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Mechanical nonlinear vibration of slender structures, such as beams, strings, rods, plates, and even shells occurs extensively
in a variety of areas, spanning from aerospace, automobile, cranes, ships, offshore platforms, and bridges to MEMS/NEMS. In
the present study, the nonlinear vibration of an elastic string with large amplitude and large curvature has been systematically
investigated. Firstly, the mechanics model of the string undergoing strong geometric deformation is built based on the Hamilton
principle. The nonlinear mode shape function was used to discretize the partial differential equation into ordinary differential
equation. The modified complex normal form method (CNFM) and the finite difference scheme are used to calculate the critical
parameters of the string vibration, including the time history diagram, configuration, total length, and fundamental frequency. It
is shown that the calculation results from these two methods are close, which are different with those from the linear equation
model. The numerical results are also validated by our experiment, and they take excellent agreement. These analyses may be
helpful to engineer some soft materials and can also provide insight into the design of elementary structures in sensors, actuators

and resonators, etc.

1. Introduction

Mechanical vibration of slender structures, such as beams,
strings, rods, plates, and even shells, occurs widely in a vari-
ety of areas, spanning from aerospace, automobile, cranes,
ships, offshore platforms, and bridges to MEMS/NEMS
(micro/nanoelectromechanical system) [1-5]. On one hand,
the huge vibration amplitude can shorten the lifetime of
the whole structures, with the accumulation of damage or
fatigue of materials [6]. On the other hand, the advantage of
mechanical vibration can be successfully utilized in a lot of
spectrums. For instance, at the nanoscale, Wang et al. used
a situ transmission electron microscopy (TEM) to measure
the dynamic deflection of a cantilever made of multiwalled
carbon nanotube, which was excited to resonance in TEM
[7, 8]. Besides this, Zheng and Jiang proposed the concept of
creation of nanomechanical systems of operating frequency
up to several gigahertz, based on the oscillation of a core in a
multiwall carbon nanotube [9].

The most intriguing issue on vibration is its nonlinear
effect, as the strong nonlinearity can lead to many special
phenomena. Up to now, the nonlinear vibration of structures
has aroused extensive attention in the past decades. A central
task of the nonlinear vibration of beams is to seek their
nonlinear frequencies, and much effort has been devoted
to this problem. For example, Hemmatnezhad and Ansari
[10] studied the frequency of a functionally graded beam by
means of a finite element formulation. In their model, the
von Karman type nonlinear strain-displacement relationship
is employed, and the effects of transverse shear deformation
are included based upon the Timoshenko beam theory.
Similarly, to further seek the nonlinear frequencies, Gunda
and Gupta [11] investigated the vibration of a composite
beam, Nikkar and Bagheri [12] explored the cantilever beam
with an intermediate lumped mass, and Yu and Wu et al. [13]
studied the beam with immovable spring-hinged ends. More
related works include that Raju and Rao [14] formulated the
nonlinear vibration of the beam using multiterm admissible
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functions for the first mode. Then He [15] used the variational
approach to investigate the vibration frequency of a uniform
cantilever beam carrying an intermediate lumped mass.
Hoseini and Pirbodaghi et al. [16] presented the homotopy
analysis method to study the accurate analytical solution for
the nonlinear fundamental natural frequency of a tapered
beam with large amplitude vibration.

At the micro/nanoscale, Gheshlaghi [17] developed the
Euler-Bernoulli beam model and calculated the nonlinear
natural frequencies of the first two modes of a nanowire. In
succession, the harmonic balance method and the asymptotic
numerical method were combined to solve the equations of a
comprehensive multiphysics model of cantilever made of car-
bon nanotube [18]. Moreover, using the different model, i.e.,
the Eringen’s nonlocal elasticity theory, Simsek [19] calculated
the nonlinear vibration frequency of a nanobeam with axially
immovable ends. Similarly, Nazemnezhad et al. [20] got the
exact solution for the nonlinear vibration of a nanobeam, in
use of the nonlocal Euler-Bernoulli theory. For the applica-
tions of devices, Feng et al. [1] studied the nonlinear vibration
of a dielectric elastomer-based microbeam resonator, where
the gas damping and excitation are considered. Han and
Zhang [2] designed a doubly clamped microresonator based
on the large amplitude vibration model. Furthermore, in the
experiments, several measurement methods for the nonlinear
vibration of slender beams were proposed [21, 22].

Although much work has been done on the nonlinear
vibration of beams and in most of references this behavior
was termed as “large amplitude,” however, it should be
stressed that only the normal strain with von Karman type
was considered in most of works. In practice, when a beam
vibrates with large displacement, its amplitude can even
amount to the value on the same order as its length. That
is to say, the large amplitude vibration of the string should
be associated with large displacement, large rotation, and
large curvature, which should be taken into consideration
[23]. Pai and Nayfeh [24] studied the large deformation body
especially considering the large deformation and rotation,
which is a bit complex. Babilioa and Lenci [25, 26] gave
definitions on mechanical and geometric curvatures and,
similarly, Kopmaz and Giindogdu [27] presented different
concepts on mathematical and physical curvatures. With the
same idea, Semler et al. [28] developed a beam equation on
the nonlinear vibration of a pipe conveying fluid. Zhao et
al. [29] used the similar model to investigate the nonlinear
vibration of a nanobeam with surface effects. In addition,
Vlajic and Fitzgerald et al. [30] studied the prestressed beam
with large variable curvature, and they provided the analytical
formulation for static configurations, natural frequencies,
and mode shapes, which were validated by the experiment
and finite element method. It is clearly seen that the above-
mentioned bibliography mostly focuses on beams, and little
literature on string vibration has been mentioned. Although
Nayfeh and Mook [31] analyzed the nonlinear (free and
forced) vibrations of strings and Benedettisi and Rega [32]
studied the forced vibration of a suspended cable associated
with quadratic and cubic nonlinearities, only small amplitude
of the string is considered. The vibration characteristics of a
light axially moving band were investigated by Koivurova in
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use of the Fourier-Galerkin-Newton method [33], where the
von Karman strain was taken into account.

In the present study, we do not concentrate on the
vibration of beams or plates but mainly on an elastic string
or rod made of soft materials such as rubber materials, where
large deformation and curvature can often happen when it
vibrates. In this situation, the string will experience a very
large displacement and especially a large curvature. This issue
is not trivial, as the equation is associated with very strong
nonlinearity. Although the complex normal form method
(CNFM) developed by Nayfeh [34] was adopted to analyze
the nonlinear vibration [29] it works very well in weak
nonlinear vibration system. Then Leung et al. and Zhang et al.
[35, 36] modified the traditional CNFM to predict the natural
frequency in the strong nonlinear dynamics. For the CNFM
introduced by Nayfeh [34], the fundamental frequency is
independent of parameters of the nonlinear terms of the
equation, which equals to the natural frequency of the derived
linear system. However, for the modified CNFM [35, 36], the
fundamental frequency is unknown and needs to be deter-
mined by the parameters of the nonlinear terms of the equa-
tion.

The outline of the paper is organized as follows. In
Section 2, the dynamics equation of an elastic string with
large amplitude and large mechanical curvature is derived
based on the Hamilton principle. Next, in Section 3, the
Galerkin method using the nonlinear mode shape function is
used to discretize the partial differential equation to ordinary
differential equation. Then, the modified complex normal
CNFM is adopted to get the semianalytical solution of
the strong nonlinear vibration of the string in Section 4.
In Section 5, the semianalytical results including the time
history diagram, string configuration, total string length, and
fundamental frequency are calculated, which are compared
with those from the numerical computation and our self-
designed experiment. Finally, the conclusion is given in
Section 6. Although the analysis is aiming to investigate the
string vibration, the route of line can be extended to explore
the vibration of some other elastic structures, such as rods,
beams, plates, and shells.

2. Model Formulation

We consider an elastic string, with an initial configuration
of Line OB, as shown in Figure 1. Refer to the Cartesian
coordinate system O—Xx y, where the origin is located at point
O. The original length of the string is L, and its cross-section
area is A. Young’s modulus and mass density of the string are
E and p, respectively, and point D, is the midpoint of the
string. When the string starts to vibrate in the (%, y) plane,
its axis is elongated and the morphology is curvilinear, which
is schematized in Figure 1. We examine two arbitrary adjacent
material points C,(x, 0) and C(') (x+dx, 0), both in x-axis with
infinitesimal distance dx in the original configuration; then
they transfer to the positions C;(x;,¥,)and C(%,, y,) after
deformation. Considering the large deformation of the string,
the curvilinear coordinate is introduced, where the arc length
s is measured from the origin point O along the axis of the
string.
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FIGURE 1: Schematic of the vibrational configuration of an elastic string with large deformation.

According to Figure 1, the geometric relations of the string
are given as [28, 29, 31]

X, -%=17
y=w

X, —(x+dx)=u+du

)

¥, = W + dw,

where 7 and w are the displacements of point C, along x
and y directions, respectively. It can be seen that, before
deformation, the microelement between C, and Cj, has the
length dx and it becomes ds after deformation. As a result,
the expression of ds is derived as

d§=\/(E2—E1)2+(72—71)2= (1—a’z)z+w’2, 2)

where ' = dui/dx and @' = dw/dx. Due to the fact that the
value of u is much smaller than that of w, the contribution
of ' can be negligible in the vibration process. Therefore, the
strain of an arbitrary point in the string is given by

_ds-dx )
dx
In order to obtain the governing equation of the string, we

deal with this problem by way of energy principle. Firstly, the
kinetic energy of the string can be written as

L
- |
0

where W = dw/dt and t is the time variable.

The elastic strain energy is decomposed into two portions;
i.e., the first contribution originates from the pretension
force of the string N, and the second one comes from the
elongation in the vibration process. Consequently, in a period
from t, to t,, the strain energy can be expressed as

EA t, L N 2
-2 (5e ) axar

2 )i, Jo \Ea
Considering there is no work from the nonconservative
forces, the application of Hamilton principle yields

—
+ w

-1. (3)

pA X, (4)

U (5)

s J:z (T-U)dt = 0. ©6)

1

Because we study the soft slender string, the mechanical
curvature is sufficiently accurate and used more conveniently
for the integration [25, 26]. Therefore, in use of the principle
of variation, the governing equation of the string in vibration

with large amplitude and large mechanical curvature can be
deduced as
— EIZEH

pAw — (N, — EA)

— 3/2
+o” (1+22)") o)
- EAw" = 0.
The boundary conditions at two ends are
w(0,t) =0,
_ (8)
w (L, t) =0,

where w = ®w/d? and 0" = d*w/dx".

It can be seen that when the amplitude of the string is
big enough, the term @'* cannot be ignored in (7), and thus
the governing equation is more complicated, as it has a very
great mechanical curvature. As is well known, the value of
w' is close to zero when the vibration amplitude is small. If
this term is omitted, (7) can degenerate to the classical string
vibration equation, whose amplitude and curvature are both
small and the equation is linear:

— NO—"
w=—uw.

pA

€

For convenience, the following nondimensional quantities
are defined as

w
w=—,
L
x
x=-,
L
_1 N
L\ pA
w = 7r,

T = wt,
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(1-EA/N,)
EA
P = Nyn?’
(10)
Accordingly, (7) can be recast as
" 2.
w ww
we P B R, )
1+ (1+w?)”?

and this equation is termed as the dimensionless large
amplitude vibration (LAV) equation throughout this study.

Then the boundary conditions and initial conditions are
rewritten as

w (0, 7) =0,

w(l,7) =0,
(12)
w (x,0) = asin (nx),

W (x,0) = 0.

At the same time, the linear equation is nondimensionalized
as

wWw=—w . (13)

In the above equations, the related expressions are w =
dw/dr?, W' = dw/dx, and w” = d*w/dx?, and a is the
amplitude of the middle point in the string, i.e., point D,,.

3. Mode Discretization with Exact Mode Shape

The following task is to solve (11), which is an intractable
problem. Clearly, it seems impossible to directly get the ana-
Iytical solution of this highly nonlinear equation. Therefore,
in use of the Taylor series, (11) can be expanded into the
following polynomial expansion until 5th-order terms, where
the terms of higher order are ignored:

" 12 14
.w 3w 15w "
w=—2+[31<—7+ 3 )w (14)

It is clear that (14) is still a high order and nonlinear partial
differential equation (PDE), and seeking the closed form
solution is not at hand. Herein, the Galerkin discretization
method is utilized to transform the PDE into the ordinary
differential equation (ODE). The previous result [18] tells us
that the first-mode analysis of vibration is sufficient to capture
the main nonlinear characteristics and can get the funda-
mental frequency accurately enough. Hence, we take the trial
to only consider the first mode of the vibration, aiming to
get an approximate solution for the first step. Moreover, the
mode shape is a critical factor to affect the vibration of the
continuously beam, rod, and string. For the small amplitude
vibration of string with simply supported condition, the first-
mode shape function is often assumed by linear mode shape
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function [31] described by sin(mrx). However, for the large
curvature vibration, especially the amplitude of the middle
point nearly 0.4-0.5 times of span of simply supported string,
the mode shape function, sin(7x), based on the linear the
mode shape, fails. The exact mode shape function should
be selected considering the physical experiments given in
Section 5.3. Assume that the displacement w(x,7) can be
described as

w(x,1)=q(T)W (x) (15)
and

W (x) = sin (rx) \/1 + cos? (7x). (16)

Substituting (15) and (16) into (14), multiplying both sides
of the equation by W(x) and then integrating both sides
from 0 to 1 yields the following ODE equation with strong
nonlinearities:

g+ “’(2)‘1 + k1q3 + kzqs =0, (17)

where wé =1.0745, k, = -8.1836f3,, and k, = —53.5149f3,.

In order to compare the large curvature vibration with
the small amplitude vibration, for the linear equation in (13),
the classic mode shape function sin(rx) is adopted; thus
the classic the dimensionless ODE can degenerate to § +
q = 0. Then one can obtain the theoretical solution easily,
which is named as theoretical solution of the linear equation
throughout the paper.

4. Semianalytical Solution Using
CNFM Method

Equation (17) is strong nonlinear system due to the nonlinear
terms q° and g° which are far more large than the linear term
q. Although He’s variational method [6, 12, 15, 19], harmonic
balance method [18], and Homotopy analysis method [16]
are used widely in the strong nonlinear system, the modified
CNFM method [29, 34-36] gives more accurate results based
on the experience of the authors. Next, we use the modified
CNEFM approach to solve (17). We assume that the solution of
(17) can be formulated as

q= E + E’
q=iw, (E-£),
where & is the complex conjugate of € and w, is the unknown

fundamental natural frequency to be determined. Introduce
a nonlinear transformation from & to # in the form of

§=n+h(nmn), (19)

where # and 7 are complex conjugates and they are both
complex functions.

The near identity transformation function 4 including the
variables 77 and 7] is expressed as

(18)

h(n,7) = A+ Ay + A3’73 + A4ﬂzﬁ+ As’?ﬁz
+ AT + A + A’ + Ao’ (20)
+A 10’72ﬁ3 + A11’1ﬁ4 + A12’15

where A; (i=1...12) are real numbers.
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Substituting (18)-(20) into (17), one can get

o ) oh . oh. iw, [y
11:zw111+1w1h—5111——_11+— — -1

-(r]+ﬁ+h+ﬁ) (21)

i

+2—wl[k1 (r/+r_]+h+ﬁ)3+k2(;7+ﬁ+h+ﬁ)5],

where h and h are complex conjugates. Substituting (19) and
(20) into (18) leads to

g=n+1+(A, +A2)(’7+ﬁ)+(A3+A6)(’13+ﬁ3)
+(A,+A5) (n2ﬁ+17ﬁ2) +(A,+A,) (;75 +ﬁ5) .
+(Ag +A11)(’74ﬁ+’7ﬁ4)
+(Ag+000) (7 +17°7).

To eliminate the secular terms #, #7, and #°%" in (22), the
following conditions should be met:

A1+A2:0; (23)
Ay+Ag=0 (24)
Ag+Ay=0. (25)

Moreover, let the coefficients of terms 7, 113 , r]ﬁz, ﬁ3, ;15 , rf‘ﬁ,
w7, ', and 77 in the right side of (22) vanish, as they are
the nonresonant terms, which are much smaller than term
n. Thus twelve equations are obtained in Appendix. Solving
(23)-(25) and the related equations in Appendix, we can
acquire the parameters A; (i=l...., 12), which are given in
Appendix.

After these operations, the resonant terms 7, 7, and #°7”
will remain in (21), and the equation is simplified to

o Llrw] 3k o
=i i—
n 20, n 20, nn
(26)
1 32
+ zz—w1 (10k, = 3k, M) 777",
where the real parameters A is given in Appendix.
Assume
_ 1 iw t
n= Eae R (27)

where a is the dimensionless vibration amplitude and w,
is the fundamental frequency which is to be determined.
Substituting (27) into (26) leads to

a=0

W@} 3k o 10k =3kAg (28)

w,; =
T 20, 8w, 32w,

The first equation in (28) indicates that the amplitude a
is a constant determined by the initial condition, and the
second equation determines the fundamental frequency w,.
Substituting A; (i=1,..., 12), a and w, into (22), one can get
the final solution of (17) as

q =acos(wt)

1 1
+ Z(A3+A6)QS+I—6(A8+A11)“5 (29)
1
- cos (3w, t) + e (A, +A,)a’cos (5w,t).

5. Results and Discussion

5.1. Numerical Scheme. To get a more accurate solution, the
finite difference method (FDM) is used to directly calculate
the PDE, which manifests a robust method. The central
difference is adopted, i.e., w o= W', - w;‘_l)/Z(Ax),

wl! _ (w ntl

n
j+1

- Zw? + w;’fl)/(Ax)z, and v = (w

Jjtl J

2wy + w}H)/(AT)Z, where j and n are both integers and
Ax and At are the space and time steps, respectively. In the
simulation process, the string is made of soft material such
as rubber. The physical parameters of the string are measured
as follows: mass density p=798 kg/m”’, length L=68.77 mm,
cross-section area A=2.282 mm?®, pretension force along the
axial direction N,=0.68 N, and Young’s modulus E=0.85
MPa. The computational program is written in MATLAB 12,
where the time step At is set as 0.001 and the space step Ax is
set as 0.01. In the FDM discretization, when 7 = 0and 7 = At,
the displacement w’j = asin[w(Ax)(j—-1)], (i=1,2), and j takes
the value from 1 to 101.

5.2. Time History Diagram of the Midpoint. Evidently, the
midpoint D, is a critical point which should be carefully
examined, as it may be associated with the largest amplitude
of the string. When the initial amplitude of D, is bigger,
such as a=0.4 and 0.45, the related curves in the time history
diagram are displayed in Figure 2. It can be seen that, with
the evolution of time, the difference between the LAV model
and the linear equation becomes more obvious; and the result
from the semianalytical solution is in agreement with the
numerical result, although there is slight difference as shown
in Figure 2. As displayed in Figure 2(a), in the time interval
from 0 to 20, there are nearly 4 periods in the LAV model
and only 3 periods in the linear equation model. It can also
be observed when T = 15.7 that the motion of the point
predicted by the LAV equation is nearly one-half period faster
than that by the linear equation. This indicates that the whole
motion of the string predicted by the LAV equation is quicker
than that predicted by the linear equation.

5.3. Vibrational Configurations. In what follows, we compute
the configurations of the string with large amplitude a=0.4
in one period, which are shown in Figures 3(a)-3(h). Firstly,
it is noted that there is great difference between the results
from the LAV model and the linear equation model as shown
in Figure 3. This again stresses that the linear equation is
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FIGURE 2: Time history diagram of point D,, with the initial amplitudes (a) a = 0.4 and (b) a = 0.45.

insufficient to depict the vibration with large amplitude and
large curvature. However, in the whole period, although there
is difference between the results from the semianalytical
method and numerical simulation, the configurations pre-
dicted by the two methods are close. Therefore, it should be
mentioned that the calculated string morphologies by the
semianalytical are more similar to those from the numerical
results than those from the linear equation model.

The next phenomenon is that the numerical morpholo-
gies of the string are very complicated in the vibration
process. For instance, when 7=5.3, 6.0, 8.0, and 10.5 in Figures
3(a), 3(b), 3(d), and 3(h), there are some nearly horizontal
segments appearing in the curves. This strange behavior may
be attributed to the complex nonlinear dynamics response,
where the clamped ends exert strong constraints on the
string and vice versa; near the middle part of the string,
the constraint is much weaker. Another possible reason
is that the first-mode analysis of the string may be an
oversimplified model and the higher-mode behaviors must
be further considered to illustrate this phenomenon. Further-
more our semianalytical solution can also have the similar
shapes in this figures, especially near the middle part of the
string.

To verify this numerical result, we perform an experiment
as a comparison, where the string configurations in the
vibration are shown in Figures 4(a)-4(h). A rubber string
with 1.408x1.630 mm” cross-section is fixed horizontally on a
desktop at room temperature, whose original length L is 50.85
mm. To add the pretension force on the string, the deformed
length of the string is elongated to [=68.77 mm and origin
area of the cross-section is 2.282 mm?. Thus the prestrain
can be given as e=(I-L)/L=0.3524, and using the measured
value of Young’s modulus E=0.85 MPa, the pretension force
is Ny=0.68N. At first, in the vertical plane the midpoint of
the string is excited by an original amplitude, which is 0.4
times of the string length L. Next, the string is released, and

then its vibration sequences are recorded by the high speed
camera (Phantom v2512 with 10000 frames per second). As
shown in Figures 4(a), 4(b), 4(c), and 4(d), we find that there
are really platform segments appearing in the string and the
total configurations in these situations are close to the shape
of trapezoid. Meanwhile, the string is no longer a straight
line when it approaches the equilibrium position as shown
in Figures 4(e) and 4(f), implying that the length of the string
is bigger than its original length. These behaviors are beyond
our imagination, as they demonstrate the complexity of the
nonlinear dynamics.

5.4. Total String Length. It can be seen that in both the LAV
equation and the linear equation, the extensibility of the
string is considered; thus its length can be calculated and
the two curves are compared in Figure 5. The nondimen-
sional length of the string after deformation is expressed as

I/L = IOL V1 + w?dx/L. For the linear equation model, this
nondimensional length is a periodic function with respect
to the time 7, i.e,, I[/L(t + T/2) = I/L(t). This means that
the maximum and minimum values of the string length do
not alter in the vibration process. Especially, when the string
approaches the x-axis, it is really a straight line, and thus the
value of I/L is of the smallest value, i.e., one. This feature
reemphasizes that the small amplitude vibration has linear
properties. On the contrary, the oscillation behavior of the
string length is more complex in the LAV model, where
its minimum value increases with the elapsing time. In this
situation, the dimensionless string length is always bigger
than one, indicating that the string is always in the elongation
state, even when it approaches the x-axis. In the experiment,
such as in Figures 4(e), 4(f), 3(e), and 3(f), the shapes of the
string are not merely straight lines and its length at this critical
time must be larger than one. Evidently, this consistence on
the experimental phenomenon can validate the efficiency of
our numerical method.
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FIGURE 3: Vibrational configurations of an elastic string, when (a) 7=5.3; (b) 7 = 6.0; (c) 7 = 7.0; (d) 7 = 8.0; (¢) T = 9.0; (f) T = 9.3; (g)

7 =10; (h) T = 10.5.
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FIGURE 4: Vibrational configurations of the string in the experiment.

5.5. Fundamental Frequency. Another vibration characteris-
tic parameter about vibration is the frequency, and in the
current study, the value of the fundamental frequency is
obtained by the solution of (28), and it is also tested by the
experimental measurement. When the vibration has a small
amplitude, vibration of the string, its dynamic behavior can
be formulated by the linear equation § + q = 0, with the
natural frequency always being w, = 1, which is irrelative to
the initial amplitude. We observed in Figure 6 the difference
between the semianalytical method and experiment method
is great. The main reason is that, for the small amplitude,
the mode shape function should be sin(mx) rather than
sin(7rx) /1 + cos?(7x). The frequency exhibited in Figure 6
demonstrates that our mode shape function should not be

used for the small amplitude vibration. However, for the
large amplitude vibration, the fundamental frequency is not
a constant and its value is greatly affected by the initial
amplitude. As shown in Figure 6, with the increase of the
amplitude, the fundamental frequency also increases, which
is verified by the experimental results. Although there exits
value difference between the semianalytical solution and the
experimental data, their tendencies are the same and both
of the two results are bigger than one with the increase of
initial amplitude a. This behavior again demonstrates the
complicated response of the nonlinear dynamics, which is
very sensitive to the initial value. It should be clarified that our
mode shape function only for the large amplitude vibration
with the ratio (amplitude of the middle part of the string
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—— LAV equation numerical solution
---- Linear equation theoretical solution

FIGURE 5: Total length of the string based on the LAV equation and
linear equation.

1.20 T T T

w

1.08

1.04

1.00
0.0 0.1 0.2 0.3 0.4

—=— LAV equation semianalytical solution
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—a— Experiment

FIGURE 6: Relation between the fundamental w, and the initial
amplitude a.

to the whole span) is nearly 0.2-0.5. If the ratio is greater,
different mode shape functions should be selected and the
similar analysis process can be carried out.

6. Conclusion

In conclusion, the nonlinear vibration of a soft elastic
string with large amplitude and large curvature has been
systematically investigated in this study. The mathematical
model in the absence of damping is developed based on the
Hamilton principle. The exact mode shape function different
from the counterpart derived from the linear equation was
selected based on the experiment. For the large amplitude
vibration, the time history diagram from the semianalytical
is very close to that from the numerical result and these
two results are very different from that of the linear model.
The vibration configurations of the elastic string have the
similar laws as those of the time history diagrams based on

the comparison of the three models. We find that, in the
numerical calculations, there are platform segments with the
shape of trapezoid appearing in the configuration curves,
and this phenomenon has been verified by our semianalytical
solution and the experiment. The total length of the string in
the large deformation shows that it is not a periodic function
with respect to the time, which is distinct with the result of
the linear model. We also point out that the fundamental
frequency of the string with large amplitude vibration is
greatly affected by the initial amplitude, which has the same
tendency as our experiment result.

It should be mentioned that this study is only the first
trial on the nonlinear vibration of elastic structures with
large amplitude and large curvatures. The following work is
expected, which will be extended to some other engineering
structures, such as beams, rods, plates, and shells. These
analyses may be beneficial to engineer some soft materials
and can also shed light on the design of elementary structures
in sensors, actuators and resonators, etc.

Appendix

A. Equations to Determine Coefficients of
Nonresonant Terms

Besides (23)-(25), the other equations to determine the value

of A, (i=L..., 12) are
2 2
ilw; —w
2iw, A, + ( ; 1) =0;
W
(2 2
ilw; —w
2iw; A s~ ( ; 1)( Ag)—o— =
)
3ik,
2iw; A g +l— =0;
2w,
(2 2
ilw; —w i
41(,()1A6+(0—1)(A 6)+i:0;
2w, 2w,
. i (wp - o) 3ik
diw, A Z—wl(A7+A12) 2w11 (As+Ay)
_Hy
2w, -
. i () - @}) 6ik
2iw Ag - 20, (A8+A11)_2_w11(A3+A6)
5
_ Stk _,
2w,
1
2iw; Ay + 31k1 (As 6) Olk
) i(wg—wf)
4""1A11+T(A8+A11)
1

6ik 5ik
+ (AL + A+ 222 2
2w, 2w,
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. i (wg - )
iy + = (A 4 8)

3ik ik
+ 2L (A + A+ 2 = 0.
2w, 2w,
(A])
B. Formulas of Parameters A
The parameters A; ( i=1,...,12) are
Ay = -7,
2 2
w; — W
Az _ 1 - 0’
4wy
Ay =24,
k
Mg = o
w; — 9wy
A, =-As,
3k
Ag=-—1,
4wy
3, (B.)
7= 2 12>
6k, A — 2k,
A= e
wy — Wy
Ag=-2A,
6k, A — 5k,
A=
wy — Wy
Ag=-Ayp,
3k, A — 10k,
AIO = -2
4wy
Data Availability

No data were used to support this study.

Ethical Approval

Ethical approval was obtained for this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the National Natural Sci-
ence Foundation of China (nos. 11672334, 11672335 and
11611530541) and the Endeavour Australia Cheung Kong
Research Fellowship Scholarship from the Australian govern-
ment.

Mathematical Problems in Engineering

References

(1]

[3

(10]

(11]

(12]

C. Feng, L. Yu, and W. Zhang, “Dynamic analysis of a dielectric
elastomer-based microbeam resonator with large vibration
amplitude,” International Journal of Non-Linear Mechanics, vol.
65, pp. 6368, 2014.

J. Han, Q. Zhang, and W. Wang, “Design considerations on
large amplitude vibration of a doubly clamped microresonator
with two symmetrically located electrodes,” Communications in
Nonlinear Science and Numerical Simulation, vol. 22, no. 1-3, pp.
492-510, 2015.

T. Beléndez, C. Neipp, and A. Beléndez, “Large and small deflec-
tions of a cantilever beam,” European Journal of Physics, vol. 23,
no. 3, pp. 371-379, 2002.

L. Wang and Y. Zhao, “Large amplitude motion mechanism
and non-planar vibration character of stay cables subject to the
support motions,” Journal of Sound and Vibration, vol. 327, no.
1-2, pp. 121-133, 2009.

M. Spagnuolo and U. Andreaus, “A targeted review on large
deformations of planar elastic beams: extensibility, distributed
loads, buckling and post-buckling,” Mathematics and Mechanics
of Solids, pp. 1-23, 2018.

M. P. Omran, A. Amani, and H. G. Lemu, “Analytical approxi-
mation of nonlinear vibration of string with large amplitudes,”
Journal of Mechanical Science and Technology, vol. 27, no. 4, pp.
981-986, 2013.

Z.L. Wang, P. Poncharal, and W. A. De Heer, “Measuring phys-
ical and mechanical properties of individual carbon nanotubes
by in situ TEM,” Journal of Physics and Chemistry of Solids, vol.
61, no. 7, pp. 1025-1030, 2000.

Z.L. Wang, R. P. Gao, P. Poncharal, W. A. De Heer, Z. R. Dai, and
Z. W. Pan, “Mechanical and electrostatic properties of carbon
nanotubes and nanowires,” Materials Science and Engineering
C: Materials for Biological Applications, vol. 16, no. 1-2, pp. 3-10,
2001.

Q. Zheng and Q. Jiang, “Multiwalled Carbon Nanotubes as
Gigahertz Oscillators,” Physical Review Letters, vol. 88, no. 4,
2002.

M. Hemmatnezhad, R. Ansari, and G. H. Rahimi, “Large-
amplitude free vibrations of functionally graded beams by
means of a finite element formulation,” Applied Mathematical
Modelling: Simulation and Computation for Engineering and
Environmental Systems, vol. 37, no. 18-19, pp. 8495-8504, 2013.
J. B. Gunda, R. K. Gupta, G. Ranga Janardhan, and G. Venkates-
wara Rao, “Large amplitude vibration analysis of composite
beams: Simple closed-form solutions,” Composite Structures,
vol. 93, no. 2, pp- 870-879, 2011.

A. Nikkar, S. Bagheri, and M. Saravi, “Dynamic model of large
amplitude vibration of a uniform cantilever beam carrying an
intermediate lumped mass and rotary inertia,” Latin American
Journal of Solids and Structures, vol. 11, no. 2, pp. 320-329, 2014.
Y. P. Yu, B. S. Wu, Y. H. Sun, and L. Zang, “Analytical approxi-
mate solutions to large amplitude vibration of a spring-hinged
beam,” Meccanica, vol. 48, no. 10, pp. 2569-2575, 2013.

K. K.Rajuand G. V. Rao, “Towards improved evaluation of large
amplitude free-vibration behaviour of uniform beams using
multi-term admissible functions,” Journal of Sound and Vibra-
tion, vol. 282, no. 3-5, pp. 1238-1246, 2005.

J-H. He, “Variational approach for nonlinear oscillators;”
Chaos, Solitons and Fractals, vol. 34, no. 5, pp. 1430-1439, 2007.
S. H. Hoseini, T. Pirbodaghi, M. T. Ahmadian, and G. H. Far-
rahi, “On the large amplitude free vibrations of tapered beams:



Mathematical Problems in Engineering

[17

(18

(20]

(21]

[22]

(23]

(24]

(25]

[26

(27]

(31]

an analytical approach,” Mechanics Research Communications,
vol. 36, no. 8, pp. 892-897, 2009.

B. Gheshlaghi, “Large-amplitude vibrations of nanowires with
dissipative surface stress effects,” Acta Mechanica, vol. 224, no.
7, pp- 1329-1334, 2013.

S. Souayeh and N. Kacem, “Computational models for large
amplitude nonlinear vibrations of electrostatically actuated
carbon nanotube-based mass sensors,” Sensors and Actuators A:
Physical, vol. 208, pp. 10-20, 2014.

M. Simsek, “Large amplitude free vibration of nanobeams with
various boundary conditions based on the nonlocal elasticity
theory,” Composites Part B: Engineering, vol. 56, pp. 621-628,
2014.

R. Nazemnezhad and S. Hosseini-Hashemi, “Exact solution for
large amplitude flexural vibration of nanobeams using non-
local Euler-Bernoulli theory,” Journal of Theoretical and Applied
Mechanics (Poland), vol. 55, no. 2, pp. 649-658, 2017.

K. Nakamura, K. Kakihara, M. Kawakami, and S. Ueha, “Mea-
suring vibration characteristics at large amplitude region of
materials for high power ultrasonic vibration system,” Ultrason-
ics, vol. 38, no. 1, pp- 122-126, 2000.

A. Mozuras and E. Podzharov, “Measurement of large harmonic
vibration amplitudes,” Journal of Sound and Vibration, vol. 271,
no. 3-5, pp. 985-998, 2004.

J. C. Simo, “A finite strain beam formulation. The three-dimen-
sional dynamic problem. Part 1" Computer Methods Applied
Mechanics and Engineering, vol. 49, no. 1, pp. 55-70, 1985.

P-F. Pai and A.-H. Nayfeh, “A new method for the modeling of
geometric nonlinearities in structures,’ Computers & Strucrures,
vol. 53, no. 4, pp. 877-895, 1994.

E. Babilio and S. Lenci, “On the notion of curvature and
its mechanical meaning in a geometrically exact plane beam
theory;” International Journal of Mechanical Sciences, vol. 128-
129, pp. 277-293, 2017.

S. Lenci, E. Clementi, and G. Rega, “Comparing Nonlinear Free
Vibrations of Timoshenko Beams with Mechanical or Geo-
metric Curvature Definition,” Procedia IUTAM, vol. 20, pp. 34—
41, 2017.

0. Kopmaz and O. Giindogdu, “On the curvature of an Euler-
Bernoulli beam,” International Journal of Mechanical Engineer-
ing Education, vol. 31, no. 2, pp. 132-142, 2003.

C. Semler, G. X. Li, and M. P. Paidoussis, “The non-linear equa-
tions of motion of pipes conveying fluid;” Journal of Sound and
Vibration, vol. 169, no. 5, pp. 577-599,1994.

D. Zhao, J. Liu, and L. Wang, “Nonlinear free vibration of a
cantilever nanobeam with surface effects: Semi-analytical solu-
tions,” International Journal of Mechanical Sciences, vol. 113, pp.
184-195, 2016.

N. Vlajic, T. Fitzgerald, V. Nguyen, and B. Balachandran,
“Geometrically exact planar beams with initial pre-stress and
large curvature: Static configurations, natural frequencies, and
mode shapes,” International Journal of Solids and Structures, vol.
51, no. 19-20, pp. 3361-3371, 2014.

A.H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley
& Sons, New York, NY, USA, 1979.

F. Benedettini and G. Rega, “Non-linear dynamics of an elastic
cable under planar excitation,” International Journal of Non-
Linear Mechanics, vol. 22, no. 6, pp. 497-509, 1987.

H. Koivurova, “The numerical study of the nonlinear dynamics
of alight, axially moving string,” Journal of Sound and Vibration,
vol. 320, no. 1-2, pp. 373-385, 2009.

(34]

(35]

1

A. H. Nayfeh, The Method of Normal Forms, Wiley-VCH, Wein-
heim, Germany, 2nd edition, 2011.

A. Y. Leung and Q. C. Zhang, “Complex normal form for
strongly non-linear vibration systems exemplified by Duffing-
van der Pol equation,” Journal of Sound and Vibration, vol. 213,
no. 5, pp. 907-914, 1998.

W. Wang, Q. C. Zhang, and X. J. Wang, “Application of the
undetermined fundamental frequency method for analyzing
the critical value of chaos,” Acta Physica Sinica, vol. 58, no. 8,
pp. 5162-5168, 2009.



Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences  Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in ] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in



https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

