network lifetime is extended.

Additionally, the proposed algorithm emphasizes the suc-
cessful communication between sensors in a given neighbor-
hood, with the use of the Prim–Dijkstra algorithm described
by [51, 52]. If a tree is not created, the nodes distribution
is discarded even when the network fulfills the rest of the
restrictions regarding area, energy, and bounds on different
shaped areas. Also, the Hungarian algorithm [53] is used to
find the shortest distance between the initial and the final
node positions. This information is important for the case

of having mobile ad hoc sensors; each node knows where to
move with the minimal distance.

A summary of the employed techniques and the involved
parameters is shown in Table 1.

The rest of this paper is organized as follows: Section 2
presents the methodology. Section 3 describes theoretical
models to find the energy lower bound and coverage area’s
upper bound. Section 4 develops and explains the MODEA
for wireless ad hoc sensor distribution. Section 5 provides
numerical results and a discussion. Finally, Section 6 gives the
conclusions and some future research directions.

2. Description of the Method

2.1. Sensor Coverage Model. The coverage area of a sensor is
the region within which the sensor is able to detect or analyze
the sensing parameters. There exists a special interest in the
sensor distribution for which communication with neighbor-
ing nodes is more energy efficient. Also, it is assumed that
the coverage radius of each sensor helps to determine its
communication link distance through minimum spanning
tree to any of its neighbors, and it depends on the kind of
sensors considered. Additionally, the sensor distribution on
different shaped areas is considered. The main objective of
the sensor coverage model is to achieve a balance between
the maximum effective coverage area and the minimum
communication sensor energy.

According to [26], the node set on the target area 𝑚 × 𝑛
grid can be defined as

N = {𝑁1, 𝑁2, . . . , 𝑁𝑧} , (1)

where 𝑧 is the cardinality ofN.
The coverage range of a node 𝑁𝑖 can be expressed as a

circle centered at its coordinates (𝑥𝑖 , 𝑦𝑖)with sensing radius 𝑟𝑖 .
The (𝑥𝑖, 𝑦𝑖) coordinates express the position of sensor nodes
and the subindex 𝑖 represents the sensor node index. A grid
point 𝑃(𝑥, 𝑦) is covered by a sensor node 𝑖 if and only if its
distance to the center (𝑥𝑖, 𝑦𝑖) of the circle (2) is not larger than
the sensing radius 𝑟𝑖:

𝑑 (𝑁𝑖, 𝑃) = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2. (2)

First of all, a binary detection model is considered. A
random variable 𝐸𝑖 is introduced to describe the event in
which the sensor node 𝑖 covers a given point 𝑃(𝑥, 𝑦). The
probability of the event 𝐸𝑖, 𝑃{𝐸𝑖}, is equal to the coverage
probability 𝑃cov(𝑥, 𝑦, 𝑁𝑖). This probability is a binary valued
function such as

𝑃cov (𝑥, 𝑦, 𝑁𝑖) = {{{
1 if (𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 ≤ 𝑟2𝑖
0 otherwise. (3)

This model is applied in all cases in Section 5. It is clear
that a point should be evaluated against all the nodes present
in the network; then

𝑆 (𝑥, 𝑦) = 𝑧∑
𝑖=1

𝑃cov (𝑥, 𝑦, 𝑁𝑖) , (4)
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Table 1: Summary of the references presented in Section 1.

ID Cite Technique Involved variables

DE

[26] DE/rand/1 Coverage area, energy
[27] DE/rand/1, DE/Best/1 Power allocation
[27] DE/Curr-to-Best/1, DE/rand-to-best/1 Power allocation
[28] DE/Best/1 Coverage area
[29] DE/rand/1, Markov topology control Coverage area
[30] DE/rand/1, Voronoi topology control Coverage area
[31] DE/rand/1 Coverage area, redundant area
[32] DE/rand/1 with rand 𝑀 Coverage area, energy, redundant area
[33] Classical and modified DE/rand/1, NSGA-II Coverage area with node elimination
[34] DE/Best/1, jDE, JADE Coverage area
[35] Modified DE/Curr-to-Best/1 Node position estimation
[47] DEA and NSGA-II Routing

Others

[5] PSO Energy and coverage area (by clustering)
[6] PSO Coverage area
[8] Ant Colony Routing
[36] Ant Colony Routing
[37] SPEA2 Routing
[38] DE, PSO, GA Optimal path
[39] Ant Colony Node deployment (target coverage)
[40] Combined GA and PSO Node deployment (target coverage)
[41] MOSA and NSGA-II Node deployment
[42] SPEA-2 and NSGA-II Energy, coverage area
[43] NSGA-II and LA Energy, coverage area
[44] MOEA/D and NSGA-II Energy, coverage area
[45] NSGA-II, MOPSO, H3P Node deployment (target coverage)
[46] NSGA-II Node deployment (target coverage), routing

where 𝑆(𝑥, 𝑦) is the number of times that the coordinate (𝑥, 𝑦)
is covered by the node set.

Nevertheless, to obtain the proper covered area by the set
of nodes, the function 𝑅(𝑥, 𝑦) is computed to verify if the
coordinate is covered at least once or if it is not covered at
all 𝑁𝑖.

𝑅 (𝑥, 𝑦) = {{{
1 𝑆 (𝑥, 𝑦) ≥ 1
0 𝑆 (𝑥, 𝑦) = 0, (5)

and then the covered area is computed as

𝐴cov = ∑𝑛𝑦=1∑𝑚𝑥=1 𝑅 (𝑥, 𝑦)
𝑚 × 𝑛 . (6)

Equation (6) is implemented in our simulation by sweep-
ing all the (𝑥, 𝑦) points of the target area 𝑚 × 𝑛. For different
area configurations, this area is replaced by the bounded area
of interest.

2.2. Energy Consumption. There are models for efficient
energy consumption in MANETs [5], WAHSNs [10], WSNs
[54], and many others. The energy consumption model used
in this work is based in [55], this model is also used in [26].

In order to show the optimization process in coverage area
and energy consumption, the total energy for maintaining
the network connectivity is considered as the total energy
consumption of the network.

𝐸csd = 𝜇 𝑧∑
𝑖=1

𝑟𝛼𝑖 , (7)

where 𝜇 is the power per unit area in milliwatts per square
meter (mW/m2), considering that the sensors are on the floor,𝑟𝑖 is the sensor radius of the node 𝑖 in meters, and 𝛼 = 2 since
the communication medium is the air (free space) [56]. In
this paper, 𝜇 equals 0.005 (mW/m2). The path loss exponent𝛼 takes different values according the environment. For urban
area cellular radio 𝛼 = 2.7–3.5, for shadowed urban cellular
radio 𝛼 = 3–5, for in-building line-of-sight from 1.6 to 1.8,
for obstructed in-building from 4 to 6, and for obstructed in
factories from 2 to 2.3, the power per unit area changes in a
3D environment to mW/m2, [56].

3. Base Case: Ideal Distribution of 10
Nodes into a Squared Area

In this section, themethods to obtain the energy and coverage
area bounds are presented. In order to find these lower and
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Figure 1: Node distribution to calculate upper bound.

upper bounds, an example of 10 nodes distributed in an area
of 40 × 40m2—see Figure 1—is considered. It is assumed that
the sensors can have a transmitting radius between 6 and 8
meters. Details to compute these bounds are described in the
following subsections.

3.1. Energy Lower Bound. The energy lower bound is easily
calculated using (7) considering a radius of 6 meters and 𝜇 =0.005mW/m2. For instance, assuming 10 nodes, the lowest
allowed value for energy is 𝐸LB = (0.005)(10)(62) = 1.8mW.

3.2. Area Upper Bound. The sensor distribution shown in
Figure 1 is one among several that provides the nearest
value to the maximum coverage area given by 10 nodes
using a radius of 8 meters and including maximum three
intersections of three circles. Themain goal in proposing this
case is their comparison to the suboptimal outputs derived of
MODEA by having all the nodes’ radii equal to 8 meters. If
these suboptimal solutions are near to this theoretical case,
then the application of MODEA will be considered feasible.
Figure 1 is used as the base case model to determine its
theoretical area upper bound.

At the top corners of Figure 1, the overlap of three circles is
observed. Figure 2 shows the details of these three overlapped
circles. The covered area of these three circles represents in
this paper the coverage area of three overlapped wireless
sensors. The set theory helps to determine the total area in
a union of sets when some of the sets overlap. To obtain the
covered area of the union of three overlapped circles, the
inclusion/exclusion rule is used.This rule establishes that the
area of the three circles is computed at the beginning. After
that, all the intersection areas between two circles 𝐴𝑁1∩𝑁2 ,𝐴𝑁1∩𝑁3 , 𝐴𝑁2∩𝑁3 are subtracted. At the end, the intersection
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Figure 2: Parameters involved in the intersection of three circles.

area of the three circles 𝐴𝑁1∩𝑁2∩𝑁3 is added [57, 58]. The
equation of the area of the three circles is

𝐴3𝐶 = 3𝜋𝑟2 − 𝐴𝑁1∩𝑁2 − 𝐴𝑁1∩𝑁3 − 𝐴𝑁2∩𝑁3 + ⋅ ⋅ ⋅
+ 𝐴𝑁1∩𝑁2∩𝑁3 ,

(8)

where 𝐴𝑁1∩𝑁2 = 𝐴0 + 𝐴2, 𝐴𝑁1∩𝑁3 = 𝐴0 + 𝐴3, 𝐴𝑁2∩𝑁3 =𝐴0 + 𝐴1 and 𝐴𝑁1∩𝑁2∩𝑁3 = 𝐴0.
This result is then used to determine the area of the base

casemodel of 10 sensors. For this model, the area of 10 sensors
is computed; then, the nine intersection areas between two
circles similar to (𝐴0 + 𝐴3) and the two intersection areas
between two circles similar to (𝐴0 + 𝐴1) are subtracted; and,
finally, the two intersection areas of three circles are added.

It is important to remark that for any finite number of
overlapped circles, the covered area can be seen as a set of
circles with intersections and is obtained by the use of the
expression [57] as

𝐴cov = 𝑧∑
𝑖=1

𝐴𝑁𝑖 −
𝑧∑
𝑖<𝑗≤𝑧

𝐴𝑁𝑖∩𝑁𝑗 + ⋅ ⋅ ⋅ + 𝑧∑
𝑖<𝑗<𝑘≤𝑧

𝐴𝑁𝑖∩𝑁𝑗∩𝑁𝑘
+ (−1)𝑧+1 𝐴⋂𝑧𝑖=1𝑁𝑖 .

(9)

According to [59], it is possible to preserve two com-
munication links with an angle of 5𝜋/6 with the minimum
power required, but it is valid for directional communication.
For omnidirectional communication, it is not necessary. To
obtain the maximum coverage area, it is well known that
the hexagon configuration is the ideal distribution, where the
angle presented on each vertex is equal to 2𝜋/3, but it is valid
for circles with equal radius and where there is not a neighbor
circle covering each node. Nevertheless, for our case, we have
a set of circles with different radius and where each node is
covered by at least a neighbor circle.
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Now, to find the total area of Figure 1, first find the area of
10 independent circles 𝐴10𝐶 given by

𝐴10𝐶 = 10𝜋𝑟2, (10)

and then use the intersection between two circles denoted as𝐴 𝑖2𝐶, [60].
𝐴 𝑖2𝐶 = 2𝑟2 arccos( 𝑑2𝑟 ) − 12 𝑑√4𝑟2 − 𝑑2, (11)

where 𝑑 is the distance between the centers of the two circles.
Assume 𝑟1 = 𝑟2 = 𝑟3 = 𝑟, 𝑑12 = 𝑑13 = 𝑟; therefore 𝑑23 = 𝑟√2.
Observe that Figure 2 shows the variables of this equation
where𝛿 is thewidth of the intersection𝐴𝑁2∩𝑁3 and 𝛿 = 2𝑟−𝐷.
Now assuming an intersection with 𝑑 = 𝑟, the intersection
area 𝐴𝑁1∩𝑁2 (𝐴0 and 𝐴2) or 𝐴𝑁1∩𝑁3 (𝐴0 and 𝐴3) [60],

𝐴 𝑖2𝐶 = 2𝑟2 arccos (12 ) − 12 𝑟2√3. (12)

The area of intersection 𝐴𝑁2∩𝑁3 (𝐴0 and 𝐴1), denoted as𝐴 𝑖2𝐶󸀠 is an intersection where 𝑑 = 𝑑23 = 𝑟√2, [60],
𝐴 𝑖2𝐶󸀠 = 2𝑟2 arccos( 1√2) − 𝑟2. (13)

Figure 2 shows the intersection area between three circles
denoted as 𝐴0.This area is known as a circular triangle, which
is a triangle with arc shaped sides (𝑐1, 𝑐2, 𝑐3). The area can be
obtained using the radius and the length of the three arcs as
shown in Figure 2.The area is given by the following equation
[61]:

𝐴0 = 14 √𝜅𝜆]𝜎 + ⋅ ⋅ ⋅
+ 3∑
𝑘=1

[𝑟2𝑘 arcsin ( 𝑐𝑘2𝑟𝑘) − 𝑐𝑘4 √4𝑟2𝑘 − 𝑐2𝑘] ,
(14)

where 𝜅 = (𝑐1 + 𝑐2 + 𝑐3), 𝜆 = (𝑐2 + 𝑐3 − 𝑐1), ] = (𝑐1 + 𝑐3 − 𝑐2),𝜎 = (𝑐1 + 𝑐2 − 𝑐3),
𝑐21 = 2𝑟2 − 𝑑22 + √2𝑟4 − 3𝑟2𝑑22 + 𝑑44 − ⋅ ⋅ ⋅

− 𝑑√𝑟2 − 𝑑24 − 𝑑√ 𝑟22 − 𝑑24 ,
(15)

and 𝑐1 = 𝑐2.
The appendix shows how the equation for 𝑐3 is obtained:

𝑐3 = − 𝑟√2 + 𝑟√ 32 . (16)

Therefore, the coverage area upper bound (𝐴UB) of ten
wireless sensors as shown in Figure 1 is given by

𝐴UB = 𝐴10𝐶 − 9𝐴 𝑖2𝐶 − 2𝐴 𝑖2𝐶󸀠 + 2𝐴0. (17)

With the completion of this analysis, it is possible
to obtain the coverage area upper bound, 1286.7m2. In
Section 5, the values obtained with the DE algorithm are
compared to the bounds.

4. The Multiobjective Differential
Evolution Algorithm (MODEA) for Wireless
Ad Hoc Sensor Distribution

It is well-know that the DE algorithm [20] begins with an
initial population of individuals and then iterates to build
new populations until a good solution is found. In DE an
individual is a vector of the dimension of the problem 𝐷.
The individuals characterize specific solutions to the problem
under study. In this paper, the vector dimension contains the
coordinates of the sensor nodes (𝑥, 𝑦) followed by their radii
values. Considering that there is not information with respect
to the optimal solution, the initial population is built in
randommanner. DEmakes repeated cycles of recombination
and selection to move the population in the direction of the
vicinity of a global optimum. Probability operators (crossing
and mutation) are used to each individual in a population
to create new individuals (children). The new individuals
have some of the features of their ancestors. The ancestors
are retained or removed by selection. The term generation
is applied to designate the conversion of all individuals into
new ones. In other words, to move from one population to
another.

The DE algorithm iterates for a limited number of
generations, 𝐺. It is important to mention that DE has
three key control parameters: the mutation constant 𝑀,
which controls the mutation strength, the recombination
constant 𝐶𝑟, and the population size 𝑁𝑝. The parameters𝑀 and 𝐶𝑟 take values in the interval (0, 1). During the
course of the execution process, the user establishes the
population size 𝑁𝑝. At each generation, all individuals in
the population are evaluated in turn; in DE’s literature, the
individual being evaluated is named the target vector. Three
other individuals are randomly selected from the population
and are mixed with each other: this operation is known
as mutation and generates a mutant individual vector. The
mutant individual vector is thenmixedwith the current target
vector by an operator named recombination: the result of this
recombination process is a vector named the trial vector.

Finally, the selection operator is used. If the trial vector
improves the objective function then it is accepted and
replaces the current target vector in the new population that
is being built. Else, it is rejected and the current target vector
passes on to the next generation; in this situation the trial
vector is not kept.

The following is a description of the operators utilized in
the DE algorithm that obtains the most promising region in
the search space.

4.1. Objective Functions. In this research work, the DE
algorithm seeks to achieve a balance between the maximal
effective coverage rate 𝐴cov and the minimum sensor power
communication 𝑓2(𝑥) = 𝐸csd. To translate the network
coverage rate into minimal functions, the opposite effect of
the coverage rate is used.Thus, the network effective coverage
rate is then defined by

min 𝑓1 (𝑥) = 1 − 𝐴cov, (18)
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and the minimum network energy communication is
obtained by

min 𝑓2 (𝑥) = 𝜇 𝑧∑
𝑖=1

𝑟2𝑖 . (19)

The values of min𝑓1(𝑥) and min𝑓2(𝑥) are part of the
fitness function for measuring the result. A linear combi-
nation of the objective functions transforms the original
multiobjective function into a single-objective function as
follows:

min
𝐾∑
𝑘=1

𝑤𝑘𝑓𝑘 (𝑥) where 𝑤𝑘 ≥ 0; 𝐾∑
𝑘=1

𝑤𝑘 = 1, (20)

where 𝑤𝑘 are weight coefficients expressing the relative
importance of each objective function and 𝑘 is the number
of objective functions that form the total objective function𝑓.
4.2. The Fitness Function. The fitness function is given by

𝑓 (𝑥) = 𝑤1𝑓1 (𝑥) + 𝑤2𝑛2𝑓2 (𝑥) , (21)

here 𝑤1 and 𝑤2 represent weight coefficients and 𝑛2 is the
normalization coefficient of 𝑓2(𝑥). Note that 𝑓1(𝑥) is already
a normalized function (18) due to the fact that it takes only
values between 0 to 1. To normalize the second term, it is
necessary to use the following equation:

𝑛2 = 1𝜇𝑧𝑟2max
, (22)

where 𝑟max is the maximum sensor radius in meters (m).
Consider 𝑤2 = 1 − 𝑤1; therefore if 𝑤1 = 1, 𝑤2 = 0, then

the fitness function optimizes the network effective coverage
rate. Conversely if 𝑤1 = 0, 𝑤2 = 1, then the fitness function
optimizes the energy consumption of signal detection. The
normalized terms of (21) make it possible to get the same
order ofmagnitude.The overall value of the fitness function is
in the interval [0, 1]. Obviously, the smaller the value of 𝑓(𝑥),
the better the node location distribution and the lower the
power communication consumption as well.

4.3. The Mutation Operator. For each target vector 𝑥𝑖, 𝑖 =1, . . . , 𝑁𝑝, the mutant individual 𝑚𝑖 is created with the
following equation [23]:

𝑚𝑖 = 𝑥𝑟1 + 𝑀 (𝑥𝑟2 − 𝑥𝑟3) , (23)

where 𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3 ∈ {1, . . . , 𝑁𝑝}: 𝑥𝑟1 ̸= 𝑥𝑟2 ̸= 𝑥𝑟3 ̸= 𝑥𝑖.
Here, 𝑥𝑟1, 𝑥𝑟2, and 𝑥𝑟3 are three random individuals from
the population, mutually different and also different from the
current target vector 𝑥𝑖, and 𝑀 is a scaling factor named
the mutation constant which must be 𝑀 > 0. The mutation
operator is utilized tomanage themagnitude of the difference
between two individuals. This operator manages the tradeoff
among exploitation and exploration on the search process.
This operator is the one guiding the convergence of the

algorithm.This version is known asDE/rand/1 version. Aside,
there is another version like the one shown in [20, 22, 62]

𝑚𝑖 = 𝑥best + 𝑀 (𝑥𝑟1 − 𝑥𝑟1) , (24)

where the best vector among the population is chosen instead
of obtaining it randomly. Expression stated in (24) is known
as DE/best/1 [20, 22, 62].

4.4. The Recombination Operator. The recombination oper-
ator is applied to increment the diversity in the mutation
process. This operator is the final step in the creation of the
trial vector. To create the trial vector, the mutant individual
is combined with the current target vector. In particular, for
each component 𝑗, where 𝑗 = {1, 2, . . . , 𝐷}, of the mutant
individual, a random number rand in the interval [0, 1] is
selected. Then, the recombination constant 𝐶𝑟 and rand are
compared in order to check if rand < 𝐶𝑟. Equation (25) briefly
shows that if the aforementioned condition is false, the 𝑗th
element of the target vector is selected as the 𝑗th element
of the trial vector. Otherwise the 𝑗th element of the mutant
individual is selected as the 𝑗th element of the trial vector [23].

𝑡𝑖,𝑗 = {{{
𝑚𝑖,𝑗 if rand < 𝐶𝑟 ∀𝑗
𝑥𝑖,𝑗 otherwise. (25)

The reader is warned that a large value for 𝐶𝑟 helps to
avoid the cancelation of the mutation operation. Otherwise,𝐶𝑟 would become useless in its application on (25).

4.5. Application of the Prim–Dijkstra Algorithm. The nodes’
locations are validated considering the distance communica-
tion constraint. The communication range distance equal to
the sensor coverage radius is used. To satisfy this constraint,
the Prim–Dijkstra algorithm is applied [51]. The input to
the algorithm is a root node from the set of nodes. This
root node may act as the information concentrator and
is chosen arbitrarily by the network designer. An external
controller starts the algorithm and the algorithm takes action
based on each actual position of all nodes. The Prim algo-
rithm [63] determines the minimum spanning tree (MST)
whereas the Dijkstra algorithm [64] obtains a star topology.
Prim–Dijkstra [51, 52] uses the location of the sensor nodes
and obtains a topology that is a mixture of MST and a
star topology. As mentioned before, information about the
shortest sensor mobility is determined with the Hungarian
algorithm [53] finding the minimum distance between the
initial and the final node positions.

4.6. The Selection Operator. The last step of the algorithm is
the application of the selection operator, where the fitness
computed with the trial vector 𝑡𝑖 is compared to the fitness
computed with the target vector 𝑥𝑖. In a simplified way, (26)
summarizes the aforementioned statement, where 𝑡𝑖 is chosen
if its computed fitness is lower than the fitness computed on𝑥𝑖 and vice versa.

pop𝑖 = {{{
𝑡𝑖 if 𝑓 (𝑡𝑖) < 𝑓 (𝑥𝑖)
𝑥𝑖 otherwise. (26)
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(1) procedureMODEA
(2) Set the control parameters for MODEA;
(3) Create initial population;
(4) Evaluate fitness, area and energy of each member;
(5) for 𝑔 = 1 𝑡𝑜 𝐺 do
(6) for 𝑖 = 1 𝑡𝑜 𝑁𝑝 do
(7) Select from Pop𝑖 (see version: -R (Eq. (23)), -RM (Eq. (27)), -B (Eq. (24)), -BM (Eq. (28));
(8) Obtain mutation 𝑚𝑖 (see previous chosen version);
(9) Apply recombination to obtain 𝑡𝑖 (Eq. (25));
(10) Validate 𝑡𝑖 according to preliminary bounds;
(11) Update (𝑥, 𝑦) and radius (Eq. (30)) if needed;
(12) while a tree is not obtained do
(13) Validate 𝑡𝑖;
(14) Update (𝑥, 𝑦) and radius (Eq. (30)) if needed;
(15) Apply MST Prim-Dijkstra to array of links;
(16) if some nodes are not connected then
(17) Update position and radius (Eq. (30)) of unlinked nodes;
(18) else nodes are connected
(19) Tree has been built;
(20) end if
(21) end while
(22) Apply selection operator (Eq. (26));
(23) end for
(24) Popbest solution is obtained for fitness, area and energy;
(25) end for
(26) Apply Hungarian algorithm to Popbest regarding to Popinitial ;
(27) end procedure

Algorithm 1: MODEA applied to WAHSN.

Here, pop𝑖 is the population of the next generation that
changes by accepting or rejecting new individuals. The global
best individual is retained at the end of each generation,
to keep track of the best solution obtained when DEA is
executed.

4.7. The Random-𝑀 Mutation Parameter. The parameter 𝑀
is responsible for the exploration and exploitation of the
solution spaces. To fix the problem of stagnation for small
values of 𝑀, the random-𝑀 parameter is added to (23). This
parameter consists of a random number rand that multiplies
the constant 𝑀 at each evaluation, [22, 65]. Equation (27)
shows how the main operator changes with this addition:

𝑚𝑖 = 𝑥𝑟1 + rand ( ) 𝑀 (𝑥𝑟2 − 𝑥𝑟3) , (27)

where rand is a random number in the range of (0 < rand <1) that changes during the evolution process. By multiplying𝑀 by rand, 𝑀 modifies its value. In this way, rand helps
DEA to have a strong reduction of stagnation. Thus, it is
also possible to achieve an improved convergence speed, as
presented in Section 5.The same approach may be applied to
(24) as shown in

𝑚𝑖 = 𝑥best + rand ( ) 𝑀 (𝑥𝑟1 − 𝑥𝑟2) . (28)

4.8. Pseudocode for MODEA in a WAHSN. Employing these
considerations, here the pseudocode for the MODEA is

presented. The algorithm takes the initial parameters of
DE, performs the mutation and recombination, validates the
coordinates (𝑥, 𝑦) and the radius values, and, if necessary,
updates the positions of some nodes. Thereafter, the links
are created for each node, proceeding to form a tree, and in
the case of nodes not connected to the tree, their positions
and radii are updated. After a tree is obtained, the solution
may be selected from the best trees generated, based on the
best fitness value.The algorithm is considered and denoted as
MODEA and also is summarized in pseudocode Algorithm 1.
The details of the pseudocode are listed as follows:

(1) MODEA starts with the following parameters: 𝑀, 𝐶𝑟,𝑁𝑝, 𝐺.

(2) Each individual of population starts as follows: Pop𝑖 =𝑥𝑖,1, . . . , 𝑥𝑖,𝑧; 𝑦𝑖,1, . . . , 𝑦𝑖,𝑧; 𝑟𝑖,1, . . . , 𝑟𝑖,𝑧 and Popinitial =
Pop1. Each 𝑟𝑖,𝑗 = 𝑟max.

(3) Validate 𝑡𝑖 based on coordinates (𝑥, 𝑦) and 𝑟 for
each member of 𝑡𝑖 is performed according to the
boundaries, 𝑟max and 𝑟min. If 𝑟 > 𝑟max or 𝑟min > 𝑟,
(30) is applied to regenerate 𝑟. If (𝑥, 𝑦) are outside the
boundaries, (𝑥, 𝑦) are regenerated.

(4) The Hungarian algorithm receives Popbest (the best
result obtained from final population at the end of
MODEA) and Popinitial to determine the final position(𝑒) of the sensors regarding the initial positions (𝑖).
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Figure 3: Forbidden zone.

(5) The MST is formed by using central node (cnode =5), 𝛼 = 0, and the distance to generate a link between
the nodes (𝑑(𝑁𝑖, 𝑁𝑗), 𝑖 ̸= 𝑗) as

𝑑 (𝑁𝑖, 𝑁𝑗) = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2. (29)

If 𝑑(𝑁𝑖, 𝑁𝑗) > min(𝑟𝑖, 𝑟𝑗) or if there is a forbidden
zone between the nodes, the link does not exist.

(6) For each generation 𝑔 ∈ {1, . . . , 𝐺}, all the individuals
of population are updated according to selection
operator.

For simplification purposes, eachMODEAversionwill be
treated as follows for the next sections of this manuscript:

MODEA rand (23) 󴀚󴀠 MODEA-R,
MODEA rand (with random-𝑀) (27) 󴀚󴀠 MODEA-
RM,
MODEA best (24) 󴀚󴀠 MODEA-B,
MODEA best (with random-𝑀) (28) 󴀚󴀠 MODEA-
BM.

Figure 3 shows the parameter 𝑠𝑐𝑎𝑙𝑒 which scales the
radius of the current node to separate it from the boundaries
of the forbidden zone (see nodes 𝑁1 and 𝑁7 with their
respective radii 𝑟𝑁1 and 𝑟𝑁7) and the limits of the area of
interest. Even when𝑁3 and 𝑁5 are close to each other, if there
is a forbidden area between them, these nodes must use 𝑁4 as
the communication node. Throughout these restrictions, the
nodes are separated while maintaining the MST. To separate
the nodes from the main contour area (𝐿 × 𝐻), 𝑟min is used
instead as a reference.

The MODEA (all rand and best versions and their
corresponding random-𝑀 versions) adjusts the radius value

according to its rules and the given restrictions. The algo-
rithm uses (30) to generate the radius adjustment 𝑟adj when
validating 𝑡𝑖. In this algorithm, the radius of each population
member starts at its maximum value; as a result, the average
radius at the end of the generations is a value above the
minimum radius.

𝑟adj = 𝑟min + rand ( ) (𝑟max − 𝑟min) . (30)

5. Numerical Results and Discussion

The methodology followed in this manuscript was based
on the one presented in [26]. Nevertheless, the treatment
of the scenarios and constraints here presented were stated
by following the convex configurations [35]. Compared to
[26] and other similar works [34], the main differences are
that the center of a circle should be inside in at least one
of its neighbor circles, where all the circle centers must
display a connected graph. The detailed rules are described
in Section 4.8. This approach was adopted before testing
more elaborated bioinspired techniques for future works,
in order to have a baseline and then to determine the
feasibility of MODEA with stricter constraints. A previous
successful approach with the use of nonconvex constraints
and obstacles can be seen in [32]. In future works, such
elaborated bioinspired techniques will be tested (more details
are available in the Conclusion).

The algorithm was implemented inMATLAB to optimize
the distribution of sensors. The effective sensor radius was
assigned between 𝑟min = 6 and 𝑟max = 8 meters, except
the multiple-bounded case, where 𝑟min = 4m, 𝑟max = 6m.
Different shaped-variant target zones were also tested. The
same starting randomnode distribution was implemented on
each scenario, with the purpose of having fair performance
comparisons and the computation of the corresponding aver-
ages, that is, a unique starting node distribution for squared
areas, a unique starting node distribution for polygons, etc.,
where it is clear that all the starting node distributions are not
equal among the analyzed scenarios.

The control parameters were set as 𝑀 = 0.8, 𝑁𝑃 =35, and 𝐶𝑟 = 0.9, where 𝑀 and 𝐶𝑟 were assigned taking
the best reported performance for both parameters in the
open literature [62]. Figure 4 shows the results of the fitness
function against the number of generations of MODEA-
R, MODEA-RM, MODEA-B, and MODEA-BM. These tests
are the average of 50 independent tests on a squared area
of 40m × 40m, 𝐺 = 1000, with the maximum possible
radius; that is, 𝑟min = 𝑟max = 8m. Note that MODEA-
BM outperforms MODEA-R, MODEA-RM, and MODEA-B
obtaining the lowest fitness values. In this specific case, a
value of 𝑤1 = 1.0 is used to obtain a result near to the area
with 10 nodes computed in Section 3.

Comparing the averages obtained among the four ver-
sions of MODEA shown in Figure 4, the authors of
this manuscript decided to use MODEA-BM because the
average obtained on all the 50 tested cases is the best.
The best case for MODEA-BM among these 50 tests was
obtained in the test 23/50, where the notation is denoted
as 𝑛𝑢𝑚𝑡𝑒𝑠𝑡/𝑛𝑢𝑚𝑓𝑢𝑙𝑙𝑡𝑒𝑠𝑡𝑠. This choice was taken even when
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Figure 5: Initial random distribution of 10 sensor nodes.

there is a best result obtained with MODEA-B. Even so,
the previous mentioned results are consistent with those
presented in [34], where MODEA-B became the best pos-
sible option by considering the classical MODEA variants
presented in [20, 22].

Figure 5 shows the initial position of 10 sensors ran-
domly distributed. The sensor nodes are identified as𝑁1, 𝑁2, . . . , 𝑁10, and the circles are the sensor ranges of
the sensor nodes. As explained before, this starting node
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Figure 7: Shortest distance from initial (𝑖) to final (𝑒) node positions
generated by the Hungarian algorithm.

distribution was implemented for all the MODEA versions
for all the 50 tests applied on this squared scenario.

Figure 6 shows the optimized sensor distribution using
the initial sensor positions of Figure 5. Also, the wireless
communication links between the nodes are shown. The
presence of a link between two nodes in the network depends
on the relative distance between them (lower than the
minimum radius between two nodes).

Figure 7 shows the initial and final position of the sensors
nodes, identified with the subindexes (𝑖) and (𝑒), respectively.
Note that the final node positions are at the shortest distance
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Table 2: Bounds: theoretical model (TM) andMODEA-BM results.

10 Nodes
Bounds

Area TM
(m2)

Energy
TM (mW)

Area (m2)
MODEA
Best

Energy
(mW)

MODEA
Best

Lower 113.09 1.8 - 1.8
Upper 1286.7 3.2 1274.6 3.2
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Figure 8: Bounds comparison of 10 nodes, varying 𝑤1 and 𝑤2.

from the initial node positions. Formobile sensors, this infor-
mation about mobility is useful to globally minimize sensor
path distance. Aminimum distance matching algorithm after
MODEA-BM is used to obtain the minimum global traveled
distance between the initial and the final node positions
through the Hungarian algorithm, [53].

Table 2 shows a summary of the results obtained using the
lower energy and the upper area bound equations presented
in Section 3. Also, the results obtained with the MODEA-BM
are shown for comparison purposes (case 23/50). The results
obtained with the use of MODEA-BM are within 99.05% of
the theoretical bounds (1274.6m2/1286.7 m2).With the use of
the random-𝑀 parameter, the MODEA-BM algorithm has a
high convergence speed and stagnation is avoided, as shown
in (27). The upper bounded area is 80.41% of the total area
to be covered (1286.7m2/1600m2); the computed area with
MODEA-BM is 1274.6m2 which represents 79.66% of the
total area to be covered (1274.6m2/1600m2).

Now, in Figure 8 an analysis of the weights 𝑤1 and 𝑤2 of
(30) and how these values affect the optimization of energy
and coverage area is presented for MODEA-BM. It was done
by following the methodology presented in [65, 66]. Here, 𝑤1
varies from 0 to 1 in increments of 0.1; meanwhile the value
of 𝑤2 varies from 1 to 0 so that 𝑤2 = 1 − 𝑤1. The fixed radii
curve (∗) shows the bounds comparison when the values of
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Figure 9: Area formed with two ellipses.

radii between 𝑟max and 𝑟min are equal. The variable radii curve(󳵻) shows the behavior of bounds comparisonwhen the value
of radii varies between 𝑟min = 6m and 𝑟max = 8m. Here, the
observed trend is tomaximize the coverage area; nevertheless
the restrictions help to reduce the radii of the nodes. It was
observed that values of 𝑤1 = 0.6 and 𝑤2 = 0.4 are able to
produce results in which the covered area is maximized and,
meanwhile, the energy is minimized. This is because those
values are near to the case where 𝑟min = 𝑟max = 7m for
the fixed scenario. The results presented here are the average
of 50 independent tests of 𝐺 = 1000 for each point at each
scenario. The tests to obtain the point 𝑤1 = 1.0, 𝑤2 = 0.0
were performed independently of those used to compute the
output for Figure 6.

5.1. Different Scenarios of Testing. Now the results of the
algorithm MODEA-BM parameter applied to the sensor
distribution problem in different shaped-bounded areas are
presented. The number of nodes is obtained by incrementing
the number of sensors depending on the coverage area.
Using 𝑤1 = 0.6, 𝑤2 = 0.4, and 𝐺 = 1000, MODEA-
BM was able to find good sensor distributions. For multiple-
bounded case, 𝐺 = 2500. Restrictions were tuned and set to
obtain a suboptimal result for each of the following scenarios.
Figures 11–16 were obtained by MATLAB with the command𝑖𝑛𝑝𝑜𝑙𝑦𝑔𝑜𝑛 as described in the corresponding subsections.The
best minimum fitness was considered for all the presented
cases.

5.1.1. Scenario 1. Ellipse. To form the ellipse area shown in
Figure 9, the parameters are ℎ𝐴 = ℎ𝐵 = 25, 𝑘𝐴 = 𝑘𝐵 = 25,𝑟𝐴 = 15, 𝑟𝐵 = 25, 𝑎𝐴 = 0.8, 𝑎𝐵 = 1.0, 𝑏𝐴 = 0.6, 𝑏𝐵 = 0.9, where𝐴 is the inner ellipse and 𝐵 is the external ellipse, displayed
into an area of 50m × 50m.The corresponding equations are
listed as follows:
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Figure 10: Results for (a) fitness, area, and (b) energy consumption on the scenario with two ellipses.
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Figure 11: (a) Triangle and (b) pentagon scenarios, best output.

(𝑥 − ℎ𝐴)2𝑎2𝐴 + (𝑦 − 𝑘𝐴)2𝑏2𝐴 = 𝑟2𝐴,
(𝑥 − ℎ𝐵)2𝑎2𝐵 + (𝑦 − 𝑘𝐵)2𝑏2𝐵 = 𝑟2𝐵.

(31)

It is observed in Figure 9 that the circles follow the
contour of the given ellipses, maximizing the coverage area.
The best minimum fitness was obtained for the test 9/50.

Figure 10 shows the total energy consumption of the best
curved-bounded scenario.The covered area ismore than 90%
while the energy is below 4 units. The fitness curve indicates
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Figure 12: (a) Triangle and (b) pentagon scenarios, fitness and area curve.
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Figure 13: (a) Triangle and (b) pentagon scenarios, energy curve.

how both parameters are evolving to be optimized. After 700
generations, the fitness curve becomes stable,maintaining the
area/energy limit values also stable.

The line resolution between two nodes was left as 0.01.
The complete circle contour was considered to determine the

separation of the boundaries. That is, the angles to compute
the radius circle were set as 0 : 0.01 : 360.

5.1.2. Regular Polygons, External Area. MODEA-BM is
applied to the pentagon shown in Figure 11(b) and also to the



14 Mathematical Problems in Engineering

0

5

10

15

20

25

30

35

40

m
et

er
s

10 20 30 400
meters

．5

．7

．9

．2

．6

．16

．10

．12

．1
．17 ．11

．4

．13

．3

．15

．8

．14

Figure 14: Irregular area outside an amorphous zone.

200 400 600 800 10000
Generations

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge

Fitness
Area coverage

(a)

200 400 600 800 10000
Generations

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

En
er

gy
 (m

W
)

(b)

Figure 15: (a) Area, fitness, and (b) energy curves for amorphous figure.

triangle shown in Figure 11(a). The figures here exposed are
obtained using the expression 𝐿𝑇 = linspace(0, 2𝜋, points)
and the equations given below:

𝑥 = 𝐴 [cos (𝐿𝑇 + 𝜋2 )] + 𝑈,
𝑦 = 𝐴 [sin (𝐿𝑇 + 𝜋2 )] + 𝑉,

(32)

where points = 4, 𝐴 = 15, 𝑈 = 20, 𝑉 = 18 in Figure 11(a)
and points = 6, 𝐴 = 10, 𝑈 = 𝑉 = 20 in Figure 11(b). Vectors𝑥 and 𝑦 define the vertices of the polygon. Both polygons are
displayed into an area of 40m × 40m.

Figure 12 shows the area and fitness obtained for both
scenarios. While for triangle the fitness converges before 𝐺 =400, for pentagon the fitness delays to converge before 𝐺 =900. For both cases, the coverage area is greater than 90%.
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Figure 16: Multiple figures scenario.

Figure 13 shows the energy obtained for both scenarios.
While for triangle the energy becomes stable after 𝐺 = 400
with 4 units, for the pentagon the energy holds the same after𝐺 = 800 with 3.6 units.

The best minimum fitness was obtained as 41/50 for
triangle and 45/50 for pentagon. To speed up the algorithm,
each circle was sampled in angles as 0 : 45 : 360 to compute
the radius. The line resolution between two nodes was left as
0.001 in order to detect forbidden crosses on the shaded area.

5.1.3. Irregular External Area. In this scenario, MODEA-BM
is applied to the irregular area shown in Figure 14, which is
obtained with

𝑥 = (2𝐻) 𝑥2
𝑦 = (2𝐻) 𝑦2 + 1,

(33)

where the user can choose the values of vectors 𝑥 and 𝑦 to
generate the irregular polygon of Figure 14. This scenario is
presented to show how the algorithm is able towork with true
irregular areas. Figure 14 is formed by two linked irregular
polygons. The figure is displayed into an area of 40m × 40m.

As shown in Figure 14, the algorithm prevents that links
of the MST from crossing the small polygon, also keeping
a distance between the nodes and the entire polygon. With
17 nodes, it is possible to cover more than 90% of the
amorphous figure (Figure 15(a)) while the energy is below 4
units (Figure 15(b)). The best minimum fitness was obtained
as 10/50.

To speed up the algorithm, each circle was sampled in
angles as 0 : 90 : 360 to compute the radius.The line resolution
between two nodes was left as 0.001 to check if a link crosses
forbidden areas, specially the small triangle of the scenario.

5.1.4. Multiple-Bounded Area. A multiple-bounded area is
shown in Figure 16 with a different radii values, 𝑟min = 4m,𝑟max = 6m, for speeding up the computation of results. The
number of tests here are equal to 20. All the polygons are
displayed into an area of 40m × 40m. This case shows how
the algorithm can be adapted to cover an area with multiple
bounds (forbidden areas). These bounds represent a triangle,
pentagon, star, and two rectangles. For instance, to get the
star figure, the following parameters: V = 12, 𝑡 = (−1/4 :1/V : 3/4) ∗ 2 ∗ 𝜋, 𝑟1 = 10, 𝑟2 = 5, 𝑝 = (0 : V),𝑟 = (𝑟1 + 𝑟2)/2 + (𝑟1 − 𝑟2)/2 ∗ (−1)𝑝 and (34) are used

𝑥 = 𝑟 cos (𝑡) + 25,
𝑦 = 𝑟 sin (𝑡) + 23.5. (34)

Here, the algorithm is able to arrange the obtained MST
as a contour to the given bounds, preventing MST links from
crossing forbidden areas. This effect is seen in the case of the
star, where the links of the nodes do not cross the peaks of the
star. A similar effect is seen for the rectangles, where the nodes
forming the circle go nearly in parallel with 24 nodes. This
property is maintained even in the presence of the thinnest
region that connects the star and the triangle, where there is
no link that crosses it. Thus, it is possible to cover more than
90% of the area of Figure 16 (see Figure 17(a)) with less than
3.5 units of energy (see Figure 17(b)).

The best minimum fitness was obtained as 2/20. To
speed up the algorithm, each circle was sampled in angles as
0 : 30 : 360 to compute the radius and the line between two
nodes was sampled with 0.1 of resolution. When constructing
the final MST, that line is sampled with 0.001 of resolution
to detect if it crosses forbidden zones. The 𝑠𝑐𝑎𝑙𝑒 parameter
guarantees that all the cases do not have issues with the line
resolution when finishing MODEA-BM.
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Figure 17: (a) Area, fitness, and (b) energy curves for multiple figures.

5.1.5. Summary of the Results. Table 3 shows a summary of
the average area results obtained from the different figures
comparing them with the maximum area to be covered.
The results obtained using MODEA-BM parameter are very
close to the area to be covered. On each case, 50 tests were
made to obtain their mean and standard deviation, except
for the multiple case, where only 20 tests were done. The
energy for all the cases remains below 4 units, while the
coverage area is greater than 90% for the best solutions
obtained. The computation of the average and standard
deviation on the area parameter shows that the irregular
external area case remains greater than 90% with the lowest
standard deviation, which is consistent with the fitness value(34.98%). In contrast, the multiple case shows the worst
average (77.35%) and the largest standard deviation (135.10)
and also presents the largest fitness value (46.17%) with the
largest standard deviation (8.00). Even so, for multiple case,
MODEA-BM is able to obtain results where the covered area
is greater than 90%.

Table 4 shows the comparison of the DEA here proposed
to well-known multiobjective optimization algorithms such
as NSGA-II and MOEA/D. The authors modified the generic
versions of both algorithms, where the corresponding source
codes are available in [67]. The default configuration param-
eters were left unmodified except 𝑁𝑝 = 35. Here, only the
base case scenario was tested. For the sake of consistency
and fairness, the same 50 tests were done for the following
presented cases. For MODEA, the radii-variable coordinate
obtained with 𝑤1 = 0.6 and 𝑤2 = 0.4 was included for
the comparison (see Figure 8). For the other multiobjective
algorithms, four different scenarios were tested. Here, 𝑔1(𝑥)

is the nonnormalized version of 𝑓1(𝑥) and 𝑔2(𝑥) is the
nonnormalized energy version of 𝑓2(𝑥). Additionally, 𝐴max is
the area to be covered and𝐸max is given by (22).These variants
are described as follows:

(i) Version-I (V-I): the coordinates of the algorithm are
tested without normalizing them. That means

𝑔 (𝑥) = [𝑔1 (𝑥) 𝑔2 (𝑥)] . (35)

(ii) Version-II (V-II): the coordinates of the algorithm are
tested, but in a normalized way as

𝑔 (𝑥) = [ 𝑔1 (𝑥)𝐴max

𝑔2 (𝑥)𝐸max
] . (36)

(iii) Version-III (V-III): each normalized coordinate is
weighted by 0.5 as

𝑔 (𝑥) = [ 0.5𝑔1 (𝑥)𝐴max

0.5𝑔2 (𝑥)𝐸max
] . (37)

(iv) Version-IV (V-IV): the normalized area (𝑔1(𝑥)) is
weighted by 0.6. Meanwhile, the normalized energy(𝑔2(𝑥)) is weighted by 0.4 as

𝑔 (𝑥) = [ 0.6𝑔1 (𝑥)𝐴max

0.4𝑔2 (𝑥)𝐸max
] . (38)



Mathematical Problems in Engineering 17

Ta
bl
e
3:
A
re
a
to

co
ve
ra

nd
ar
ea

co
ve
re
d
by

M
O
D
EA

-B
M
,p
lu
se

ne
rg
y
co
ns
um

pt
io
n.

Av
er
ag
es
,s
ta
nd

ar
d
de
vi
at
io
n,

an
d
be
st
ca
se
s,
w
he
re

BC
m
ea
ns

be
st
ca
se
,𝜇i

st
he

av
er
ag
e,
an
d

𝜎is
th
e

sta
nd

ar
d
de
vi
at
io
n.

Fi
gu

re
N
um

be
r

D
at
a

Fi
tn
es
s

Pe
rc
en
t%

Fi
tn
es
s𝜎

A
re
a(

m
2
)

M
O
D
EA

-B
M

A
re
a(

m
2
)t
o

co
ve
r

A
re
a

Pe
rc
en
ta
ge

%
A
re
a𝜎

En
er
gy

(m
W
)

En
er
gy

𝜎
Sc
al
e

pa
ra
m
et
er

N
um

be
ro

f
N
od

es

Fi
gu

re
9

St
at
s(𝜇

,𝜎)
42.2

5
5.04

115
1.63

142
7.72

80.6
6

124
.16

3.67
0.19

0.50
0

15
BC

9/50
36.0

0
-

134
9.12

94.4
9

-
3.92

-

Fi
gu

re
11(

a)
St
at
s(𝜇

,𝜎)
37.3

0
1.97

112
0.02

130
6.40

85.7
3

59.7
5

3.67
0.13

0.50
0

16
BC

41/5
0

34.3
6

-
123

5.63
94.5

8
-

3.98
-

Fi
gu

re
11(

b)
St
at
s(𝜇

,𝜎)
39.7

6
4.66

113
6.88

136
2.71

83.4
2

103
.41

3.57
0.18

0.20
0

15
BC

45/5
0

34.8
6

-
126

0.21
92.4

7
-

3.64
-

Fi
gu

re
14

St
at
s(𝜇

,𝜎)
34.9

8
1.80

115
9.72

128
8.5

90.0
0

53.7
9

3.94
0.15

0.20
0

17
BC

10/5
0

31.2
3

-
123

5.06
95.8

5
-

3.90
-

Fi
gu

re
16

St
at
s(𝜇

,𝜎)
46.1

7
8.00

871
.15

112
6.21

77.3
5

135
.10

3.51
0.13

0.40
0

24
BC

2/20
36.7

8
-

102
9.67

91.4
2

-
3.41

-



18 Mathematical Problems in Engineering

Table 4: Comparison of DEA algorithm with some known multi-
objective algorithms. Average on 50 tests.

Algorithm Area (m2) mean Energy (mW) mean
MODEA (ours)
(𝑤1 = 0.6, 𝑤2 = 0.4) 981.9858 2.5266

NSGA-II V-I 1028.5674 2.8120
NSGA-II V-II 667.3309 2.1155
NSGA-II V-III 721.3496 1.9494
NSGA-II V-IV 875.0040 2.3059
MOEA/D V-I 868.0113 2.9287
MOEA/D V-II 708.6827 1.9229
MOEA/D V-III 648.9909 2.0030
MOEA/D V-IV 809.0555 2.3831

According to the results shown in Table 4, MODEA
presents the best average performance among all the cases,
with exception of NSGA-II version V-I. NSGA-II V-I obtains
a coverage area 4.53% larger than MODEA; however the
energy is 10.15% larger. It is shown that MODEA is more
efficient in terms of the energy consumption; meanwhile
NSGA-II increases the coverage area but raises the energy
consumption. The rest of the multiobjective algorithms ver-
sions do not reach a similar area to that obtained byMODEA.

6. Conclusion

Firstly, a base case was thoroughly studied in a theoretical
way to determine the minimum and maximum limits of that
base configuration. This was done to show how MODEA
is able to find a suboptimal solution near to its maximum
theoretical configurationwith great accuracy (99.05%). At the
same time on the samebase case, several feasible optimization
strategies were tested with the use of MODEA, denoted
as MODEA-R, MODEA-RM, MODEA-B, and MODEA-
BM. It can be seen that the addition of the random-𝑀
parameter in Storn’s algorithm helps to converge toward the
optimal solution quickly, particularly for MODEA-BM. For
that reason, MODEA-BM was chosen to evaluate the rest
of the cases here presented, i.e., different area shapes, either
one shape or multiple shapes. Results obtained with 1000
iterations and 𝑤1 = 0.6, 𝑤2 = 0.4 showed that more than 90%
of the targeted area is covered for the best outputs, except for
multiple case. For a highly restricted scenarios like multiple
case, the best outputs showed that the suboptimal solution
is reached in 2500 iterations, even when in general the low
average (77.35%) shows that some of the cases do not reach
the desired output. The MST was adapted to avoid crossing
forbidden areas, creating feasible communication trees while
optimizing the objective function. Nevertheless, the readers
are warned that an adequate restriction tuning leads to a
feasible solution, especially in cases where the area shapes are
irregular, multiple, or a combination of both.Thus, MODEA-
BM prevents the existence of nodes in forbidden areas,
near these areas’ borders, or near each other with a certain
tolerance, thus maximizing the covered area and reducing
energy consumption. MODEA-BM is complemented with

the use of the Prim–Dijkstra algorithm to find on-the-fly the
best possible MST for each population member. MODEA-
BM is also complemented with the Hungarian algorithm
at the end in order to find which movements should be
performed to arrange the initial to the end node positions.

As further work, the following lines of research can be
done: (1) The application of the MODEA algorithm should
be investigated in real indoor coverage areas considering
wireless propagation effects such as shadowing, interference,
obstacles, and multipath. Those restrictions shown by [17, 18]
will complement the results presented in this work. (2)
With some further adaptations, MODEA could be applied
for guiding autonomous sensorial robots in an unexplored
geographical area or (3) in search and rescue operations,
where it is common to have different sensor nodes with
different transmission rates, ranges, and sampling rates. (4)
It would be interesting to compare MODEA against other
well-known bioinspired algorithms such as Ant Colony
Optimization or the latest MODEA versions found in the
open literature (jDE [68], JADE [69], SADE [70], and the
like [62]) and obtain similar results like those shown in [34].(5) A simulation to evaluate MODEA should be done using
random variables to generate irregular coverage areas and
simultaneously determine its impact in forming links in an ad
hoc network, reflected in the construction of routing tables.

Appendix

Figure 18 given in [61] shows the intersection of three circles
called a circular triangle. This figure is used to obtain (14)
and (16), which are used to obtain (16), which is the area of
the circular triangle. The vertices of the circular triangle are
labeled by (𝑥𝑖𝑗, 𝑦𝑖𝑗).

The separation between the centers of circle 1 and circle 2,𝑑12, must satisfy

𝑟1 − 𝑟2 ≤ 𝑑12 ≤ 𝑟1 + 𝑟2. (A.1)

If not satisfied, then there is no circular triangle. However,
if satisfied, the circles intersect in two points. Each intersec-
tion point satisfies the equation of these two circles.

𝑥212 + 𝑦212 = 𝑟21 ,
(𝑥12 − 𝑑12)2 + 𝑦212 = 𝑟22 ,

(A.2)

where (𝑥12, 𝑦12) are the coordinate variables of the intersec-
tion points that correspond to

𝑥12 = 𝑟21 − 𝑟22 + 𝑑2122𝑑12 ,
𝑦12 = 12𝑑12√2𝑑212 (𝑟21 + 𝑟22) − (𝑟21 − 𝑟22)2 − 𝑑412.

(A.3)

Now considering the third circle and using the coordinate
system of (𝑥󸀠, 𝑦󸀠), the equations of the intersection point
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Figure 18: Vertices of the circular triangle.

between circle 1 and circle 3 are derived. Note that 𝑦󸀠13 has
a negative value.

𝑥󸀠13 = 𝑟21 − 𝑟23 + 𝑑2132𝑑13 ,
𝑦󸀠13 = −12𝑑13√2𝑑213 (𝑟21 + 𝑟23) − (𝑟21 − 𝑟23)2 − 𝑑413.

(A.4)

Assuming that 𝑟1 = 𝑟2 = 𝑟3 = 𝑟 = 𝑑, 𝑑12 = 𝑟√2, 𝑑13 = 𝑟,
and 𝑑23 = 𝑟, it is found that

𝑥󸀠13 = 𝑟2 ,
𝑦󸀠13 = −𝑟√32 .

(A.5)

Now, considering that

𝑥13 = 𝑥󸀠13 cos 𝜃󸀠 − 𝑦󸀠13 sin 𝜃󸀠,
𝑦13 = 𝑥󸀠13 sin 𝜃󸀠 + 𝑦󸀠13 cos 𝜃󸀠 (A.6)

and that

cos 𝜃󸀠 = 𝑑212 + 𝑑213 − 𝑑2232𝑑12𝑑13 ,
sin 𝜃󸀠 = √1 − cos2 𝜃󸀠

(A.7)

and substituting values, the following expressions are
obtained

cos 𝜃󸀠 = √22 ,
sin 𝜃󸀠 = √22 ,

𝑥13 = 𝑟 ( √24 + √64 ) ,
𝑦13 = 𝑟 ( √24 − √64 ) .

(A.8)

Using the following equations

𝑥󸀠󸀠23 = 𝑟22 − 𝑟23 + 𝑑2232𝑑23 ,
𝑦󸀠󸀠23 = 12𝑑23√2𝑑223 (𝑟22 + 𝑟23) − (𝑟22 − 𝑟23)2 − 𝑑423,
𝑥23 = 𝑥󸀠󸀠23 cos 𝜃󸀠󸀠 − 𝑦󸀠󸀠23 sin 𝜃󸀠󸀠 + 𝑑12,
𝑦23 = 𝑥󸀠󸀠23 sin 𝜃󸀠󸀠 + 𝑦󸀠󸀠23 cos 𝜃󸀠󸀠,

cos 𝜃󸀠󸀠 = −𝑑212 + 𝑑223 − 𝑑2132𝑑12𝑑23 ,
sin 𝜃󸀠󸀠 = √1 − cos2 𝜃󸀠󸀠

(A.9)
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and substituting values, the following results are obtained

cos 𝜃󸀠 = √22 ,
sin 𝜃󸀠 = √22 ,

𝑥13 = 𝑟 ( √24 + √64 ) ,
𝑦13 = 𝑟 ( √24 − √64 ) .

(A.10)

The use of (16) is to verify that circle 3 forms a circular
triangle under the conditions

(𝑥12 − 𝑑13 cos 𝜃󸀠)2 + (𝑦12 − 𝑑13 sin 𝜃󸀠)2 < 𝑟23 ,
(𝑥12 − 𝑑13 cos 𝜃󸀠)2 + (𝑦12 + 𝑑13 sin 𝜃󸀠)2 > 𝑟23 .

(A.11)

If these conditions are satisfied, then there is a circular
triangle. Now, substituting values,

cos 𝜃󸀠󸀠 = −√22 ,
sin 𝜃󸀠󸀠 = √22 ,

𝑥23 = 𝑟 (√2 − √24 − √64 ) ,
𝑦23 = 𝑟 ( √24 − √64 ) .

(A.12)

Now, the length of the chords 𝑐1, 𝑐2, 𝑐3 is found through

𝑐2𝑘 = (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2 + (𝑦𝑖𝑘 − 𝑦𝑗𝑘)2 . (A.13)

For the case of 𝑐3
𝑐23 = (𝑥13 − 𝑥23)2 + (𝑦13 − 𝑦23)2 . (A.14)

Substituting values, 𝑐3 is given by

𝑐3 = − 𝑟√2 + 𝑟√ 32 . (A.15)

This is (16) of Section 3 assuming 𝑑 = 𝑟 and is different
from the value of 𝑐3 given in [61].
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