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The human skeleton can be considered as a tree system of rigid bodies connected by bone joints. In recent researches, substantial
progress has been made in both theories and experiments on skeleton-based action recognition. However, it is challenging to
accurately represent the skeleton and precisely eliminate noisy skeletons from the action sequence. This paper proposes a novel
skeletal representation, which is composed of two subfeatures to recognize human action: static features and dynamic features.
First, to avoid scale variations from subject to subject, the orientations of the rigid bodies in a skeleton are employed to capture the
scale-invariant spatial information of the skeleton.The static feature of the skeleton is defined as a combination of the orientations.
Unlike previous orientation-based representations, the orientation of a rigid body in the skeleton is defined as the rotations between
the rigid body and the coordinate axes in three-dimensional space. Each rotation is mapped to the special orthogonal group 𝑆𝑂(3).
Next, the rigid-body motions between the skeleton and its previous skeletons are utilized to capture the temporal information of the
skeleton.The dynamic feature of the skeleton is defined as a combination of the motions. Similarly, the motions are represented as
points in the special Euclidean group 𝑆𝐸(3).Therefore, the proposed skeleton representation lies in the Lie group (𝑆𝐸(3)×⋅ ⋅ ⋅×𝑆𝐸(3),𝑆𝑂(3) × ⋅ ⋅ ⋅ × 𝑆𝑂(3)), which is a manifold. Using the proposed representation, an action can be considered as a series of points in
this Lie group. Then, to recognize human action more accurately, a new pattern-growth algorithm named MinP-PrefixSpan is
proposed to mine the key-skeleton-patterns from the training dataset. Because the algorithm reduces the number of new patterns
in each growth step, it is more efficient than the PrefixSpan algorithm. Finally, the key-skeleton-patterns are used to discover the
most informative skeleton sequences of each action (skeleton sequence). Our approach achieves accuracies of 94.70%, 98.87%,
and 95.01% on three action datasets, outperforming other relative action recognition approaches, including LieNet, Lie group,
Grassmann manifold, and Graph-based model.

1. Introduction

Human action recognition is currently the most dynamic
research topic in the field of computer vision, owing to its
applications in intelligent surveillance, video games, robotics,
and other fields. Several approaches have been proposed to
recognize human action from RGB video sequences over
the past few decades [1], but their performance is unsatis-
factory because RGB data are very sensitive to factors such
as perspective changes, occlusions, and background clutter.
Although significant research results have been achieved,
human action recognition remains a challenging problem.

Because the human skeleton can generally be regarded as
an articulated system of rigid segments, which are connected

by joints, human action can be viewed as a continuous
evolution of the spatial configuration, which is constructed
by these rigid segments [2]. Therefore, if human skeleton
sequences can be accurately extracted from RGB videos,
action recognition can be performed by classifying these
sequences. However, it is very difficult to accurately extract
a skeleton sequence from RGB videos [3]. With the advent
of cost-effective RGB-D cameras, it has become easier to
extract the three-dimensional (3D) human skeleton from
depth maps. Although this improves the appearance and
viewpoint variations to a certain extent [4–7], the following
two challenges cause large intraclass variations and remain
unresolved. First, different people can perform the same
action in different ways. Second, the 3D human skeleton
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Figure 1: The general framework of the proposed method.

is sometimes imprecise because depth maps include noisy
information. However, a psychological research found that
humans can easily recognize an action from a pose sequence
[8]. According to the work of [8], Yang et al. considered
that actions can be classified by a single key pose [9]. This
suggests that a set of key skeletons can be used to perform
action classification rather than the entire skeleton sequence.
Since the representation of the key poses is robust to outlier
poses, this approach should improve the accuracy of action
recognition as long as the key poses are accurate.

The general framework of the proposed approach is
shown in Figure 1. By observing human action in daily life,
the orientations and motions of rigid bodies can include
a lot of useful information for action recognition. In this
paper, a new skeletal representation, which is composed
of the static feature and dynamic feature, is proposed for
3D skeleton-based action recognition. The static feature is
used to represent the spatial information in a given skeleton
t. To capture the scale-invariant spatial information, the
orientations of the rigid bodies in the skeleton are employed
to construct its static feature. In this work, the orientation
of a rigid body in the skeleton is represented as six rotation
matrices between the rigid body and the three coordinate axes
in 3D space. The rotation matrices are mapped to the special
orthogonal group 𝑆𝑂(3)[10]. Next, the dynamic feature is
employed to represent the temporal information of skeleton t.
The dynamic feature is composed of the rigid-body motions
between skeletons t and t-1 and those between skeletons t
and 1 (the three skeletons belong to the same sequence or
action). The motions are represented as points in the special
Euclidean group 𝑆𝐸(3)[11]. Hence, skeleton t is represented
by a point in Lie Group (𝑆𝐸(3) × 𝑆𝐸(3) ⋅ ⋅ ⋅ × 𝑆𝐸(3), 𝑆𝑂(3) ×𝑆𝑂(3) ⋅ ⋅ ⋅ × 𝑆𝑂(3)),where the operation × represents the
direct product between groups in group theory. Using the
proposed skeleton representation, a human action (skeleton
sequence) can be represented as points in the Lie group.
However, it is typically a very complicated task to classify
human actions represented by a Lie group directly. Many
standard classification approaches, such as the support vector
machine (SVM)[12] approach, are not directly applicable to

Lie groups. To overcome the classification difficulties, the
actions (skeleton sequences) are mapped from the Lie Group
to its Lie algebra (se(3) × se(3) × ⋅ ⋅ ⋅ × se(3), 𝑠o(3) × so(3) ×⋅ ⋅ ⋅×so(3)), which are the elements of the tangent space of the
manifold at the identity element. The Lie algebra is a vector
space, which makes action classification easier.

An action (skeleton sequence) usually includes many
noisy skeletons, which can reduce the action recognition
accuracy. In this study, the key-skeleton-patterns are used to
eliminate noisy skeletons from an action, and the remaining
skeletons in the action are called the most informative skele-
ton sequence. First, a pattern is defined as a short skeleton
sequence, which is not necessarily adjacent in the original
skeleton sequences. If the short skeleton sequence appears
in many skeleton sequences of an action class, the pattern is
called the key-skeleton-pattern in that class. Next, tomine the
key-skeleton-patterns, k-means is used to learn the symbolic
dictionary from all skeletons in the dataset. Each symbol
in the dictionary represents a class of similar skeletons,
which means that each skeleton is quantized (represented)
by a symbol in the dictionary. Then, a skeleton sequence
can be represented as a symbol sequence. In this paper,
probability is used tomeasure the distance between a skeleton
and its corresponding symbol in order to minimize the
effect of quantization errors (e.g., two different skeletons are
quantized by the same symbol).Hence, each skeleton is repre-
sented by a distance-based probability, and an action is repre-
sented as a probability sequence. Then, a new pattern-growth
algorithm named MinP-PrefixSpan is proposed to mine the
key-skeleton-patterns of an action class from the symbol
sequences and the probability sequences that correspond to
the action class. Compared with the PrefixSpan algorithm,
our algorithm achieves higher efficiency by reducing the
number of new skeleton patterns in each growth step. Finally,
the key-skeleton-patterns are utilized to eliminate noisy
skeletons from the action in order to capture the most infor-
mative skeleton sequence of the action. An SVM is employed
to classify the most informative skeleton sequences.

The main contributions of this study are as follows.
(1)To capture the scale-invariant skeletal information, the
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orientations of rigid bodies in a skeleton are utilized to con-
struct the static feature. Different from previous orientation-
based approaches, in this study, a rigid-body orientation
is represented as six rotation matrices, and each rotation
matrix is represented as a point in 𝑆𝑂(3). (2) Traditional
approaches based on Lie groups [5, 13, 14] only consider
the spatial information of a skeleton but ignore the tempo-
ral information between different skeletons. Therefore, our
approach employs the rigid-body motions between different
skeletons to describe the temporal variation. Likewise, the
motions can be represented as points on 𝑆𝐸(3). (3) Traditional
approaches also ignore the influence of noisy skeletons in
an action on the accuracy of the action recognition. In this
study, based on the PrefixSpan algorithm [15] in data mining,
a new pattern-growth algorithm is proposed tomine the key-
skeleton-patterns of each action class, and the key-skeleton-
patterns are used to eliminate noisy skeletons.

2. Related Work

A brief overview of the related work on human action recog-
nition approaches based on skeletons is provided in this
section, and various sequential pattern-mining algorithms
are reviewed.

The existing skeleton-based action recognition approaches
can be classified into three main categories. The first class
of approach ignores the influence of noisy skeletons on the
accuracy of action recognition. Slama et al. represented an
action by an observability matrix, which was characterized
by an element of a finite Grassmann manifold [16]. However,
their method does not eliminate noisy skeletons from an
action, and it is insufficient to estimate the approximation of
an extended observability sequence with a finite Grassmann
manifold. Ding et al. divided actions into subactions and
used the profile hidden Markov model(HMM) to align
them [13]. Although their approach accurately extracts the
spatial features of an action, it does not solve the following
two problems: eliminating noisy skeletons and reducing the
time complexity of the profile HMMs. Liu et al. proposed
a new spatiotemporal representation, called ”Skepxels,” to
transform skeleton videos into images of flexible dimensions,
and employed the resulting images to build a CNN-based
framework for effective human action recognition[17]. Like-
wise, their approach does not eliminate noisy skeletons from
an action. In this study, the key-skeleton-patterns of an action
are utilized to eliminate noisy skeletons from the action as an
approach to improve the accuracy of action recognition.

The second class of approach ignores scale variations
from subject to subject, which means that the spatial feature
of an action cannot be accurately represented. Chaudhry et
al. hierarchically divided the human skeleton into smaller
parts and employed certain bio-inspired shape features to
represent each part [18].The temporal evolutions of these bio-
inspired features are modeled by linear dynamical systems
(LDSs). Although their approach takes full advantage of the
correlation between the skeletal parts, it ignores the feature of
the rigid bodies in a skeleton and the scale variations between
different subjects. Xia et al. proposed a view-invariant rep-
resentation of the human skeleton using histograms of 3D

joint locations [19]. The temporal evolutions of this skeletal
representation are modeled by a discrete HMM. However,
their approach not only ignores the relativity between the
rigid bodes in a skeleton but also the normalization of the
skeleton data. Li et al. represented an action by a special graph
based on the top-K relative variance of joint relative distance
(RVJRD) [20]. One potential limitation of this approach is
that the graph-based model does not handle scale variations,
which may cause incorrect spatial information to be selected
by the top-KRVJRD. In contrast, our proposed approach uses
the orientations of the rigid bodies in a skeleton to capture
scale-invariant skeletal features.

The third class of approach ignores the temporal infor-
mation of an action and treats the poses in the action inde-
pendently. Evangelidis et al. used a local skeleton descriptor
to encode the relative positions of joint quadruples [21]. The
descriptor of an action was represented by a multilevel Fisher
vector composed of the local skeletondescriptor in the action.
However, the action descriptor not only ignores the temporal
information between different skeletons but also has high
time complexity. Huang et al. combined the Lie group
structurewith a deep network framework [22].Their learning
structure (LieNet) has a rotation mapping layer transforming
the Lie group features into the traditional neural network
model. One main limitation of this approach is that LieNet
ignores the rich temporal information of human actions.
Vemulapalli et al. described the relative geometry between
the rigid-body parts using special Euclidean group 𝑆𝐸(3)[5].
Therefore, the entire skeleton in an action can be represented
as a point in 𝑆𝐸(3). An action is represented as a curve in
the Lie group (𝑆𝐸(3) × 𝑆𝐸(3) ⋅ ⋅ ⋅ × 𝑆𝐸(3)). Although their
approach can accurately extract the spatial information of a
skeleton, it ignores the temporal cues between the skeletons
in an action and does not eliminate noisy skeletons from the
action. Our proposed dynamic feature models the temporal
structures of an action using the rigid-bodymotions between
different skeletons in the action.

Sequential pattern mining aims to discover frequent
subsequences as patterns in a sequence database. Traditional
sequential pattern mining algorithms [23–26] are usually
used tomine frequent sequential patterns from deterministic
databases. However, those approaches cannot be indirectly
applied to uncertain data (or probabilistic data). Unfortu-
nately, the existing pattern mining algorithm on an uncertain
dataset [27, 28] is not adopted to our probabilistic sequence
model. Therefore, considering the amount of noise in our
uncertain datasets (probabilistic datasets), a new pattern-
growth algorithm is proposed to mine the key-skeleton-
patterns from the datasets.

3. Proposed Framework

3.1. Fundamental Concepts. In this subsection, a brief
overview of the special Euclidean group 𝑆𝐸(3) and the special
orthogonal group 𝑆𝑂(3) is presented, which is necessary
for further understanding of the Lie group. We refer the
readers to [2, 10, 11] for a general introduction to Lie groups.
Important notations are shown in Table 1.
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Table 1: Notations involving Lie groups.

Notation Description
𝑆𝑂(3) Special orthogonal group
so(3) Lie algebra of 𝑆𝑂(3)
𝑆𝑂(3) Special Euclidean group
se(3) Lie algebra of 𝑆𝐸(3)
× Direct product of Lie group

3.1.1. Special Orthogonal Group. The special orthogonal
group 𝑆𝑂(3) is a Lie group, which can be represented by all
3×3 orthogonal matrices shown as follows:

𝑆𝑂 (3) = {𝐴 ∈ 𝑅3×3; 𝐴𝑇𝐴 = 𝐼3, det𝐴 = 1} (1)

where 𝐼3 denotes the 3 × 3 identity matrix and A is a rotation
matrix. In 3D space, a rotation A is an element of 𝑆𝑂(3) and
can transform a vector 𝑥 = [𝑥1, 𝑥2, 𝑥3]𝑇 to 𝑥 by

𝑥 = 𝐴𝑥 (2)

Every group 𝑆𝑂(3) has an associated Lie algebra of 𝑆𝑂(3)
that is the tangent space around the identity element 𝐼3. The
Lie algebra of 𝑆𝑂(3), denoted by so(3), is a set of all real 33
skew-symmetric matrices as follows:

so (3) = {𝑀 ∈ 𝑅3×3;𝑀𝑡 = −𝑀} . (3)

Given an element

Ω = [[
[
0 −𝑚3 𝑚2𝑚3 0 −𝑚1−𝑚2 𝑚1 0

]]
]
∈ so (3) (4)

its vector form V𝑒𝑐(Ω) is
V𝑒𝑐 (Ω) = [𝑚1, 𝑚2, 𝑚3]𝑇 (5)

The exponential map 𝑒𝑥𝑝𝑆𝑂(3) from so(3) to 𝑆𝑂(3) and the
logarithm map 𝑙𝑜𝑔𝑆𝑂(3) from 𝑆𝑂(3) to so(3), respectively, are

𝑒𝑥𝑝𝑆𝑂(3) (Ω) = 𝑒Ω;
𝑙𝑜𝑔𝑆𝑂(3) (𝐴) = 𝑙𝑜𝑔 (𝐴) . (6)

3.1.2. Special Euclidean Group. The special Euclidean group
SE(3) is a Lie group, which is a set of 4 by 4 matrices

𝑆𝐸 (3)
= {𝐻 ∈ 𝑅4×4, 𝐻 = [𝐴 𝑏

0 1] , 𝐴 ∈ 𝑆𝑂 (3) , 𝑏 ∈ 𝑅3} .
(7)

The matrix representation also makes SE(3) action on points𝑐 ∈ 𝑅3 by rotating and translating them:

𝑐 = 𝐻 ⋅ 𝑐 = [𝐴 𝑏
0 1] ⋅ 𝑐 = [

𝐴𝑐 + 𝑏
1 ] . (8)

Every Lie Group SE(3) can be associated with a Lie
algebra se(3), which is the tangent space of the Lie group
SE(3) at the identity matrix 𝐼4. Note that se(3) is a 6D vector
space that can be formed by 4 by 4 matrices

se (3) = {[𝑀 V

0 0] ,𝑀 ∈ 𝑅3×3, V ∈ 𝑅3,𝑀𝑇 = 𝑀} . (9)

Given an element

Ω = [[[[[
[

0 −𝑚3 𝑚2 V1𝑚3 0 −𝑚1 V2−𝑚2 𝑚1 0 V30 0 0 0

]]]]]
]
∈ se (3) , (10)

its vector form V𝑒𝑐(Ω) is
V𝑒𝑐 (Ω) = [𝑚1, 𝑚2, 𝑚3, V1, V2, V3]𝑇 . (11)

The exponential map 𝑒𝑥𝑝𝑆𝐸(3) from se(3) to SE(3) and the
logarithm map 𝑙𝑜𝑔𝑆𝐸(3) from SE(3) to se(3), respectively, are

𝑒𝑥𝑝𝑆𝐸(3) (Ω) = 𝑒Ω;
𝑙𝑜𝑔𝑆𝐸(3) (𝐻) = 𝑙𝑜𝑔 (𝐻) . (12)

SO(3) × ⋅ ⋅ ⋅ × SO(3) and SE(3) × ⋅ ⋅ ⋅ × SE(3): the direct
product × is used to combine multiple 𝑆𝑂(3), which form a
new Lie group𝐾 = 𝑆𝑂(3) × ⋅ ⋅ ⋅ × 𝑆𝑂(3) with identity element(𝐼3, . . . , 𝐼3) and its Lie algebra 𝑘 = so(3) × ⋅ ⋅ ⋅ × so(3). The
exponential of (Ω1, . . . , Ω𝑁) ∈ 𝑘 and the logarithm map of(𝐴1, . . . , 𝐴𝑁) ∈ 𝐾, respectively, are given by

𝑒𝑥𝑝𝐾 (Ω1, . . . , Ω𝑁) = (𝑒Ω1 , . . . , 𝑒Ω𝑁) (13)

𝑙𝑜𝑔𝐾 (𝐴1, . . . , 𝐴𝑁) = (𝑙𝑜𝑔 (𝐴1) , . . . , log (𝐴𝑁)) . (14)

The vector form of 𝑙𝑜𝑔𝐾((𝐴1, . . . , 𝐴𝑁)) is
V𝑒𝑐 (𝑙𝑜𝑔𝐾 (𝐴1, . . . , 𝐴𝑁))
= V𝑒𝑐 (𝑙𝑜𝑔 (𝐴1) , . . . , V𝑒𝑐 (𝑙𝑜𝑔 (𝐴𝑁)) . (15)

Similarly, a new Lie group 𝐾 = 𝑆𝐸(3) × ⋅ ⋅ ⋅ × 𝑆𝐸(3) with
identity element(𝐼4, 𝐼4, . . . , 𝐼4) and its Lie algebra 𝑘 = se(3) ×
se(3) × ⋅ ⋅ ⋅ × se(3) are formed by using the direct product ×.
The exponential map of (Ω1, . . . , Ω𝑁) ∈ 𝑘 and the logarithm
map of (𝐻1, . . . , 𝐻𝑁) ∈ 𝐾, respectively, are given by

𝑒𝑥𝑝𝐾 (Ω1, . . . , Ω𝑁) = (𝑒Ω1 , . . . , 𝑒Ω𝑁) (16)

𝑙𝑜𝑔𝐾 (𝐻1, . . . , 𝐻𝑁) = (𝑙𝑜𝑔 (𝐻1) , . . . , log (𝐻𝑁)) . (17)

The vector form of 𝑙𝑜𝑔𝐾((𝐻1, . . . ,𝐻𝑁)) is
V𝑒𝑐 (𝑙𝑜𝑔𝐾 (𝐻1, . . . , 𝐻𝑁))
= V𝑒𝑐 (𝑙𝑜𝑔 (𝐻1) , . . . , V𝑒𝑐 (𝑙𝑜𝑔 (𝐻𝑁)) . (18)
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Figure 2: (a) Human skeleton with 19 rigid body parts and 20 bone joints. (b) Placing the hip center to the origin and aligning the x-axis with
the ground plane projection of the vector from the left hip to the right hip.

3.1.3. Explanation of Fundamental Concepts. According to
the concepts described in Section 3.2.1, the orientation of a
rigid body is represented by six rotation matrices. Mathe-
matically, a rotation matrix is a point in 𝑆𝑂(3); therefore, the
orientation of a rigid body in skeleton 𝑡 can be represented as
six points in 𝑆𝑂(3). Then the static feature, composed of the
orientations of the rigid bodies in the skeleton, is represented
as a point in the Lie group (𝑆𝑂(3) × 𝑆𝑂(3) ⋅ ⋅ ⋅ × 𝑆𝑂(3)), as
shown in Figure 1.

The motions of a rigid body is generally regarded as its
rotations and translations in 3D space. Mathematically, the
rotations and translations of a rigid body are defined as 𝑆𝐸(3);
therefore, a rigid-body motion between skeletons 𝑡 and 𝑡 − 1
(or skeletons 𝑡 and 1) can be represented as a point in 𝑆𝐸(3).
Then, the dynamic feature, which is composed of the rigid-
bodymotions between skeletons 𝑡 and 𝑡−1 and those between
skeletons 𝑡 and 1, is represented as a point in the Lie group(𝑆𝐸(3) × 𝑆𝐸(3) ⋅ ⋅ ⋅ × 𝑆𝐸(3)), as shown in Figure 1. A skeletal
representation, composed of the static feature and dynamic
feature, can be represent as a point in the Lie group (𝑆𝐸(3) ×𝑆𝐸(3) ⋅ ⋅ ⋅ × 𝑆𝐸(3), 𝑆𝑂(3) × 𝑆𝑂(3).

The wavy surface represents a Lie group (𝑆𝐸(3) ×𝑆𝐸(3) ⋅ ⋅ ⋅ × 𝑆𝐸(3), 𝑆𝑂(3) × 𝑆𝑂(3) ⋅ ⋅ ⋅ × 𝑆𝑂(3)) in Figure 1.
A whole circle in the wavy surface represents an action
(skeleton sequence). Each black dot in the circle represents
a skeleton. Then, an action can be represented as points in
the Lie group (the points are included in the same circle).
To overcome the classification difficulties, an action (or a
whole circle) is mapped from the Lie group to its Lie algebra(se(3) × se(3) × ⋅ ⋅ ⋅ × se(3), 𝑠o(3) × so(3) × ⋅ ⋅ ⋅ × so(3)), as
shown in Figure 1. In fact, the Lie algebra is a vector space.

3.2. Extraction of Skeleton Features. In this subsection, the
static and dynamic features of a skeleton are represented as
a point in the Lie group. Let Z = (C,E) be a skeleton. The set
of bone joints is denoted by C = {𝑐1, 𝑐2, . . . , 𝑐𝑁}, and the set
of rigid-body parts is denoted by E = {𝑒1, 𝑒2, . . . , 𝑒𝑀}, where

𝑐, 𝑒 ∈ 𝑅3. Figure 2(a) shows an example of the human skeleton
with 19 rigid-body parts and 20 bone joints.

3.2.1. Static Feature of Skeleton. By observing human action,
the orientations of rigid bodies in a skeleton (pose) can
include a lot of valuable information for action recognition.
To describe the orientation of a given rigid body 𝑒𝑚, the
global coordinate system is translated to the local coordinate
system. 𝐴𝑚,𝑥, 𝐴𝑚,𝑦, and 𝐴𝑚,𝑧 represent the three rotations
that transform the rigid body 𝑒𝑚 to the three coordinate axes,
as shown in Figure 3(c). Their rotation relationship is shown
as follows:

𝑟𝑥 = 𝐴𝑚,𝑥𝑒𝑚,𝑟𝑦 = 𝐴𝑚,𝑦𝑒𝑚,
𝑟𝑧 = 𝐴𝑚,𝑧𝑒𝑚,

(19)

where 𝐴𝑚,𝑥, 𝐴𝑚,𝑦, and 𝐴𝑚,𝑧 ∈ 𝑆𝑂(3). Similarly, 𝐴𝑥,𝑚, 𝐴𝑦,𝑚,
and 𝐴𝑧,𝑚 represent the three rotations that transform 𝑟𝑥,𝑟𝑦, and 𝑟𝑧 to the rigid body 𝑒𝑚, respectively, as shown in
Figure 3(d). Their rotation relationship is shown as follows:

𝑒𝑚 = 𝐴𝑥,𝑚𝑟𝑥,
𝑒𝑚 = 𝐴𝑦,𝑚𝑟𝑦,
𝑒𝑚 = 𝐴𝑧,𝑚𝑟𝑧,

(20)

where 𝐴𝑥,𝑚, 𝐴𝑦,𝑚, and 𝐴𝑧,𝑚 ∈ 𝑆𝑂(3). The six rotations can
be used to describe the orientation of the rigid bodies.

Given a skeleton 𝑡, 𝑜𝑚(𝑡) = {𝐴𝑚,𝑥(𝑡), 𝐴𝑥,𝑚(𝑡), 𝐴𝑚,𝑦(𝑡),𝐴𝑦,𝑚(𝑡), 𝐴𝑚,𝑧(𝑡), 𝐴𝑧,𝑚(𝑡)} is used to represent the orienta-
tion of 𝑒𝑚(𝑡) in the skeleton. In this work, the skeletal
static feature is defined as a set of the orientations of the rigid
bodies in the skeleton as follows:

𝑓𝑜 (𝑡) = {𝑜1 (𝑡) , 𝑜2 (𝑡) , . . . , 𝑜𝑀 (𝑡)}
∈ 𝑆𝑂 (3) × 𝑆𝑂 (3) × ⋅ ⋅ ⋅ × 𝑆𝑂 (3) , (21)
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Figure 3: Representation of the orientation of rigid body 𝑒𝑚.

where M is the total number of rigid bodies in the human
skeleton.

3.2.2. Dynamic Feature of Skeleton. Rigid-body motion is
generally regarded as rotations and translations in 3D space.
Mathematically, the rotations and translations of a rigid body
can be denoted by 𝑆𝐸(3). In this study, 𝑆𝐸(3) is employed to
describe rigid-body motions between different skeletons. Let𝑒𝑚(𝑖) ∈ 𝑅3 be rigid body 𝑒𝑚 in skeleton i and 𝑒𝑚(𝑗) ∈ 𝑅3 be
rigid body 𝑒𝑚 in skeleton j(𝑖�=𝑗).

Given a point 𝑘(𝑖) ∈ 𝑒𝑚(𝑖) and 𝑘(𝑗) ∈ 𝑒𝑚(𝑗) corresponding
to 𝑘(𝑖), we have

[𝑘 (𝑗)1 ] = 𝐻(𝑖,𝑗)𝑚 [𝑘 (𝑖)1 ] = [
𝐴𝑖,𝑗𝑚 𝑏𝑖,𝑗𝑚0 1 ][

𝑘 (𝑖)
1 ] , (22)

where𝐻(𝑖,𝑗)𝑚 ∈ 𝑆𝐸(3) and 𝐴(𝑖,𝑗)𝑚 and 𝑏(𝑖,𝑗)𝑚 are the rotation and
translation, which can transform 𝑒𝑚(𝑖) to the position and
orientation of 𝑒𝑚(𝑗), respectively, as shown in Figure 4(b).

Similarly, given a point 𝑘(𝑗) ∈ 𝑒𝑚(𝑗) and 𝑘(𝑖) ∈ 𝑒𝑚(𝑖)
corresponding to 𝑘(𝑗), we have

[𝑘 (𝑖)1 ] = 𝐻(𝑗,𝑖)𝑚 [𝑘 (𝑗)1 ] = [
𝐴(𝑗,𝑖)𝑚 𝑏(𝑗,𝑖)𝑚0 1 ] [

𝑘 (𝑗)
1 ] , (23)

where𝐻(𝑗,𝑖)𝑚 ∈ 𝑆𝐸(3) and 𝐴(𝑗,𝑖)𝑚 and 𝑏(𝑗,𝑖)𝑚 are the rotation and
translation, which can transform 𝑒𝑚(𝑗) to the position and
orientation of 𝑒𝑚(𝑖), respectively, as shown in Figure 4(c).𝑑(𝑖,𝑗)𝑚 = (𝐻(𝑗,𝑖)𝑚 , 𝐻(𝑖,𝑗)𝑚 ) is used to represent the motion of
rigid body 𝑒𝑚 between skeletons i and j. Then, the rigid-body
motions between skeletons 𝑖 and 𝑗 can be represented by

𝑓𝑟𝑔 (𝑖, 𝑗) = {𝑑(𝑖,𝑗)1 , 𝑑(𝑖,𝑗)2 , . . . , 𝑑(𝑖,𝑗)𝑀 }
∈ 𝑆𝐸 (3) × 𝑆𝐸 (3) × ⋅ ⋅ ⋅ × 𝑆𝐸 (3) , (24)

where M is the total number of the rigid bodies in the
skeleton.

In this study, our approach only considers the rigid-
body motions between skeletons t and t-1 and those between
skeletons t and 1. According to formula (24), the rigid-
body motions between skeletons t and t-1 can be represented
by 𝑓𝑟𝑔(𝑡, 𝑡 − 1). Similarly, the rigid-body motions between
skeletons t and 1 can be represented by 𝑓𝑟𝑔(𝑡, 1). Then, the
skeletal dynamic feature is defined as a set of the rigid-body
motions in skeleton 𝑡 as follows:

𝑓𝑚𝑓 (𝑡) = (𝑓𝑟𝑔 (𝑡, 𝑡 − 1) , 𝑓𝑟𝑔 (𝑡, 1)) . (25)

Skeleton t is represented by the static feature and the
dynamic feature as follows:

𝑓 (𝑡) = {𝑓𝑜 (𝑡) , 𝑓𝑚𝑓 (𝑡)} , (26)

where 𝑓𝑜(𝑡) represents the static feature of the skeleton and𝑓𝑚𝑓(𝑡) represents its dynamic feature.

3.3. Skeleton Sequence Representation

3.3.1. Lie Group Representation of Skeleton Sequence. Using
the proposed skeletal feature, a skeleton sequence or an action
is represented by

𝐿𝐺 = {𝑓 (𝑡) , 𝑡 ∈ [1, 𝑇]} , (27)
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Figure 4: Representation of the relative geometries of rigid body 𝑒𝑚 at time instance t.

where T is the total number of frames in the sequence and𝑓(𝑡) ∈ Lie group {𝑆𝑂(3) × ⋅ ⋅ ⋅ × 𝑆𝑂(3), 𝑆𝐸(3) × ⋅ ⋅ ⋅ × 𝑆𝐸(3)}.
3.3.2. Lie Algebra Representation of Skeleton Sequence. Since
the most classification methods (such as SVM) cannot be
directly applied to manifolds, to overcome these difficulties,𝑓(𝑡) is mapped to its Lie algebra (so(3) × ⋅ ⋅ ⋅ × so(3),se(3) ×⋅ ⋅ ⋅ × se(3)).The Lie algebra of 𝑓𝑜(𝑡) is given by

𝑔𝑜 (𝑡)
= [V𝑒𝑐 (𝑙𝑜𝑔 (𝑜1 (𝑡)) , V𝑒𝑐 (𝑙𝑜𝑔 (𝑜2 (𝑡)) , . . . , V𝑒𝑐 (𝑙𝑜𝑔 (𝑜𝑀 (𝑡)) ]
∈ so (3) × so (3) × ⋅ ⋅ ⋅ × so (3)

(28)

and the Lie algebra of 𝑓𝑟𝑔(𝑖, 𝑗) is given by

𝑔𝑟𝑔 (𝑖, 𝑗)
= [V𝑒𝑐 (𝑙𝑜𝑔 (𝑑(𝑖,𝑗)1 ) , V𝑒𝑐 (𝑙𝑜𝑔 (𝑑(𝑖,𝑗)2 ) , . . . , V𝑒𝑐 (𝑙𝑜𝑔 (𝑑(𝑖,𝑗)𝑀 ) ]
∈ se (3) × se (3) × ⋅ ⋅ ⋅ × se (3) .

(29)

The Lie algebra of 𝑓(𝑡) is given by 𝑔(𝑡) = {𝑔𝑜(𝑡), 𝑔𝑚𝑓(𝑡)} ={𝑔𝑜(𝑡), 𝑔𝑟𝑔(𝑡, 𝑡 − 1), 𝑔𝑟𝑔(𝑡, 1)}. A human action can be repre-
sented by the following Lie algebra structure:

𝐿𝐴 = {𝑔 (𝑡) , 𝑡 ∈ [1, 𝑇]} (30)

where T is the total number of frames in the sequence.
M is the total number of rigid bodies in skeleton𝑡. Given a rigid body 𝑖 in skeleton 𝑡, V𝑒𝑐(𝑙𝑜𝑔(𝑜𝑖(𝑡)) is

the Lie algebra’s representation of the orientation of the
rigid body, which is 18-dimensional vector(𝑖 ∈ [1,𝑀]).𝑔𝑜(𝑡) = {V𝑒𝑐(𝑙𝑜𝑔(𝑜1(𝑡)), V𝑒𝑐(𝑙𝑜𝑔(𝑜2(𝑡)), . . . , V𝑒𝑐(𝑙𝑜𝑔(𝑜𝑀(𝑡))}
is the Lie algebra’s representation of the static feature
of skeleton 𝑡, which is a (18 × 𝑀)-dimensional vector.
V𝑒𝑐(𝑙𝑜𝑔(𝑑(𝑝,𝑞)𝑖 ) is the Lie algebra’s representation of the
motions of rigid body 𝑖 between skeletons 𝑝 and 𝑞, which
is 12-dimensional vector. 𝑔𝑟𝑔(𝑡, 𝑡 − 1) = {V𝑒𝑐(𝑙𝑜𝑔(𝑑(𝑡,𝑡−1)1 ),
V𝑒𝑐(𝑙𝑜𝑔(𝑑(𝑡,𝑡−1)2 ), . . . , V𝑒𝑐(𝑙𝑜𝑔(𝑑(𝑡,𝑡−1)𝑀 )} is the Lie algebra’s rep-
resentation of the rigid-body motions between skeletons 𝑡
and 𝑡-1, which is a (12 × 𝑀)-dimensional vector. 𝑔𝑟𝑔(𝑡, 1) ={V𝑒𝑐(𝑙𝑜𝑔(𝑑(𝑡,1)1 ), V𝑒𝑐(𝑙𝑜𝑔(𝑑(𝑡,1)2 ), . . . , V𝑒𝑐(𝑙𝑜𝑔(𝑑(𝑡,1)𝑀 )} is the Lie
algebra’s representation of the rigid-body motions between
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skeletons 𝑡 and 1, which is a (12 × 𝑀)-dimensional vector.𝑔𝑚𝑓(𝑡) = {𝑔𝑟𝑔(𝑡, 𝑡 − 1), 𝑔𝑟𝑔(𝑡, 1)} is the Lie algebra’s represen-
tation of the dynamic feature of skeleton 𝑡, which is a (24𝑀 =12𝑀+12𝑀)-dimensional vector. 𝑔(𝑡) = {𝑔𝑜(𝑡), 𝑔𝑚𝑓(𝑡)} is the
Lie algebra’s representation of skeleton t, which is a (42𝑀 =18𝑀+24𝑀)-dimensional vector. Hence, a human action can
be seen as temporal evolutions of a 42𝑀-dimensional vector.

3.4. Key-Skeleton-Pattern Mining. In the previous subsec-
tions, a skeleton sequence is represented as the Lie algebra
structure 𝐿𝐴 = {𝑔(𝑡), 𝑡 ∈ [1, 𝑇]}, where T is the total
number of frames in a skeleton sequence. However, a skeleton
sequence can include many noisy skeletons, which reduce
the accuracy and efficiency of the action recognition. In this
subsection, the key-skeleton-patterns are used to eliminate
noisy skeletons in a skeleton sequence in order to capture the
most informative skeleton sequences.

3.4.1. Formal Definitions. Tomine the key-skeleton-patterns,
classic k-means is used to quantize all skeletons represented
by the Lie algebra to K symbol. Let 𝑆 = {𝑠1, . . . , 𝑠𝐾} be a
set containing K symbol and 𝐶 = {𝑐1, . . . , 𝑐𝐾} be a set of
centroid. Then, a skeleton sequence can be represented as a
symbol sequence 𝐿 = [𝑙1, . . . , 𝑙𝑇] (𝑙𝑖 ∈ 𝑆, 𝑖 ∈ [1, 𝑇]). Since
different skeletons may be quantized as the same symbol, to
minimize the effect of quantization errors, each skeleton 𝑔(𝑖)
in a sequence is represented by probability 𝑝𝑖, which is used
to measure the distance between skeleton 𝑔(𝑖) ∈ 𝐿𝐴 and
centroid 𝑐𝑖 ∈ 𝐶 as follows:

𝑝𝑖 = 𝑑𝑖𝑠𝑡 (𝑐𝑖, 𝑔 (𝑖))−1
∑𝐾𝑗=1 𝑑𝑖𝑠𝑡 (𝑐𝑗, 𝑔 (𝑖))−1 (0 ⩽ 𝑝𝑖 ⩽ 1) , (31)

where 𝑐𝑗 ∈ 𝐶 correspond to symbol 𝑠𝑗 ∈ 𝑆. Equation
(31) shows the distance inversely proportional to 𝑝𝑖. Now, a
skeleton sequence also can be represented by a probability
sequence 𝑃 = [𝑝1, . . . , 𝑝𝑇].
Definitions. Some terms are defined in this paper as follows
(Important notations are in Table 2.).

Definition 1 (pattern). 𝛼 = (𝛼(1), . . . , 𝛼(𝑚)) is a sequence that
contains m symbols chosen from the dictionary, i.e., 𝛼(𝑖) ∈ 𝑆.
Definition 2 (mining sequence). 𝑑 = {𝑃, 𝐿, 𝐿𝐴} is a mining
sequence applied to mine the Key-skeleton sequence. 𝑃 is a
probability sequence, which represents a skeletons sequence.𝐿 is the symbol sequence, which corresponds to 𝑃. 𝐿𝐴 is a
skeleton sequence represented by the Lie algebraic structure.

Definition 3 (projected dataset). Given a pattern 𝛼 and a
mining sequence dataset 𝐷 (𝑑 ∈ 𝐷) of an action class, the 𝛼-
projected dataset𝐷|𝛼 is defined by the 𝑠𝑒𝑡 {𝑑|𝑑 ∈ 𝐷∧𝛼 ⊆ 𝑑.𝐿}.
Definition 4 (support). For a pattern𝛼 and a symbol sequence𝑑.𝐿 ∈ 𝐷|𝛼 (where 𝑑 is an element of 𝐷|𝛼), let 𝐹(𝛼, 𝑑.𝐿) be
an indicator variable with value 1 if 𝛼 is a subsequence of the
symbol sequence 𝑑.𝐿, and 0 otherwise. For any pattern 𝛼, its
support in𝐷|𝛼 is denoted by 𝑆𝑈𝑃(𝛼,𝐷|𝛼) = ∑|𝐷|𝛼|𝑖=1 𝐹(𝛼, 𝑑.𝐿)

Table 2: Notations involving data mining.

Notation Description
𝛼 Skeleton pattern
𝑑 Mining sequence
𝐷|𝛼 Projected dataset
𝑆𝑈𝑃(𝛼, 𝐷|𝛼) Support of skeleton pattern 𝛼
𝐸𝑆(𝛼, 𝐷|𝛼) Expected support of skeleton pattern 𝛼
Definition 5 (expected support). Given a pattern 𝛼 and a
symbol sequence 𝑑.𝐿 (where𝑑 is an element of𝐷|𝛼), let 𝑝𝑜𝑠 =𝐹𝑖𝑛𝑑(𝛼, 𝑑.𝐿) be the positions where the pattern 𝛼 takes up in𝑑.𝐿 and let 𝑑.𝑃(𝛼) = ∏|𝑝𝑜𝑠|𝑗=1 𝑑.𝑃[𝑝𝑜𝑠[𝑗]] be the product of the
probability. For any pattern 𝛼, its expected support in 𝐷|𝛼 is
denoted by 𝐸𝑆(𝛼,𝐷|𝛼) = (∑|𝐷|𝛼|𝑖=1 𝑑.𝑃(𝛼))/|𝐷|𝛼|.
Definition 6 (key-skeleton pattern). Given a pattern 𝛼 and a
mining sequence dataset 𝐷 of an action class, if 𝑆𝑈𝑃(𝛼,𝐷|𝛼)
is larger than a threshold 𝜏𝑠𝑢𝑝 and 𝐸𝑆(𝛼,𝐷|𝛼) is larger than
a threshold 𝜏𝑝𝑟𝑜𝑏, then the pattern 𝛼 is called a key-skeleton-
pattern of that action class. A key-skeleton-pattern of length𝑖 is called an 𝑖-pattern.
3.4.2. MinP-PrefixSpan Algorithm. In this subsection, a new
pattern-growth algorithm, called MinP-PrefixSpan, is pro-
posed to mine the key-skeleton-patterns of an action class by
searching over the enormous space of the symbol sequences
and probability sequences of the action class. The algorithm
is shown in Algorithm 1. In Lines 2-8, the dataset 𝐷|𝛼 is
employed to construct a new projected dataset𝐷|𝛼𝑒. In Lines
9-11, if 𝛼𝑒 is the key-skeleton-pattern, pattern 𝛼𝑒 is appended
to𝐾 and symbol table 𝑇|𝛼𝑒 is constructed by𝑇𝑟𝑖𝑚(𝑇|𝛼, 𝐷|𝛼𝑒).
In Line 12, MinP-PrefixSpan is recursively called to grow
the key-skeleton-pattern until all key-sequence patterns are
found.

In Line 10, the trim algorithm is used to improve the
efficiency of the MinP-PrefixSpan algorithm by eliminating
nonkey-skeleton-patterns. Algorithm 2 shows the implemen-
tation details of the trim algorithm. The trim algorithm
mainly consists of the following two parts:

Triming rules. Given a mining sequence dataset of an
action class𝐷 and a pattern 𝛼 (according to Definition 3,𝐷|𝛼
is the 𝛼−projected dataset), two rules are proposed to trim
nonkey-skeleton-patterns as follows:

(1) If 𝑆𝑈𝑃(𝛼,𝐷|𝛼) ≤ 𝜏𝑠𝑢𝑝, then pattern 𝛼 is a non-key-
skeleton-pattern.

(2) If 𝐸𝑆(𝛼,𝐷|𝛼) ≤ 𝜏𝑒𝑠, then pattern 𝛼 is a non-key-
skeleton-pattern.

Pattern growth.Referring to the pattern-growth method
of Prefxispan, one symbol 𝑒 is used to grow key-skeleton-
pattern 𝛼 and check the support and expected support of the
pattern 𝛼𝑒. A symbol table 𝑇|𝛼 is used to store each symbol𝑒 in order to reduce the number of new skeleton patterns in
each growth step. An important property is found between
symbol tables.
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Input: 𝛼−projected dataset𝐷𝛼, symbol table 𝑇|𝛼, key-skeleton-pattern dataset𝐾
(1) for each symbol 𝑒 ∈ 𝑇|𝛼 do
(2) 𝐷|𝛼𝑒 ← 0
(3) for each 𝑑 ∈ 𝐷|𝛼 do
(4) 𝑝𝑜𝑠 = 𝐹𝑖𝑛𝑑(𝛼, 𝑑.𝐿)
(5) if 𝑒 ∈ 𝑑.𝐿[𝑝𝑜𝑠[|𝛼|] + 1, ⋅ ⋅ ⋅ , |𝑑.𝐿|] then
(6) Append 𝑑 to𝐷|𝛼𝑒
(7) end if
(8) end for
(9) if 𝑆𝑈𝑃(𝛼𝑒, 𝐷|𝛼𝑒) ≥ 𝜏𝑠𝑢𝑝 and 𝐸𝑆(𝛼𝑒, 𝐷|𝛼𝑒) ≥ 𝜏𝑒𝑠 then
(10) 𝑇|𝛼𝑒 ← 𝑇𝑟𝑖𝑚(𝑇|𝛼, 𝐷|𝛼𝑒)
(11) Append 𝛼𝑒 to𝐾
(12) MinP-PrefixSpan(𝑇|𝛼𝑒, 𝐷|𝛼𝑒,𝐾)
(13) end if
(14) Free𝐷|𝛼𝑒 and 𝑇|𝛼𝑒
(15) end for

Algorithm 1: MinP-PrefixSpan(𝑇|𝛼, 𝐷|𝛼, 𝐾).

Input: symbol table 𝑇|𝛼, 𝛼𝑒−projected dataset 𝐷𝛼𝑒
Output: symbol table 𝑇|𝛼𝑒
(1) 𝑇|𝛼𝑒 ← 0
(2) for each symbol 𝑚 ∈ 𝑇|𝛼 do
(3) if 𝑆𝑈𝑃(𝛼𝑒𝑚,𝐷|𝛼𝑒) ≥ 𝜏𝑠𝑢𝑝 and 𝐸𝑆(𝛼𝑒𝑚,𝐷|𝛼𝑒) ≥ 𝜏𝑒𝑠 then
(4) 𝑇|𝛼𝑒 ← 𝑇|𝛼𝑒 ∪ 𝑚
(5) end if
(6) end for

Algorithm 2: Trim(𝑇|𝛼, 𝐷|𝛼𝑒).

Property 7 (symbol table). If a key-skeleton-pattern 𝛾 grows
from 𝛼, then 𝑇|𝛾 ⊆ 𝑇|𝛼.
Proof. Let us denote 𝛾 = 𝛼𝑒(1) as the key-skeleton-pattern
and 𝑒(1) ∈ 𝑇|𝛼. Suppose 𝑒(2) ∈ 𝑇|𝛾 and 𝛽 = 𝛼𝑒(1)𝑒(2) also
is a key-skeleton-pattern on 𝐷|𝛼. Since 𝑆𝑈𝑃(𝛼𝑒(2), 𝐷|𝛼) ≥𝑆𝑈𝑃(𝛽,𝐷|𝛼) according to Definition 4, 𝑆𝑈𝑃(𝛼𝑒(2), 𝐷|𝛼) ≥𝜏𝑠𝑢𝑝. Since 𝐸𝑆(𝛽,𝐷|𝛼) − 𝐸𝑆(𝛼𝑒(2), 𝐷|𝛼) ≥ 0 according to
Definition 5, 𝐸𝑆(𝛼𝑒(2), 𝐷|𝛼) ≥ 𝜏𝑒𝑠. We conclude that 𝑒(2)
belongs to 𝑇|𝛼,which implies that 𝑇|𝛾 ⊆ 𝑇|𝛼.
3.5. Discovering the Most Informative Skeleton Sequence. The
task of Algorithm 3 is to discover the most informative
skeleton sequences for all actions. Let 𝐽 be a mining sequence
dataset of all actions. 𝐾 is a dataset used to store the key-
skeleton-patterns of all action classes, and 𝑄 is a dataset
used to store the most informative skeleton sequences of all
actions. In Lines 2-11, the key-skeleton-patterns of each class
action are mined from training dataset 𝑈 and appended to
dataset𝐾. In Lines 12-22, the key-skeleton-patterns in dataset𝐾 are employed to discover the most informative skeleton
sequence of the actions in dataset 𝐽, and all most infor-
mative skeleton sequences are stored in dataset 𝑄(refer to
Figure 5).

Dynamic Time Warping (DTW)[33] has excellent per-
formance in searching for an optimal alignment between
time sequences. Therefore, for each action class, our model
uses the action standardization algorithm proposed by the
author of [5] to compute a nominal action and employs DTW
to warp all the training or testing actions into this nominal
action. SVMs are extensively used in computer vision to
achieve excellent performances in image and video classifi-
cations. To achieve better classification results, a linear SVM
is used to classify the most informative skeleton sequences.

3.6. Datasets. In this study, three standard 3D human action
datasets are employed to study the effectiveness of the
proposed method.

MSRAction3D dataset [34] can be captured using a
depth camera similar to the Kinect device. This dataset con-
sists of 20 actions of 10 subjects, with each action having two
or three repetitions. In total, there are 557 action sequences.
The dataset provides 3D locations of 20 joints. The horizontal
and vertical locations of each skeleton joint are stored in
the screen coordinates, and the skeleton’s depth position
is stored in the global coordinates. Human actions in this
dataset capture various types of motions, which are related
to arms, legs, torso, and their combinations. Experiments on
this dataset are challenging, but the dataset is widely applied
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Input: key-skeleton-pattern dataset 𝐾, mining sequence dataset of all actions 𝐽
Output: The dataset of the most informative skeleton sequences𝑄
(1) Obtaining training dataset 𝑈 from 𝐽
(2) 𝐾 ← 0;𝑄 ← 0
(3) for the dataset of each action class𝐷 ⊂ U do
(4) T is the table that includes all symbols in 𝐷
(5) for each symbol 𝛼 ∈ 𝑇 do
(6) if 𝑆𝑈𝑃(𝛼, 𝐷|𝛼) ≥ 𝜏𝑠𝑢𝑝 and 𝐸𝑆(𝛼, 𝐷|𝛼) ≥ 𝜏𝑒𝑠 then
(7) 𝑇|𝛼 ← 𝑇𝑟𝑖𝑚(𝑇,𝐷|𝛼)
(8) append 𝛼 to K
(9) MinP-PrefixSpan(𝑇|𝛼, 𝐷|𝛼, 𝐾)
(10) end if
(11) end for
(12) end for
(13) for each element 𝑑 ∈ 𝐽do
(14) for each key-skeleton-pattern𝑚 ∈ 𝐾 do
(15) if m is a subsequence of d.L then
(16) 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑝𝑜𝑠 = 𝑧𝑒𝑟𝑜(𝑙𝑒𝑛(𝑑.𝐿), 1)
(17) 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐷𝑖𝑠𝑐𝑜V𝑒𝑟𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚, 𝑑.𝐿)
(18) for 𝑖 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 do
(19) 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑝𝑜𝑠[𝑖] = 1
(20) end for
(21) end if
(22) end for
(23) for z=1 to Len(d.L) do
(24) if patternpos[i]==1 then
(25) append d.LA[z] to s
(26) end if
(27) end for
(28) Append s to𝑄
(29) end for
(30) return 𝑄

Algorithm 3: Informative skeleton sequence (𝐾, 𝐽).

key-skeleton-patterns

Red skeletons are called

informative skeleton sequences

Figure 5: Discovering most informative skeleton sequence.

to test the accuracy and robustness of recognition methods
for various actions.

UCKinect-Action dataset [19] is captured using a sta-
tionary Kinect sensor. It consists of 10 human actions
obtained from daily life: walking, sitting down, standing up,
picking up, carrying, throwing, pushing, pulling, waving,
and clapping hands. Each human action is performed by
10 different subjects (nine males and one female) twice or

thrice. In total, there are 199 action sequences. This dataset
is very challenging. First, for some action sequences, parts
of the human body are invisible because the body parts
are out of the field of view. Second, subjects performed the
same action using different limbs, such as waving the left
hand and waving the right hand. Third, it is very difficult
to capture the action sequences with invariance to the view
point.
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Figure 6: Recognition rate on the MSRAction3D dataset based on AS1, AS2, and AS3.

G3D dataset[23] consists of 663 sequences of 20 gaming
actions captured by Kinect. Each actor performed each
gaming action more than two twice. Although the dataset
can provide synchronized video, depth, and skeleton data,
skeleton data is only chosen in our experiment. The dataset
is challenging because of the following two aspects: (1) if
the body parts are occluded, the Kinect device gives inferred
results, which may reduce the accuracy of the action recog-
nition. (2) if two different actions have very small interclass
variations, the two actions may easily interference with each
other in the action recognition.

4. Experimental Results

The skeleton preprocess is as follows: a human action is com-
posed of a continuous evolution of a series of skeletons. To
make each skeleton view-invariant, all 3D joint coordinates in
the skeleton are transformed to the coordinate system, which
places the hip center at the origin. The entire skeleton will
stop rotation until the global x-axis is aligned with the ground
plane projection of the vector from the left hip to the right hip
(refer to Figure 2(b)).

4.1. Experiments on theMSRAction3DDataset. Following the
experimental protocol of [4], 20 actions in theMSRAction3D
dataset are divided into three subsets 𝐴𝑆1, 𝐴𝑆2, and 𝐴𝑆3,
each including eight actions. AS1 and AS2 include actions
with similar movement. AS3 groups include more complex
actions. A half of the subjects are chosen for training, and
the remaining subjects for testing. The experiment is run
on ten different combinations of training and testing sets,
and the mean performance is reported. Figure 6 shows that
our approach outperforms various other representations.
Our approach achieves a mean accuracy of 94.58% on the
MSRAction3D dataset, outperforming other action recogni-
tion approaches, including Bag of 3D Points [4], Eigenjoints
[29], and Lie group [5], which achieved accuracies of 74.7,
83.3, and 91.88%, respectively. Our approach performs better

than the others both in distinguishing similar actions and
in recognizing complex actions. This is mainly because the
informative skeleton sequences, represented by the Lie group,
are used to train SVM classifiers.

Following the experimental protocol of [16], the dataset
containing all actions is tested. The experimental setting is
more challenging than that of [4]. Our approach achieves
an accuracy of 97.4%, outperforming other relative action
recognition approaches, including Grassmann manifold [16],
graph-based model [20], and Lie group [5], which achieved
accuracies of 91.21, 92.2, and 92.46%, respectively, as shown
in Table 3.

Figure 7 shows the classification confusion matrix on the
whole MSR-Action3D dataset. Most actions on the dataset
can be correctly recognized by our approach, but classifica-
tion errors occurred if two actions were extremely similar,
such as draw tick and draw 𝑋.

Matlab is used to run the experiments on a 3.60GHz Intel
Core i7-4790 CPU machine. The average testing time of one
action sequence in the dataset only costs 35.1ms, which is
lower than that of Lie group(72.5ms).The reason is that the
skeleton feature dimension of our approach(798-dimension)
is lower than that of Lie Group(2052-dimension). However,
since the authors of Grassmann Manifold and Graph-based
model do not open the source code of their approaches, the
average testing time of their approaches cannot be obtained.

4.2. Experiments on the UCKinect-ActionDataset. Therecog-
nition rate of our approach on the UCKinect Dataset is
98.87%. Our method outperforms the Lie group[5], Grass-
mann manifold[16], Eigenjoints[29], and learning feature
combination[30], which achieved recognition rates of 97.08,
97.91,97.1, and 98.00%, respectively, as shown in Table 4.

The average testing time of one action sequence in
the dataset costs 33.6ms, which is lower than that of Lie
group (69.2ms) but higher than that of Learning features
combination (13.7ms). The reason is that the skeleton feature
dimension of our approach (798-dimension) is lower than
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Table 3: Recognition rate on the MSRAction3D dataset based on the experimental protocol of [16].

Approach Grassmann manifold[16] Graph-based model[20] Lie Group[5] Our approach
Accuracy 91.21 92.2 92.46 97.4
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Figure 7:The confusion matrix for action classification in entire the MSR-Action3D dataset.

Table 4: Recognition rate on the UCKinect-Action dataset.

Approach Recognition accuracy
Lie group[5] 97.08
Grassmann manifold[16] 97.91
Eigenjoints[29] 97.1
Learning feature combination[30] 98.00
Our approach 98.87

that of Lie Group (2052-dimension) but higher than that
Learning features combination (256-dimension). Unfortu-
nately, the average testing time of Grassmann Manifold and
Eigenjoints cannot be obtainedwithout the source code of the
approaches.

4.3. Experiments on the G3D-Gaming Dataset. The cross-
subject test setting, in which half of subjects were used for
training and the remaining subjects were used for testing, is
used to perform recognition on the data. Table 5 compares
our approach with other approaches on the dataset (GB-
RBM+HMM [21] and LieNet [17] used a deep-learning
method to recognize human action). Our approach achieves
a higher recognition rate.

The average testing time of one action sequence in
the dataset only costs 34.8ms, which is lower than that
of Lie group(71.2ms) and 𝑆𝑂(3)(58.9ms). The reason is
that the skeleton feature dimension of our approach (798-
dimension) is lower than that of Lie Group(2052-dimension)
and 𝑆𝑂(3)(1026-dimension). However, the authors of tLDS
do not open the source code of their approach, the average

Table 5: Recognition rate on the Florence3D-Action dataset.

Approach Recognition accuracy
SO(3)[14] 87.95
Lie group[5] 91.09
GB-RBM+HMM[31] 86.40
LieNet[22] 89.10
tLDS[32] 90.60
Our approach 95.01

testing time of their approach cannot be obtained. Since
the deep learning-based approaches usually use GPU to
accelerate their models while the nondeep learning-based
approaches usually use CPU to perform their experiments,
it is hard to implement a fair comparison between these two
classes of approaches (our approach belongs to the nondeep
learning-based approaches, and LieNet andGB-RBM+HMM
belong to the deep learning-based approaches).

5. Conclusion and Future Work

This paper proposes a new skeleton-based action represen-
tation, which consists of static and dynamic features. First,
the orientation of a rigid body is regarded as six rotation
matrices, and each rotation matrix is represented as a point
in 𝑆𝑂(3). The rigid-body orientations in a skeleton are used
to construct the static feature in order to avoid dealing with
skeletal scale variations. Second, the motions of rigid bodies,
represented by 𝑆𝐸(3), are used to construct the dynamic
features in order to capture the temporal information of
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the skeleton. Finally, based on the proposed representa-
tion, the key-skeleton-patterns are employed to discover
the most informative skeleton sequences. The experiment
results show that our approach achieves better performance
than other state-of-the-art skeleton-based action recognition
approaches. Further research should combine the Lie group
with a linear dynamical system to model human actions as a
tensor time series.

Data Availability

In this article, we performed our experiments in the three public
Datasets as follows. (1)MSR-Action3D Dataset is an action
Dataset of depth sequences captured by a depth camera. The
Dataset can be found in http://research.microsoft.com/en-
us/um/people/zliu/actionrecorsrc/. (2)UTKinect-Action3D
Dataset was collected as part of research work on action
recognition from depth sequences. The Dataset can be found
in http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html.
(3) G3D: Dataset contained synchronised video, depth
and skeleton data. The Dataset can be found in http://
dipersec.king.ac.uk/G3D/ or search the three action
recognition dataset https://github.com/liguang1980/Action-
recognition-Datasets.
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