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Anomalous scenarios in projectswith generalized precedence relations (GPRs) have been arousingwidely interest. A recent relevant
discovery of anomaly under GPRs is that an activity’s time float increases following its consumption. The scenario is contrary
to a common idea for plan management, and it also changes relationships between time floats and maximum prolongations
of activity durations. Classic computations may be invalid to time parameters under GPRs. This study tests the fact that the
current analysis on the anomaly has limitations so that it may provide improper guidelines for project scheduling and lead to
undesirable effects. A new quantization algorithm is presented for the anomaly that overcomes the limitations of the current works.
In particular, the algorithm confirms accurate time parameters andmaximumduration prolongations of activities under constraints
that retain project duration. The accuracy of quantization for the anomaly is particularly important for project scheduling with
GPRs. Moreover, an application of the anomaly is developed in the resource-constrained project scheduling with activity splitting
and GPRs, and an illustration is provided to test the fact that the new quantization result of the anomaly is an essential guarantee
to achieve optimal solutions.

1. Introduction

Current trends in production and operations management
are characterized by an increasingly intense competition in
sectors dependent on time. Time has already been regarded
as a source of competitive advantage [1] and attracts project
managers to energetically improve time performance of
projects. The time float is a key factor to incarnate the
competitive advantage, and its main target is to mitigate
potential delays and protect vital activities. An activity’s time
float not only signifies the degree to which that activity is
important to a project but also reflects the project’s structural
properties and guides project planning and scheduling.Given
its import, time float has long been considered as an impor-
tant parameter for planning management.

Roy [2] first proposed generalized precedence rela-
tions (GPRs), which are temporal constraints in which the
start/finish times of a pair of activities must be separated
by a minimum or maximum amount of time referred to
as a time lag. GPRs provide more accurate descriptions

for relations between activities in projects. Compared to
common precedence relations (such as strict precedence
relations), GPRs have many different and interesting char-
acteristics. The representations of GPRs are different from
that of strict precedence relations [3, 4]. In particular,
GPRs result in anomalies contradicting many classical ideas
about construction projects. Wiest [5] first discovered some
unusual characteristics of activity network under GPRs,
which brought the special characteristics of GPRs to the front
line of project management [3, 6–13]. In particular, besides
Wiest [5], some other authors also focus on anomalies of
time floats under GPRs [3, 6, 7, 9, 11, 12]. Elmaghraby and
Kamburowski [3] found another two anomalies in which
(1) the reduction (increase) in project completion time is
a consequence of prolonging (shortening) the duration of
a critical activity (time float is 0) and (2) shortening the
duration of an activity may result in an infeasibility of the
project. Valls and Lino [9] dug deeper into anomalies of
critical activities under GPRs and presented a new procedure
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for classifying any critical task. Zhang et al. [12] discovered the
similar anomalies of critical activities in repetitive projects
which could be considered as special projects with GPRs.

The latest discovery of anomalies under GPRs is that an
activity’s time float increases rather than decreases while it
is consumed [7]; that is, an activity’s time float increases
following the prolongation of the activity’s duration. The
longer duration of an activity prolongs, the more time float
of the activity becomes. The anomaly contradicts current
approaches to plan management. For instance, in resource
and duration optimization, managers often reduce some
resources (e.g., staff, funds, and materials for noncritical
activities) to reduce costs or apply resources from noncritical
activities to critical activities to expedite project completion.
Reductions in resources for a noncritical activity can cause
prolongation of the activity’s duration, and conventional
thinking dictates that the prolongation of the activity’s dura-
tion in excess of its total float delays project completion.
Fortunately, the discovery of the “post-consumption total
float increase” anomaly seems to freemanagers from the need
to reduce staff, funds, or materials and extends space to allow
for resource optimization.

The anomaly means that classic computations are invalid
to the time parameters of activities under GPRs in many
cases, such as the useless constraint of total float to prolonga-
tion of activity duration. Further, Qi and Su [7] analyzed the
anomaly in a measurable way and proposed a quantization
method to summary up laws of the anomaly. However, we
find and demonstrate limitations of the quantization method,
which means that the conclusions presented by Qi and Su
[7] are improper in many cases and may mislead project
management with GPRs.

The anomalies under GPRs inevitably affect time param-
eters in projects (such as the earliest/latest times and time
floats of activities) so that they may result in false conclusions
based on current computations. The time parameters are
indispensable to improve mathematical models and algo-
rithms for project scheduling with GPRs, such as shrinking
feasible domain of models and improving efficiency and
accuracy of algorithms. Accurate analysis and application of
the anomalies of time floats will improve or even revolution-
ize approaches for project scheduling such as the resource-
constrained project scheduling problem (RCPSP), time-cost
tradeoff problem (TCTP), and resource levelling problem
(RLP). In order to circumventing the anomalies in TCTP
with GPRs (TCTP-GPRs), Elmaghraby and Kamburowski [3]
proposed an unusual approach that prolonging the project
duration from the minimum one with the cheapest schedule
until no further decrease in the project cost. Su et al. [4]
considered the anomalies in the procedure of RLPwith GPRs
(RLP-GPRs). Zhang et al. [14, 15] applied the anomalies to
develop an improved learning curve and present an improved
line-of-balance model for resource allocation in repetitive
projects. Huang et al. [16] dug deeper into discrete TCTP
considering soft logic based on the anomalies and developed
a mathematical model and presented a genetic algorithm
to address the problem in repetitive construction projects.
However, there are few works considering effects of the
anomalies on RCPSP with GPRs (RCPSP-GPRs). This paper

considers the RCPSP-GPRs based on the anomalies of time
floats, particularly the anomaly discovered by Qi and Su [7].

The aim of resource-constrained project scheduling is
to assign starting times to a number of activities subject
to precedence and resource constraints such that a project-
related objective is optimized.There are numerous variants of
RCPSP which integrate various problem characteristics and
are applied for the planning of real-life projects, e.g., in the
automotive, process, and IT industry [17].This study analyzes
the objective of make-span minimization for RCPSP. The
anomalies of timefloats underGPRsmay appear in the case of
changing activity durations [3, 6, 7, 12], particularly the dura-
tion prolongations of activities. Therefore, the anomalies may
affect RCPSP-GPRs involving changeable activity durations,
such as the multimode RCPSP (MRCPSP) and RCPSP with
activity splitting.

MRCPSP is a generalized version of RCPSP, where each
activity can be performed in one out of a set of modes,
with a specific activity duration and resource requirements.
Some authors’ works have introduced the time parameters
of activities in the improvement methods for the MRCPSP-
GPRs. De Reyck and Herroelen [18] were the first to consider
MRCPSP-GPRs, and the time parameters of activities were
also first introduced in the models and computations of the
problem in their work. Based on the work of De Reyck
and Herroelen [18], Sabzehparvar and Seyed-Hosseini [19]
presented a new exact model for MRCPSP-GPRs, which
has no need for a feasible solution to start. Heilmann [20]
developed the state-of-the-art exact approach for MRCPSP-
GPRs and further intensified functions of the time param-
eters in the algorithm. He proposed a specialized branch-
and-bound algorithm based on the solution of a “minimal
problem instance” and branched on the mode alternative or
renewable resource conflict resolution which is the hardest
with respect to a specific measure.The procedure of Ballestin
et al. [21], a combination of simulated annealing and an
evolutionary algorithm, is a state-of-the-art heuristics for
MRCPSP-GPRs. However, functions of the time parameters
of activities have not been applied quite enough and hidden
anomalies under GPRs may affect the computations in the
above works, so that the above approaches have not obviously
benefited from the time parameters. Splitting (interrupting)
an activity increases the time interval between the start and
finish times of the activity; therefore it could be seen as
another form of changing activity durations. To the best of
our knowledge, the works for the RCPSP-GPRs with activity
splitting are fewer in literatures. A recent contribution is
in the work of Quintanilla et al. [22]. They proposed a
hybrid genetic algorithm for MRCPSP-GPRs with activity
splitting, and furthermore the proposedmathematical model
and algorithm may be improved if the anomalies of time
floats under GPRs are analyzed and the time parameters of
activities is taken advantage of.

This paper analyzes the latest discovery of anomaly under
GPRs that an activity’s time float increases, following the
prolongation of the activity’s duration, and propose a new
quantization algorithm for the anomaly to overcome limi-
tations of the current work. This algorithm aims to provide
correct time parameters under GPRs for project scheduling
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with GPRs and changeable activity durations. This paper also
applies the correct time parameters to improve approaches
for RCPSP-GPRs under the condition of changeable activity
durations. Due to the limited literatures of the RCPSP-
GPRs with activity splitting, we focus on this problem and
test the fact that the correct time parameters contribute to
better models and more efficient approaches for RCPSP-
GPRs. The remainder of this paper is organized as follows.
In the “Analysis on the Anomaly,” the authors describe the
anomaly under GPRs, point out limitations of the current
work, and formally propose a new quantization algorithm for
the anomaly. The new quantization algorithm is applied in
RCPSP-GPRs with activity splitting in the “Application,” and
an example project is analyzed in this section, in which the
computational results based on the old and new algorithms
are compared and discussed. Finally, the “Conclusion” draws
overall conclusions and suggestions for future research.

2. Generalized Precedence Relations (GPRs)

2.1. Types of GPRs. GPRs include the following types (𝑆𝑖
and 𝐹𝑖 denote the start and finish time of an activity 𝑖,
respectively):

Finish-to-start type of minimum time lag: This time lag,
𝐹𝑇𝑆min
𝑖𝑗 (𝑤𝑖𝑗), defines the fact that the start time of an activity

𝑗 occurs no earlier than 𝑤𝑖𝑗 units after the finish time of an
activity 𝑖, that is,

𝐹𝑖 + 𝑤𝑖𝑗 ≤ 𝑆𝑗. (1)

Finish-to-finish type of minimum time lag: This time lag,
𝐹𝑇𝐹min
𝑖𝑗 (𝑤𝑖𝑗), defines the fact that the finish time of an activity

𝑗 occurs no earlier than 𝑤𝑖𝑗 units after the finish time of an
activity 𝑖, that is,

𝐹𝑖 + 𝑤𝑖𝑗 ≤ 𝐹𝑗. (2)
Start-to-start type of minimum time lag: This time lag,

𝑆𝑇𝑆min
𝑖𝑗 (𝑤𝑖𝑗), defines the fact that the start time of an activity

𝑗 occurs no earlier than 𝑤𝑖𝑗 units after the start time of an
activity 𝑖, that is,

𝑆𝑖 + 𝑤𝑖𝑗 ≤ 𝑆𝑗. (3)

Start-to-finish type of minimum time lag: This time lag,
𝑆𝑇𝐹min
𝑖𝑗 (𝑤𝑖𝑗), defines the fact that the finish time of an activity

𝑗 occurs no earlier than 𝑤𝑖𝑗 units after the start time of an
activity 𝑖, that is,

𝑆𝑖 + 𝑤𝑖𝑗 ≤ 𝐹𝑗. (4)
Finish-to-start type of maximum time lag: This time lag,

𝐹𝑇𝑆max
𝑖𝑗 (𝑤𝑖𝑗), defines the fact that the start time of an activity

𝑗 occurs no later than 𝑤𝑖𝑗 units after the finish time of an
activity 𝑖, that is,

𝐹𝑖 + 𝑤𝑖𝑗 ≥ 𝑆𝑗. (5)

Finish-to-finish type of maximum time lag: This time lag,
𝐹𝑇𝐹max
𝑖𝑗 (𝑤𝑖𝑗), defines the fact that the finish time of an activity

𝑗 occurs no later than 𝑤𝑖𝑗 units after the finish time of an
activity 𝑖, that is,

𝐹𝑖 + 𝑤𝑖𝑗 ≥ 𝐹𝑗. (6)

Table 1: Generalized precedence relations between activities in
Figure 1.

Activity pair Relation Expression
1, 2 𝐹𝑇𝐹max

1,2 (5) 𝐹1 + 5 ≥ 𝐹2
1, 4 𝐹𝑇𝑆min

1,4 (10) 𝐹1 + 10 ≤ 𝑆4
2, 3 𝑆𝑇𝑆min

2,3 (2) 𝑆2 + 2 ≤ 𝑆3
2, 5 𝐹𝑇𝑆max

2,5 (26) 𝐹2 + 26 ≥ 𝑆5
3, 5 𝐹𝑇𝑆min

3,5 (5) 𝐹3 + 5 ≤ 𝑆3
4, 7 𝐹𝑇𝑆min

4,7 (20) 𝐹4 + 20 ≤ 𝑆7
5, 7 𝐹𝑇𝑆min

5,7 (30) 𝐹5 + 30 ≤ 𝑆7
5, 8 𝐹𝑇𝑆max

5,8 (30) 𝐹5 + 30 ≥ 𝑆8
6, 3 𝑆𝑇𝐹max

6,3 (40) 𝑆6 + 40 ≥ 𝐹3
6, 9 𝐹𝑇𝑆min

6,9 (4) 𝐹6 + 4 ≤ 𝑆9
7, 8 𝐹𝑇𝐹min

7,8 (6) 𝐹7 + 6 ≤ 𝐹8
8, 9 𝑆𝑇𝑆min

8,9 (38) 𝑆8 + 38 ≤ 𝑆9

Start-to-start type of maximum time lag: This time lag,
𝑆𝑇𝑆max
𝑖𝑗 (𝑤𝑖𝑗), defines the fact that the start time of an activity 𝑗

occurs no later than𝑤𝑖𝑗 units after the start time of an activity
𝑖, that is,

𝑆𝑖 + 𝑤𝑖𝑗 ≥ 𝑆𝑗. (7)

Start-to-finish type of maximum time lag: This time lag,
𝑆𝑇𝐹max
𝑖𝑗 (𝑤𝑖𝑗), defines the fact that the finish time of an activity

𝑗 occurs no later than 𝑤𝑖𝑗 units after the start time of an
activity 𝑖, that is,

𝑆𝑖 + 𝑤𝑖𝑗 ≥ 𝐹𝑗. (8)

In addition to the relations FTS, FTF, STS, and STF,
Elmaghraby and Kamburowski [3] introduced four more
relations that may occur between the project beginning/end
times and the activity start/finish times. These relations are
denoted by BTS, BTF, STE, and FTE.

2.2. Representations of GPRs. The activity network under
GPRs proposed by Elmaghraby and Kamburowski [3] is
the current standard representation of GPRs. This activity
network has the following features:
(1)The beginning node is (0) and the end node is (2𝑛 +

1), where n indicates the amount of activities and the nodes
denote the project beginning and project end, respectively.
(2) An activity 𝑖 is represented as arcs (2𝑖 − 1, 2𝑖) and

(2𝑖, 2𝑖 − 1) with lengths 𝑑2𝑖−1,2𝑖 = 𝑑𝑖 and 𝑑2𝑖,2𝑖−1 = −𝑑𝑖, where
𝑑𝑖 indicates the activity duration.
(3) A minimum (maximum) time lag is depicted as

a forward (reversed) arc with a length equal to the value
(negative value) of the time lag.

Figure 1 shows an example of an activity network under
GPRs while the complete specification of precedence rela-
tions among activities in the network is given in Table 1.
𝑝 denotes the project represented by the network, and 𝑇
denotes its completion time. 𝑑ℎ𝑖 indicating “time restriction”
in Figure 1 is the length of arc (ℎ, 𝑖)which represents the “time
lag” between two activities. For example, the length 𝑑2,7 = 10



4 Mathematical Problems in Engineering

0
0 0

1
0 0

2
100 100

1

100

-100
7

110 110
8

150 150
4

40

-40
13

170 170
14

184 184
7

14

-14

3
22 25

4
102 105

2

80

-80
9

128 131
10

130 133
5

2

-2
15

160 160
16

190 190
8

30

-30

5
24 36

6
114 126

3

90

-90
11

74 171
12

97 194
6

23

-23
17

198 198
18

215 215
9

17

-17

19
215 215

0

0

0

-5

2 5

10

-26

-40

20

30

-30

4

6

38

0

0

25

i j
e

de

-de

dhi it jt

i: Node Number
e: Activity Number
de: Activity Duration
dhi: Time Restriction

: Upper of Node Time
: Lower of Node Timeit

tjti

ti

Figure 1: Example of an activity network under GPRs.

of arc (2, 7) indicates the time lag𝐹𝑇𝑆min
1,4 (𝑤1,4)with𝑤1,4 = 10

between activities 1 and 4. Elmaghraby and Kamburowski [3]
defined parameters 𝑡𝑖 and 𝑡𝑖 and presented computations for
them. 𝑡𝑖 and 𝑡𝑖 are the minimization and maximization of
the realization time 𝑡𝑖 of node (𝑖), respectively. When 𝑡𝑖 is
computed for all 𝑖 = 0, 1, . . . , 2𝑛+1 represents the problem of
finding the longest path tree rooted at (0) and

𝑡𝑖 = max
ℎ
{𝑡ℎ + 𝑑ℎ𝑖} (9)

and ℎ indicates the beginning node (ℎ) of arc (ℎ, 𝑖). Moreover,
𝑡𝑖 can be derived from the longest path tree rooted at (2𝑛 + 1)
when the orientations of all arcs have been reversed and

𝑡𝑖 = min
𝑗
{𝑡𝑗 − 𝑑𝑖𝑗} (10)

and 𝑗 indicates the end node (𝑗) of arc (𝑖, 𝑗). The project
completion time is 𝑇 = 𝑡2𝑛+1, and generally 𝑇 = 𝑡2𝑛+1 = 𝑡2𝑛+1,
but sometimes 𝑇 needs to be assigned other values or the
upper bound of the project completion time based on suitable
conditions.

2.3. Time Parameters under GPRs. Time parameters of an
activity 𝑖mainly contain the earliest start and finish time, the
latest start and finish time, total float, free float, and safety
float [3].

Earliest start time: The earliest start time of activity 𝑖,
marked as 𝐸𝑆𝑖, is computed as

𝐸𝑆𝑖 = 𝑡2𝑖−1. (11)
Earliest finish time: The earliest finish time of activity 𝑖,

marked as 𝐸𝐹𝑖, is computed as
𝐸𝐹𝑖 = 𝑡2𝑖. (12)

Latest start time: The latest start time of activity 𝑖, marked
as 𝐿𝑆𝑖, is computed as

𝐿𝑆𝑖 = 𝑡2𝑖−1. (13)
Latest finish time: The latest finish time of activity 𝑖,

marked as 𝐿𝐹𝑖, is computed as
𝐿𝐹𝑖 = 𝑡2𝑖. (14)

Total float: The total float of activity 𝑖, marked as 𝑇𝐹𝑖, is
defined as
𝑇𝐹𝑖 = 𝑡2𝑖 − 𝑡2𝑖−1 − 𝑑2𝑖−1,2𝑖 = 𝑡2𝑖−1 − 𝑡2𝑖−1 = 𝑡2𝑖 − 𝑡2𝑖. (15)

The total float is the maximum delay in the start of an activity
without deferring the project completion time.

Free float: The free float of activity 𝑖, marked as 𝐹𝐹𝑖, is
computed as

𝐹𝐹𝑖 = min
𝑢=2𝑖−1,2𝑖

min
(𝑢,V)∈𝑃

{𝑡V − 𝑡𝑢 − 𝑑𝑢V} . (16)
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Figure 2: Network with duration prolongation 7 of the activity 5.

And 𝑃 is the set of precedence relations. The free float is the
maximum delay in the start of an activity assuming all other
activities are started at their earliest start times.

Safety float: The safety float of activity 𝑖, marked as 𝑆𝐹𝑖, is
computed as

𝑆𝐹𝑖 = min
V=2𝑖−1,2𝑖

min
(𝑢,V)∈𝑃

{𝑡V − 𝑡𝑢 − 𝑑𝑢V} . (17)

The safety float is themaximumdelay in the start of an activity
based on the assumption that all other activities are started at
their latest start times.

3. Analysis on the Anomaly: The Increase in
Time Float following Consumption

3.1. Phenomenon Description. According to the definition of
time floats [3], the total float of an activity is the maximum
delay in the start of the activity without deferring the project
completion time. This means that the total float limits the
degree to which an activity’s duration can be prolonged.
However, Qi and Su [7] discovered an anomaly that an
activity’s total float can increase following the prolongation
of the activity’s duration and that it is possible for the project
completion to avoid delay, even if the prolongation of one of
its constituent activities exceeds the total float. For example,
according to (15), the total float of activity 5 in Figure 1 is

𝑇𝐹5 = 𝑡10 − 𝑡9 − 𝑑9,10 = 133 − 128 − 2 = 3. (18)

Let the prolongation of the duration of activity 5 be 7 (greater
than 𝑇𝐹5 = 3), and Figure 2 shows that at present the total
float of the activity is

𝑇𝐹5 = 𝑡


10 − 𝑡

9 − 𝑑

9,10 = 140 − 121 − 9 = 10 (19)

which means that 𝑇𝐹5 also increases by 7 and the project’s
completion time is still 215.

3.2. A Current Quantization Method and Its Limitations. For
the anomaly that an activity’s time float increases following

the prolongation of the activity’s duration, Qi and Su [7]
proposed the maximum duration prolongation of an activity
𝑖 under constraints that retain project duration:

max Δ𝑑𝑖 = 𝑇𝐹𝑖 + min
(ℎ,2𝑖−1)∈𝑃

{𝑡2𝑖−1 − 𝑡ℎ − 𝑑ℎ,2𝑖−1}

+ min
(2𝑖,𝑗)∈𝑃

{𝑡𝑗 − 𝑡2𝑖 − 𝑑2𝑖,𝑗} .
(20)

They deem that the duration prolongation of the activity 𝑖
greater than maxΔ𝑑𝑖 will result in a delay in the project
completion; otherwise, the project completion will not be
delayed.

However, we find some limitations in the above work of
Qi and Su [7], which may result in false conclusions and
guidelines for projects with GPRs. A principal limitation
is that (20) underdetermines the real maximum duration
prolongation of an activity. For instance, we further consider
activity 5 in Figure 1. Under constraints that retain project
duration, we seem to use (20) to compute the maximum
duration prolongation of activity 5, that is,

maxΔ𝑑5 = 𝑇𝐹5 + min
(ℎ,9)∈𝑃

{𝑡9 − 𝑡ℎ − 𝑑ℎ,9}

+ min
(10,𝑗)∈𝑃

{𝑡𝑗 − 𝑡10 − 𝑑10,𝑗}

= (𝑡9 − 𝑡9) + min
(6,9)∈𝑃

{𝑡9 − 𝑡6 − 𝑑6,9}

+ min
(10,13)∈𝑃

{𝑡13 − 𝑡10 − 𝑑10,13} = 3 + 9 + 7

= 19.

(21)

And a duration prolongation greater than 19 will delay
the project completion time. However, Figure 3 shows that
activity 5 still has total float when its duration prolongation
is 19. Furthermore, we verify that the maximum duration
prolongation of activity 5 is 41 under constraints that retain
project completion time 215, that is, maxΔ𝑑∗5 = 41, as in
Figure 4.
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Figure 3: Network with duration prolongation 19 of the activity 5.
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Figure 4: Network with duration prolongation 41 of the activity 5.

We next analyze the limitation. Equation (20) is correct
under a condition that both 𝑡ℎ of (ℎ, 2𝑖 − 1) ∈ 𝑃 and 𝑡𝑗 of
(2𝑖, 𝑗) ∈ 𝑃 remain unchanged. However, according to (9)
and (10) and the computations of 𝑡ℎ and 𝑡𝑗, 𝑡ℎ and 𝑡𝑗 may be
changed following the duration prolongation of activity 𝑖 if
there are paths from the activity to nodes (ℎ) or (𝑗). Figures
1–3 show the changed 𝑡6 of (6, 9) ∈ 𝑃 following the duration
prolongation of activity 5, and the reason is that there is a path
𝜇 = (9) → (4) → (3) → (5) → (6) from the start node
(9) of activity 5 to node (6) and the path is a part of the longest
path from the beginning node (0) to node (6). Therefore,
(20) will lead to erroneous results in the cases dissatisfying
the above condition. It is urgent to propose a more effective
approach without the above limitation.

3.3. A New Quantization Algorithm

3.3.1. Algorithm. Under constraints that retain project dura-
tion, we propose the following algorithm to obtain the

accurate maximum duration prolongations of activities
under GPRs. The algorithm overcomes the limitation pre-
sented in Section 3.2 and will contribute to the more effective
quantization for the anomaly of the increase in time float
following consumption.

For the maximum duration prolongation of an activity 𝑖,
the algorithm is as follows.

Step 1. Delete arc (2𝑖, 2𝑖 − 1), and compute 𝐿(𝜇∇2𝑖→2𝑖−1) which
indicates the length of the longest path marked as 𝜇∇2𝑖→2𝑖−1
from node (2𝑖) to (2𝑖 − 1).
(1) If 𝐿(𝜇∇2𝑖→2𝑖−1) is nonexistent, let

𝐿 (Φ∇2𝑖−1,2𝑖) = −∞ (22)

andΦ∇2𝑖−1,2𝑖 indicates the longest cycle passing arc (2𝑖 − 1, 2𝑖).
(2) If 𝐿(𝜇∇2𝑖→2𝑖−1) is existent, then

𝐿 (Φ∇2𝑖−1,2𝑖) = 𝐿 (𝜇
∇
2𝑖→2𝑖−1) + 𝑑𝑖. (23)
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Step 2. Let 𝑡2𝑛+1 = 𝑇 and compute 𝑡2𝑖−1, 𝑡2𝑖, and 𝑇𝐹𝑖; then

maxΔ𝑑∗𝑖 = min {𝑇𝐹𝑖, −𝐿 (Φ
∇
2𝑖−1,2𝑖)} . (24)

3.3.2. Proof. Under GPRs, activity networks have cyclical
features.Therefore, if activity durations are to be prolonged, it
is imperative that the project completion time is not delayed
andno cyclewith positive length is present. Under constraints
that retain project duration, we analyzed the maximum
duration prolongation maxΔ𝑑∗𝑖 of an activity 𝑖 viewed form
path and cycle lengths.
(1)We first consider cycles passing the forward arc (2𝑖 −

1, 2𝑖) but not passing the reversed arc (2𝑖, 2𝑖 − 1) of activity 𝑖
(marked asΦ2𝑖−1,2𝑖, 𝐿(Φ2i−1,2𝑖) ≤ 0).

If the duration of activity 𝑖 is prolonged by Δ𝑑𝑖, the
length of the longest cycle Φ∇2𝑖−1,2𝑖 will first be prolonged by
Δ𝑑𝑖 = |𝐿(Φ∇2𝑖−1,2𝑖)| = −𝐿(Φ

∇
2𝑖−1,2𝑖) to 0. In this condition, the

duration of activity 𝑖 can be prolonged no further, so the value
by which the activity duration can be prolonged cannot be
greater than −𝐿(Φ∇2𝑖−1,2𝑖).

The longest cycle Φ∇2𝑖−1,2𝑖 can be represented as Φ∇2𝑖−1,2𝑖 =
𝜇∇2𝑖→2𝑖−1 + (2𝑖 − 1, 2𝑖), where 𝜇

∇
2𝑖→2𝑖−1 indicates the longest

path from node (2𝑖) to node (2𝑖 − 1)with the exception of the
deleted arc (2𝑖, 2𝑖 − 1). If 𝐿(𝜇∇2𝑖→2𝑖−1) is existent, then

𝐿 (Φ∇2𝑖−1,2𝑖) = 𝐿 (𝜇
∇
2𝑖→2𝑖−1) + 𝑑2𝑖−1,2𝑖. (25)

But if 𝐿(𝜇∇2𝑖→2𝑖−1) is nonexistent, then 𝐿(Φ
∇
2𝑖−1,2𝑖) is nonexis-

tent and equivalent to −∞ because of 𝐿(Φ) < 0 for all cycles
Φ. Therefore (22) and (23) are correct.
(2) Prolonging the duration of activity 𝑖 results in pro-

longing the length of paths 𝜇2𝑖−1,2𝑖 with the exception of the
deleted arc (2𝑖, 2𝑖 − 1). Therefore according to the definition,
besides the cycle length 𝐿(Φ∇2𝑖−1,2𝑖), the maximum duration
prolongation maxΔ𝑑∗𝑖 of activity 𝑖 is determined by the
difference between the project completion time𝑇 = 𝑡2𝑛+1 and
the maximum length of the path passing arc (2𝑖 − 1, 2𝑖), that
is,

maxΔ𝑑∗𝑖 = min {𝑡2𝑛+1 − 𝐿 (𝜇2𝑖−1,2𝑖) , −𝐿 (Φ
∇
2𝑖−1,2𝑖)} . (26)

After deleting the arc (2𝑖, 2𝑖 − 1),

𝜇∇2𝑖−1,2𝑖 = 𝜇
∇
2𝑖−1,2𝑖 = 𝜇

∇
0→2𝑖−1 + (2𝑖 − 1, 2𝑖) + 𝜇

∇
2𝑖→2𝑛+1. (27)

According to the representations of 𝑡𝑖 and 𝑡𝑖, 𝑡

2𝑖−1 =

𝐿(𝜇∇0→2𝑖−1) and 𝑡


2𝑖 = 𝑡


2𝑛+1 − 𝐿(𝜇
∇
2𝑖→2𝑛+1) = 𝑡2𝑛+1 −

𝐿(𝜇∇2𝑖→2𝑛+1) for 𝑡


2𝑛+1 = 𝑡2𝑛+1. Therefore, 𝐿(𝜇∇0→2𝑖−1) = 𝑡

2𝑖−1,

𝐿(𝜇∇2𝑖→2𝑛+1) = 𝑡2𝑛+1 − 𝑡


2𝑖, and

𝐿 (𝜇∇2𝑖−1,2𝑖) = 𝐿 (𝜇
∇
0→2𝑖−1) + 𝑑2𝑖−1,2𝑖 + 𝐿 (𝜇

∇
2𝑖→2𝑛+1)

= 𝑡2𝑖−1 + 𝑑2𝑖−1,2𝑖 + 𝑡2𝑛+1 − 𝑡


2𝑖.
(28)

And according to (15),

𝑡2𝑛+1 − 𝐿 (𝜇
∇
2𝑖−1,2𝑖) = 𝑡2𝑛+1

− (𝑡2𝑖−1 + 𝑑2𝑖−1,2𝑖 + 𝑡2𝑛+1 − 𝑡


2𝑖)

= 𝑡2𝑖 − 𝑡

2𝑖−1 − 𝑑2𝑖−1,2𝑖 = 𝑇𝐹


𝑖 .

(29)

Hence

maxΔ𝑑∗𝑖 = min {𝑡2𝑛+1 − 𝐿 (𝜇
∇
2𝑖−1,2𝑖) , −𝐿 (Φ

∇
2𝑖−1,2𝑖)}

= min {𝑇𝐹𝑖 , −𝐿 (Φ
∇
2𝑖−1,2𝑖)} .

(30)

Equation (24) is correct.
Given the above, the new algorithm for the maximum

duration prolongation of an activity is correct.This completes
the proof.

3.3.3. Illustration. We apply the above algorithm to compute
the duration prolongation of activity 5 in Figure 1.

Step 1. Deleting the arc (10, 9) (see Figure 5), 𝐿(𝜇∇10→9) is
nonexistent; let

𝐿 (Φ∇9,10) = −∞. (31)

Step 2. Let 𝑡19 = 𝑡19 = 𝑇 and compute 𝑡9 and 𝑡10, as in
Figure 5. According to (15), 𝑇𝐹5 is

𝑇𝐹5 = 𝑡10 − 𝑡9 − 𝑑9,10 = 140 − 97 − 2 = 41. (32)

Then

maxΔ𝑑∗5 = min {𝑇𝐹5, −𝐿 (Φ
∇
9,10)} = min {41, +∞}

= 41.
(33)

The result is same to the conclusion in Section 3.2.

The new quantization algorithm contains the compu-
tations of new values of 𝑡𝑖 and 𝑡𝑖 in the case of duration
prolongations of activities. According to (11) and (14), they
indicate the new earliest start and latest finish times of
activities. The new conclusions help to improve approaches
for project scheduling with GPRs.

4. Application in RCPSP-GPRs

Many real-world scheduling problems can be categorized as
RCPSP. Here we consider the problem with activity splitting
and GPRs and test a better research effect based on the new
conclusions of time parameters in Section 3.3.

4.1. Problem Description and Model Formulation. RCPSP
under consideration can be described as follows:

(i) A project consists of 𝐽 activities represented as an
activity-on-arc representation.
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Figure 5: Network without the arc (10, 9).

(ii) Activities are subject to GPRs. Assume that all max-
imal time lags are transformed into equivalent min-
imal time lags with a negative value in the opposite
direction. For instance, 𝐹𝑇𝑆max

𝑖𝑗 (𝑤𝑖𝑗) is transformed
into 𝑆𝑇𝐹min

𝑖𝑗 (−𝑤𝑗𝑖).
(iii) Each activity 𝑗 has a fixed duration and requires

a constant amount of one or more of 𝑅 types of
renewable resources for the entire activity duration.

(iv) Renewable resources are available in variable
amounts, with known vacation schedules.

(v) Activities can be split, implying that the execution of
an activity may be interrupted and resulted at a later
time, without additional duration.

(vi) The objective is to complete the project as soon as
possible.

For the sake of simplicity, we consider the single-mode
RCPSP instead of MRCPSP. We set 𝑖, 𝑗 for activities, 𝑡
for time periods, and the decision variable 𝑥𝑗𝑡 representing
whether activity 𝑗 is consuming resource at time 𝑡.Themodel
parameters include

𝐽: the total number of activities in the project;
𝑀: a large positive number;
𝐸𝐹𝑇𝑆: the set of FTS-precedence relations;
𝐸𝐹𝑇𝐹: the set of FTF-precedence relations;
𝐸𝑆𝑇𝑆: the set of STS-precedence relations;
𝐸𝑆𝑇𝐹: the set of STF-precedence relations;
𝑇: the upper bound of the project completion time
based on suitable conditions;
𝑅: the total number of renewable resource types in the
project;
𝑘𝑗𝑟: the renewable resource 𝑟 requirement of activity
𝑗;
𝐾𝑟𝑡: the capacity of renewable resource 𝑟 available for
period 𝑡.

The following mathematical formulation presents the single-
mode RCPSP-GPRs with activity splitting:

min𝐹𝑛, (34)

subject to

𝐿𝐹𝑗

∑
𝑡=𝐸𝑆𝑗

𝑥𝑗𝑡 = 𝑑𝑗, ∀𝑗 ∈ {1, . . . , 𝐽} , (35)

𝑡𝑥𝑗𝑡 ≤ 𝐹𝑗,

∀𝑗 ∈ {1, . . . , 𝐽} , ∀𝑡 ∈ {𝐸𝑆𝑗, . . . , 𝐿𝐹𝑗} ,
(36)

𝑡𝑥𝑗𝑡 +𝑀(1 − 𝑥𝑗𝑡) ≥ 𝑆𝑗,

∀𝑗 ∈ {1, . . . , 𝐽} , ∀𝑡 ∈ {𝐸𝑆𝑗, . . . , 𝐿𝐹𝑗} ,
(37)

𝐹𝑖 + 𝐹𝑇𝑆𝑖𝑗 ≤ 𝑆𝑗 − 1, ⟨𝑖, 𝑗⟩ ∈ 𝐸𝐹𝑇𝑆, (38)

𝐹𝑖 + 𝐹𝑇𝐹𝑖𝑗 ≤ 𝐹𝑗 − 1, ⟨𝑖, 𝑗⟩ ∈ 𝐸𝐹𝑇𝐹, (39)

𝑆𝑖 + 𝑆𝑇𝑆𝑖𝑗 ≤ 𝑆𝑗 − 1, ⟨𝑖, 𝑗⟩ ∈ 𝐸𝑆𝑇𝑆, (40)

𝑆𝑖 + 𝑆𝑇𝐹𝑖𝑗 ≤ 𝐹𝑗 − 1, ⟨𝑖, 𝑗⟩ ∈ 𝐸𝑆𝑇𝐹, (41)

𝐽

∑
𝑗=1

𝑘𝑗𝑟𝑥𝑗𝑡 ≤ 𝐾𝑟𝑡,

∀𝑟 ∈ {1, . . . , 𝑅} , ∀𝑡 ∈ {1, . . . , 𝑇} ,

(42)

𝑥𝑗𝑡 ∈ {0, 1} , ∀𝑗 ∈ {1, . . . , 𝐽} , (43)

𝑆𝑗, 𝐹𝑗 ≥ 0, ∀𝑗 ∈ {1, . . . , 𝐽} . (44)

In the formulation, the parameters 𝑇, 𝐸𝑆𝑗, and 𝐿𝐹𝑗
must be predetermined since activity 𝑗 must be executed
within the time window {𝐸𝑆𝑗, . . . , 𝐿𝐹𝑗} to satisfy precedence
relations. The objective function (34) minimizes the project
make-span. Constraints (35) ensure that the total number
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Figure 6: Network with the upper project completion time 60.

Table 2: Generalized precedence relations between activities in
Figure 6.

Activity pair Relation Expression
1, 4 𝐹𝑇𝑆min

1,4 (0) 𝐹1 ≤ 𝑆4
1, 2 𝐹𝑇𝐹min

1,2 (7) 𝐹1 + 7 ≤ 𝐹2
4, 7 𝐹𝑇𝑆min

4,7 (0) 𝐹4 ≤ 𝑆7
4, 5 𝐹𝑇𝐹min

4,5 (7) 𝐹4 + 7 ≤ 𝐹5
7, 8 𝐹𝑇𝐹min

7,8 (7) 𝐹7 + 7 ≤ 𝐹8
2, 5 𝐹𝑇𝑆min

2,5 (0) 𝐹2 ≤ 𝑆5
2, 3 𝑆𝑇𝑆min

2,3 (12) 𝑆2 + 12 ≤ 𝑆3
5, 8 𝐹𝑇𝑆min

5,8 (0) 𝐹5 ≤ 𝑆8
5, 6 𝑆𝑇𝑆min

5,6 (12) 𝑆5 + 12 ≤ 𝑆6
8, 9 𝑆𝑇𝑆min

8,9 (12) 𝑆8 + 12 ≤ 𝑆9
3, 6 𝐹𝑇𝑆min

3,6 (0) 𝐹3 ≤ 𝑆6
6, 9 𝐹𝑇𝑆min

6,9 (0) 𝐹6 ≤ 𝑆9

of periods that activity 𝑗 uses resources is equal to the
duration of that activity. Constraints (36) and (37) represent
the finish time and start time for each activity 𝑗, respectively.
Constraints (38)∼(41) represent the precedence relations.
Finally, constraint (42) forces the total units of renewable
resource utilized to be less than or equal to the available
capacity for every period.

The earliest start and latest finish times of activities are
important parameters in the formulation. Splitting an activity
increases the time span between the start time and finish
time of the activity. From a time span perspective, the activity
splitting is equivalent to the prolongation of activity’s dura-
tion. Therefore, the new earliest start and latest finish times
of activities under activity duration prolongations determine
the solution of RCPSP-GPRs with activity splitting. The new
quantization algorithm in Section 3.3.1 is indispensable to
project scheduling with activity splitting and GPRs.

4.2. Illustration. We consider an example project as shown
in Figure 6, and Table 2 gives the complete specification of

Table 3: Classic computations of time parameters of activities.

Activity 1 2 3 4 5 6 7 8 9
The earliest start time 0 8 20 8 16 30 16 24 40
The latest finish time 18 25 40 28 35 50 38 45 60

precedence relations among activities in the network. The
example could represent a construction ofmotorway building
[7]. For the project, each activity has a fixed duration and
requires 10 amount of a type of renewable resource for the
entire activity duration and can be split. A precedence relation
between two activities only restricts their start or finish times;
that is, these are no precedence relations at the splitting time
of an activity. If the capacity of the resource available for per
unit period is 20, then the objective is to complete the project
as soon as possible.

We apply the formulation in Section 4.1 to solve the
problem, and set 𝑇 = 60, viz. 𝑡19 = 𝑇 = 60. According to the
formulation, we need to compute the earliest start and latest
finish times of each activity, which is equivalent to compute
the maximum time span or duration of an activity. For a
comparison, we compute the formulation by considering
the classic and new computations of time parameters in
Section 3.3.1, respectively.
(1) First, we compute the formulation based on the classic

computations of time parameters.
We compute the classic time parameters of each activity

using (9)∼(11) and (14), as in Figure 6 and Table 3. Take
them into the mathematical formulation of the problem in
Section 4.1, and we can calculate the optimal solution of the
formulation and obtain a scheduling scheme with the project
completion time 50, as shown in Figure 7.
(2) Now, we compute the formulation based on the new

computations of time parameters in Section 3.3.1.
Splitting an activity increases the time interval between

the start and the finish times of the activity that can be seen
as prolonging its duration. Therefore, we should compute the
time parameters of each activity using the new quantization
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Table 4: New computations of time parameters of activities based
on anomalies.

Activity 1 2 3 4 5 6 7 8 9
The earliest start time 0 0 12 8 15 27 16 23 32
The latest finish time 21 28 40 31 38 50 53 60 60

algorithm and (22)∼(24), as in Table 4. We substitute these
new values of time parameters in the mathematical model
of the problem and obtain a better scheduling scheme with
earlier project completion time 47, as in Figure 8. It can be
tested that the scheme is the optimal one with the minimum
project completion time.

The illustration tests that the classic computations of
time parameters may be inapplicable to scheduling problems
with GPRs owing to the anomaly that an activity’s total float
increases following the prolongation of the activity’s duration.
The new computations of time parameters based on the
anomaly and new quantization algorithm are necessary to
replace the classic algorithms of time parameters.

5. Conclusions

Many authors explored anomalies in project with GPRs from
1980s, and a recent discovery comes from the work of Qi and
Su [7] that an anomalous scenario can emerge in which an
activity’s time float increases following the prolongation of
the activity’s duration. The anomaly means that the classic
computations are invalid to the time parameters of activities
in many cases and contradicts main approaches to project
management. This study verifies limitations in the analysis of
Qi and Su [7], whichmay brush the other current conclusions
of the anomaly under GPRs.The authors analyze the anomaly

from a new perspective and overcome the limitations of
the current works and then present a new quantization
algorithm to compute the accurate time parameters and
duration prolongations of activities under constraints that
retain project duration.

More important, the time parameters of activities are
indispensable to improve mathematical models and algo-
rithms for project optimization with GPRs, especially to
address project scheduling that shrinking feasible domain
of solutions. This study considers the effect of the anomaly
of time float on project scheduling with GPRs and develops
an application of the new quantization algorithm in RCPSP-
GPRs with activity splitting. The computational results show
that (1) the classic computations of time parameters may be
invalidated to achieve optimal solutions of project scheduling
with GPRs referring to changing activity durations; and (2)
the new computations of time parameters based on the new
quantization algorithm contribute to more accurate models
and algorithms for the project scheduling with GPRs.

This study mainly develops the quantification analysis
on the anomaly under GPRs. The limitations of the current
works also result in other incomplete conclusions. The
authors’ future research endeavors include (1) the study of
correct laws relate to all types of time floats and (2) the
application of these laws to optimize project management.
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