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In this paper, we study the existence and multiplicity of nontrivial solutions for a class of biharmonic elliptic equation with Sobolev
critical exponent in a bounded domain. By using the idea of the previous paper, we generalize the results and prove the existence
and multiplicity of nontrivial solutions of the biharmonic elliptic equations.

1. Introduction and Main Results

In the present paper, we are concerned with the existence
of multiple solutions to the following biharmonic elliptic
equation with perturbation

Δ2𝑢 = |𝑢|𝑝−2 𝑢 + 𝑓, 𝑥 ∈ Ω,
𝑢 = ∇𝑢 = 0, 𝑥 ∈ 𝜕Ω, (1)

where Ω is a bounded domain in R𝑁 (𝑁 ≥ 5), Δ2 is the
biharmonic operator, and 𝑝 = 2∗∗ = 2𝑁/(𝑁 − 4) is the
Sobolev critical exponent.

The second-order semilinear and quasilinear problems
have been object of intensive research in the last years. Brezis
and Nirenberg [1] have studied the existence of positive
solutions of (1). Particularly, when 𝑓 = 𝜆𝑢, where 𝜆 ∈ R

is a constant, they have discovered the following remarkable
phenomenon: the qualitative behavior of the set of solutions
of (1) is highly sensitive to 𝑁, the dimension of the space.
Precisely, Brezis and Nirenberg [1] have shown that, in
dimension 𝑁 ≥ 4, there exists a positive solution of (1), if
and only if 𝜆 ∈ (0, 𝜆1); while, in dimension 𝑁 = 3 and whenΩ = 𝐵1 is the unit ball, there exists a positive solution of (1), if
and only if 𝜆 ∈ (𝜆1/4, 𝜆1), where 𝜆1 > 0 is the first eigenvalue
of −Δ in Ω. For more results on this direction we refer the
readers to [2–5] and the references therein.

During the last decades many works have been orientated
to the analysis of biharmonic nonlinear Schrödinger equation
(BHNSE)

𝑖𝜑𝑡 − Δ2𝜑 + 𝑔 (𝑥, 𝜑) 𝜑 = 0,
𝜑 (0, 𝑥) = 𝜑0 (𝑥) ∈ 𝐻20 (Ω) , (2)

Ω ⊂ R𝑁 is an open domain 𝑁 ≥ 5. For instance, paper
[6] proved that some of the properties and characteristics
for the second-order semilinear problems can be extended to
BHLSE. Paper [7] proved the existence of blow-up solutions.
In papers [8–10], the authors proved the existence of global
solutions, in particular, looking for standing wave solutions
for (2) of the form

𝜑 (𝑡, 𝑢) = 𝑒𝑖𝜆𝑡𝑢 (3)

such that 𝑢 is a solution satisfying the equation

Δ2𝑢 + 𝜆𝑢 = 𝑔 (𝑥, 𝑢) , 𝑢 ∈ 𝐻20 (Ω) . (4)

If 𝜆 = 0 and 𝑔(𝑥, 𝑢) = |𝑢|𝑝−2𝑢, we know that (4) admits
no positive solutions if Ω is star shaped under the Navier or
Dirichlet boundary conditions (see [11, Theorem 3.3] and [12,
Corollary 1]). If 𝜆 > 0 and Ω is a ball, paper [13] proved the
existence of positive radially symmetric solutions. For more
general results on this direction one can refer to [14, 15, 15–21]
and the references therein.

Motivated by the above results, we study the case that𝜆 = 0, 𝑔(𝑥, 𝑢) = |𝑢|𝑝−2𝑢 + 𝑓(𝑥), and Ω ⊂ R𝑁 is a bounded
domain. Precisely, we shall generalize the results of Tarantello
[22] to the biharmonic and critical exponent case. Our main
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tool here is the Nehari manifold method which is similar to
the fibering method of Pohozaev’s.

In order to state the main results, we shall give some
notation and assumptions. Let 𝐷 = 𝐻20 (Ω), and ‖𝑢‖𝑝 =(∫
Ω
|𝑢|𝑝𝑑𝑥)1/𝑝 be the usual 𝐿𝑝(Ω) norm. Obviously, 𝐷 is a

Hilbert space under the inner product ⟨𝑢, V⟩ = ∫
Ω
Δ𝑢ΔV𝑑𝑥.

Correspondingly, the norm is denoted by ‖ ⋅ ‖; i.e., ‖𝑢‖2 =∫
Ω
|Δ𝑢|2𝑑𝑥. Assume that 𝑓 ∈ 𝐿𝑞(Ω)(𝑞 = 2𝑁/(𝑁 + 4))(𝑓 ̸= 0)

satisfies 𝑓𝑞 ≤ 𝐶𝑁𝑆(𝑁+4)/8, (5)

where 𝑆 is the best Sobolev embedding constant of 𝐷 →𝐿𝑝(Ω)(𝑝 = 2∗∗ = 2𝑁/(𝑁 − 4)), and
𝐶𝑁 = 8𝑁 − 4 (𝑁 − 4𝑁 + 4)

(𝑁+4)/8 ,
𝑆 = inf
𝑢∈𝐷\{0}

‖Δ𝑢‖22‖𝑢‖2𝑝 . (6)

Let

𝑢𝜀 (𝑥) = (𝑁 (𝑁 − 4) (𝑁2 − 4))(𝑁−4)/8 𝜀(𝑁−4)/2
(𝜀2 + |𝑥|2)(𝑁−4)/2 (7)

be an extremal function for the Sobolev inequality inR𝑁. For𝑎 ∈ Ω, let 𝑢𝜀,𝑎(𝑥) = 𝑢𝜀(𝑥−𝑎) and 𝜉𝑎 ∈ 𝐶∞0 (Ω)with 𝜉𝑎 ≥ 0 and𝜉𝑎 = 1 near 𝑎. We point out that the embedding 𝐷 → 𝐿𝑝(Ω)
is not compact. This leads to the lack of compactness for the
proved existence and multiplicity of nontrivial solutions of
(1). Motivated by [1, 22], we recover the local compactness by
dividing the Nehari manifold into three parts and give some
estimates for the least energy of (1)

It is easy to see that the energy functional of (1) is denoted
by

𝐼 (𝑢) = 12 ∫
Ω
|Δ𝑢|2 𝑑𝑥 − 1𝑝 ∫

Ω
|𝑢|𝑝 𝑑𝑥 − ∫

Ω
𝑓𝑢𝑑𝑥,

𝑢 ∈ 𝐷.
(8)

Hence, 𝐼 is well defined (under (5)) and of the class 𝐶2(Ω).
Moreover, all the critical points of 𝐼 are precisely the solutions
of (1). We define the Nehari manifold 𝑁 associated with the
functional by

𝑁 = {𝑢 ∈ 𝐷 | ⟨𝐼 (𝑢) , 𝑢⟩ = 0} . (9)

It is clear that all critical points lie in the Nehari manifold,
and it is usually effective to consider the existence of critical
points in this smaller subset of the Sobolev space. For fixed𝑢 ∈ 𝐷 \ {0}, we set
𝜙 (𝑡) = 𝐼 (𝑡𝑢)

= 𝑡22 ∫
Ω
|Δ𝑢|2 𝑑𝑥 − 𝑡𝑝𝑝 ∫

Ω
|𝑢|𝑝 𝑑𝑥 − 𝑡 ∫

Ω
𝑓𝑢𝑑𝑥,

𝑡 ≥ 0.
(10)

The mapping is called fibering map. Such maps are often
used to investigate Nehari manifolds for various semilinear
problems. From the relationship between 𝐼 and 𝜙(𝑡), we can
divide 𝑁 into three parts

𝑁+ = {𝑢 ∈ 𝑁 | ‖Δ𝑢‖22 − (𝑝 − 1) ‖𝑢‖𝑝𝑝 > 0} ,
𝑁0 = {𝑢 ∈ 𝑁 | ‖Δ𝑢‖22 − (𝑝 − 1) ‖𝑢‖𝑝𝑝 = 0} ,
𝑁− = {𝑢 ∈ 𝑁 | ‖Δ𝑢‖22 − (𝑝 − 1) ‖𝑢‖𝑝𝑝 < 0} .

(11)

It turns out that under the assumption (5), we infer that𝑁0 ={0} (see Lemma 5 below). Now the main result in this paper
can be stated as follows.

Theorem 1. Assume that 𝑓 ̸= 0 satisfies (5). Then

inf
𝑁

𝐼 = inf
𝑁+

𝐼 = 𝑐0 (12)

is achieved at a point 𝑢0 ∈ 𝑁. Furthermore, 𝑢0 is a critical point
of 𝐼, and 𝑢0 ≥ 0 when 𝑓 ≥ 0.

In the following we study the second infimum problem

inf
𝑁−

𝐼 = 𝑐1. (13)

In this case we have the following results.

Theorem 2. Assume that 𝑓 ̸= 0 satisfies (5). Then 𝑐1 > 𝑐0 and
the infimum in (13) is achieved at a point 𝑢1 ∈ 𝑁−, which is a
critical point of 𝐼.

The proofs of Theorems 1–2 rely on the Ekeland’s varia-
tional principle and careful estimates (see [1]) of minimizing
sequence.

2. Some Preliminary Results

In this section we prove some preliminary results for the
proof of Theorems 1–2. The main ideas are coming from
[1, 22]. We begin with the following lemma which states the
purpose of assumption (5).

Lemma 3. Supposed that 𝑓 ̸= 0 satisfies (5). For every 𝑢 ∈𝐷\{0}, there exists a unique 𝑡1 = 𝑡1(𝑢) > 0 such that 𝑡1𝑢 ∈ 𝑁−.
Particularly, we have

𝑡1 > [ ‖Δ𝑢‖22(𝑝 − 1) ‖𝑢‖𝑝𝑝]
1/(𝑝−2)

fl 𝑡𝑚𝑎𝑥 (14)

and 𝐼(𝑡1𝑢) = max𝑡≥𝑡𝑚𝑎𝑥𝐼(𝑡𝑢). Moreover, if ∫
Ω
𝑓𝑢𝑑𝑥 > 0, then

there exists a unique 𝑡2 = 𝑡2(𝑢) > 0 such that 𝑡2𝑢 ∈ 𝑁+. In
particular, one has

𝑡2 < [ ‖Δ𝑢‖22(𝑝 − 1) ‖𝑢‖𝑝𝑝]
1/(𝑝−2)

(15)

and 𝐼(𝑡2𝑢) ≤ 𝐼(𝑡𝑢), ∀𝑡 ∈ [0, 𝑡1].



Mathematical Problems in Engineering 3

Proof. Recall that the fibering map is defined by

𝜙 (𝑡) = 𝐼 (𝑡𝑢)
= 𝑡22 ∫

Ω
|Δ𝑢|2 𝑑𝑥 − 𝑡𝑝𝑝 ∫

Ω
|𝑢|𝑝 𝑑𝑥 − 𝑡∫

Ω
𝑓𝑢𝑑𝑥. (16)

Then

𝜙 (𝑡) = 𝑡 ∫
Ω
|Δ𝑢|2 𝑑𝑥 − 𝑡𝑝−1∫

Ω
|𝑢|𝑝 𝑑𝑥 − ∫

Ω
𝑓𝑢𝑑𝑥

fl 𝑔 (𝑡) − ∫
Ω
𝑓𝑢𝑑𝑥. (17)

We deduce from 𝑔(𝑡) = 0 that
𝑡 = 𝑡𝑚𝑎𝑥 = [ ‖Δ𝑢‖22(𝑝 − 1) ‖𝑢‖𝑝𝑝]

1/(𝑝−2) . (18)

If 0 < 𝑡 < 𝑡𝑚𝑎𝑥, we have 𝜙(𝑡) = 𝑔(𝑡) > 0, and if 𝑡 > 𝑡𝑚𝑎𝑥,
one sees 𝜙(𝑡) = 𝑔(𝑡) < 0. A direct computation shows that𝑔(𝑡) achieves its maximum at 𝑡𝑚𝑎𝑥, and

𝑔 (𝑡𝑚𝑎𝑥) = 8𝑁 − 4 (𝑁 − 4𝑁 + 4)
(𝑁+4)/8 ‖Δ𝑢‖(𝑁+4)/42‖𝑢‖𝑁/4𝑝

= 𝐶𝑁 ‖Δ𝑢‖(𝑁+4)/42‖𝑢‖𝑁/4𝑝 > 0.
(19)

We divide the following two cases to accomplish our results.

Case 1. If ∫
Ω
𝑓𝑢𝑑𝑥 ≤ 0, then 𝜙(𝑡𝑚𝑎𝑥) = 𝑔(𝑡𝑚𝑎𝑥) − ∫

Ω
𝑓𝑢𝑑𝑥 >0. It is easy to see that if 𝑡 → +∞, we have 𝜙(𝑡) < 0. So,

there exists unique 𝑡1 > 𝑡𝑚𝑎𝑥 such that 𝜙(𝑡1) = 0 and 𝑔(𝑡1) =∫
Ω
𝑓𝑢𝑑𝑥.We infer from themonotonicity of 𝑔(𝑡) that, for 𝑡1 >𝑡𝑚𝑎𝑥,

𝜙 (𝑡1) = 𝑔 (𝑡1) < 0,
𝑡21𝑔 (𝑡1) = Δ (𝑡1𝑢)22 − (𝑝 − 1) 𝑡1𝑢𝑝𝑝 < 0. (20)

This shows that 𝑡1𝑢 ∈ 𝑁−.
Case 2. If ∫

Ω
𝑓𝑢𝑑𝑥 > 0, we infer from assumption (5) that∫

Ω
𝑓𝑢𝑑𝑥 < 𝑔(𝑡𝑚𝑎𝑥)∀𝑢 ∈ 𝐷. Then 𝜙(𝑡𝑚𝑎𝑥) = 𝑔(𝑡𝑚𝑎𝑥) −∫
Ω
𝑓𝑢𝑑𝑥 > 0. Since 𝜙(0) = − ∫

Ω
𝑓𝑢𝑑𝑥 < 0, there exists

a unique 𝑡2 ∈ [0, 𝑡𝑚𝑎𝑥] such that 𝜙(𝑡2) = 0 and 𝑔(𝑡2) =∫
Ω
𝑓𝑢𝑑𝑥. A direct computation shows that 𝑡2𝑢 ∈ 𝑁+ and𝐼(𝑡2𝑢) ≤ 𝐼(𝑡𝑢), ∀𝑡 ∈ [0, 𝑡1].

Lemma 4. Assume that 𝑓 ̸= 0 satisfies (5). We infer that the
infimum

inf
‖𝑢‖𝑝=1

(𝐶𝑁 ‖Δ𝑢‖(𝑁+4)/42 − ∫
Ω
𝑓𝑢𝑑𝑥) fl 𝜇0 (21)

is achieved, where 𝜇0 > 0.

The proof of Lemma 4 is technical and the idea of the
proof is mainly motivated by paper [23]. We shall prove it in
the appendix. Next we study the property of the set 𝑁0.
Lemma 5. Let 𝑓 ̸= 0 satisfy (5). Then for every 𝑢 ∈ 𝑁, 𝑢 ̸= 0,
we can get the conclusion that 𝑁0 = {0}.
Proof. We use the contradiction arguments. Assume that, for
some 𝑢 ∈ 𝑁, 𝑢 ̸= 0, we have 𝑢 ∈ 𝑁0. That is,

‖Δ𝑢‖22 − (𝑝 − 1) ‖𝑢‖𝑝𝑝 = 0. (22)

Since 𝑢 ∈ 𝑁, it follows that ‖Δ𝑢‖22 − ‖𝑢‖𝑝𝑝 − ∫
Ω
𝑓𝑢𝑑𝑥 = 0.

Hence, we get

‖𝑢‖𝑝𝑝 − ∫
Ω
𝑓𝑢𝑑𝑥 = 0. (23)

By Sobolev inequality, we deduce that (𝑝 − 2)‖𝑢‖𝑝 ≥ (𝑆/(𝑝 −1))1/(𝑝−2). For 𝑢 ̸= 0, we set
𝐴 (𝑢) = 𝐶𝑁 ‖Δ𝑢‖(𝑁+4)/42‖𝑢‖𝑁/4𝑝 − ∫

Ω
𝑓𝑢𝑑𝑥. (24)

For 𝑡 ≥ 0 and ‖𝑢‖𝑝 = 1, a direct computation shows that

𝐴 (𝑡𝑢) = 𝑡 [𝐶𝑁 ‖Δ𝑢‖(𝑁+4)/42 − ∫
Ω
𝑓𝑢𝑑𝑥] . (25)

We derive from Lemma 4 that, for 𝛾 > 0,
inf
‖𝑢‖≥𝛾

𝐴 (𝑢) ≥ 𝛾𝜇0. (26)

Let 𝛾 = (𝑆/(𝑝 − 1))1/(𝑝−2) > 0. We infer from (26) that

0 < 𝛾𝜇0 ≤ 𝐴 (𝑢) = 𝐶𝑁 ‖Δ𝑢‖(𝑁+4)/42‖𝑢‖𝑁/4𝑝 − ∫
Ω
𝑓𝑢𝑑𝑥

= (𝑝 − 2) ‖𝑢‖𝑝𝑝([ ‖Δ𝑢‖22(𝑝 − 1) ‖𝑢‖𝑝𝑝]
(𝑝−1)/(𝑝−2) − 1)

= 0,

(27)

which is a contradiction.

Lemma 6. Let 𝑓 ̸= 0 satisfy (5). For each 𝑢 ∈ 𝑁 \ {0}, there
exist 𝜀 > 0 and a differentiable function 𝑡 = 𝑡(𝑤) > 0, 𝑤 ∈𝐷, ‖𝑤‖ < 𝜀, satisfying the following:

𝑡 (0) = 1,
𝑡 (𝑤) (𝑢 − 𝑤) ∈ 𝑁, ∀ ‖𝑤‖ < 𝜀,
⟨𝑡 (0) , 𝑤⟩

= 2∫
Ω
Δ𝑢Δ𝑤𝑑𝑥 − 𝑝∫

Ω
|𝑢|𝑝−2 𝑢𝑤𝑑𝑥 − ∫

Ω
𝑓𝑤𝑑𝑥

‖Δ𝑢‖22 − (𝑝 − 1) ‖𝑢‖𝑝𝑝 .
(28)
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Proof. We define 𝐹 : R × 𝐷 → R by

𝐹 (𝑡, 𝑤) = 𝑡 ‖Δ (𝑢 − 𝑤)‖22 − 𝑡(𝑝−1) ‖𝑢 − 𝑤‖𝑝𝑝
− ∫
Ω
𝑓 (𝑢 − 𝑤) 𝑑𝑥. (29)

Since 𝐹(1, 0) = 0 and 𝐹𝑡(1, 0) = ‖Δ𝑢‖22 − (𝑝 − 1)‖𝑢‖𝑝𝑝 ̸= 0
(Lemma 5), by using the implicit function theorem at the
point (1, 0) we know that the results of the lemma hold.

3. Proof of Theorem 1

In this part we shall give the proof of Theorem 1.

Proof of Theorem 1. We first claim that the functional 𝐼 is
bounded from below in𝑁. For 𝑢 ∈ 𝑁, we have ⟨𝐼(𝑢), 𝑢⟩ = 0.
That is, ‖Δ𝑢‖22 − ‖𝑢‖𝑝𝑝 − ∫

Ω
𝑓𝑢𝑑𝑥 = 0. One deduces from (2)

and Hölder inequality that

𝐼 (𝑢) = 12 ∫
Ω
|Δ𝑢|2 𝑑𝑥 − 1𝑝 ∫

Ω
|𝑢|𝑝 𝑑𝑥 − ∫

Ω
𝑓𝑢𝑑𝑥

= (12 − 1𝑝) ‖Δ𝑢‖22 − (1 − 1𝑝)∫
Ω
𝑓𝑢𝑑𝑥

≥ 2𝑁 ‖Δ𝑢‖22 − (1 − 1𝑝) 𝑓𝑞 ‖𝑢‖𝑝
≥ 2𝑁 ‖Δ𝑢‖22 − (1 − 1𝑝)𝐶𝑁𝑆𝑁/8 ‖Δ𝑢‖2
≥ −𝑁(1 − 1/𝑝)2 𝐶2𝑁𝑆𝑁/48 .

(30)

Hence, we know that the infimum 𝑐0 is also bounded from
below. Second, we can get an upper bound for 𝑐0. Let V ∈ 𝐷
be the solution for Δ2𝑢 = 𝑓. For 𝑓 ̸= 0, one obtains that

∫
Ω
𝑓V𝑑𝑥 = ‖ΔV‖22 > 0. (31)

Set 𝑡0 = 𝑡2(V) > 0 as defined by Lemma 3. Thus, we have that𝑡0V ∈ 𝑁+ and
𝑐0 ≤ 𝐼 (𝑡0V) = 𝑡202 ‖ΔV‖22 − 𝑡𝑝0𝑝 ‖V‖𝑝𝑝 − 𝑡0 ∫

Ω
𝑓V𝑑𝑥

= −𝑡202 ‖ΔV‖22 + 𝑝 − 1𝑝 𝑡𝑝0 ‖V‖𝑝𝑝 < −2𝑡20𝑁 ‖ΔV‖22 < 0.
(32)

For any minimizing sequence {𝑢𝑛} ⊂ 𝑁, we can use Ekeland’s
variational principle (see [24]) to get following properties:

(i) 𝐼(𝑢𝑛) < 𝑐0 + 1/𝑛,
(ii) 𝐼(𝑤) ≥ 𝐼(𝑢𝑛) − (1/𝑛)‖Δ(𝑤 − 𝑢𝑛)‖2, ∀𝑤 ∈ 𝑁.

Hence for 𝑛 large enough, we obtain

𝐼 (𝑢𝑛) = (12 − 1𝑝) Δ𝑢𝑛22 − (1 − 1𝑝)∫
Ω
𝑓𝑢𝑛𝑑𝑥

< 𝑐0 + 1𝑛 < −2𝑡20𝑁 ‖ΔV‖22 .
(33)

This implies

∫
Ω
𝑓𝑢𝑛𝑑𝑥 ≥ 4𝑡20𝑁 + 4 ‖ΔV‖22 > 0, and 𝑢𝑛 ̸= 0. (34)

Since 𝐼(𝑢𝑛) < 0, we infer from Hölder’s inequality that

∃𝑀 > 0,
Δ𝑢𝑛22 ≤ 𝑀. (35)

At the same time, we observe that

4𝑡20𝑁 + 4 ‖ΔV‖22 ≤ ∫
Ω
𝑓𝑢𝑛𝑑𝑥. (36)

One deduces from (5) and Hölder’s and Sobolev’s inequalities
that

∃𝑚 > 0,
Δ𝑢𝑛22 ≥ 𝑚 > 0. (37)

So we derive from (35) and (37) that

0 < 𝑚 ≤ Δ𝑢𝑛22 ≤ 𝑀, (38)

where𝑚 and 𝑀 only depend on 𝑓 and Ω.
Next we shall prove that ‖𝐼(𝑢𝑛)‖ → ∞, as 𝑛 →∞. Applying Lemma 6 with 𝑢 = 𝑢𝑛 and 𝑤 = 𝛿(𝐼(𝑢𝑛)/‖𝐼(𝑢𝑛)‖)(𝛿 > 0), we can find some 𝑡𝑛(𝛿) = 𝑡[𝛿(𝐼(𝑢𝑛)/‖𝐼(𝑢𝑛)‖)] such that

𝑤𝛿 = 𝑡𝑛 (𝛿) [𝑢𝑛 − 𝛿 𝐼 (𝑢𝑛)𝐼 (𝑢𝑛)] ∈ 𝑁. (39)

By condition (ii) we have
1𝑛 Δ (𝑤 − 𝑢𝑛)2 ≥ 𝐼 (𝑢𝑛) − 𝐼 (𝑤𝛿)

= (1 − 𝑡𝑛 (𝛿)) ⟨𝐼 (𝑤𝛿) , 𝑢𝑛⟩
+ 𝛿𝑡𝑛 (𝛿)⟨𝐼 (𝑤𝛿) , 𝑢 𝐼 (𝑢𝑛)𝐼 (𝑢𝑛)⟩
+ 𝑜 (𝛿) .

(40)

Dividing by 𝛿 and letting 𝛿 → 0, we get
1𝑛 (1 + 𝑡𝑛 (0) Δ𝑢𝑛2) ≥ −𝑡𝑛 (0) ⟨𝐼 (𝑢𝑛) , 𝑢𝑛⟩

+ 𝐼 (𝑢𝑛) = 𝐼 (𝑢𝑛) ,
(41)

where 𝑡𝑛(0) = ⟨𝑡(0), 𝐼(𝑢𝑛)/‖𝐼(𝑢𝑛)‖⟩. So, we conclude that𝐼 (𝑢𝑛) ≤ 𝐶𝑛 (1 + 𝑡𝑛 (0)) , (42)

where𝐶 is a constant. In order to complete the proof we need
to prove that 𝑡𝑛(0) is bounded uniformly on 𝑛. By Lemma 6
we can get

𝑡𝑛 (0) ≤ 𝐶Δ𝑢𝑛22 − (𝑝 − 1) 𝑢𝑛𝑝𝑝 . (43)
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Thus, there exists subsequence {𝑢𝑛} (still denote by {𝑢𝑛}) such
that Δ𝑢𝑛22 − (𝑝 − 1) 𝑢𝑛𝑝𝑝 = 𝑜 (1) . (44)

We infer from {𝑢𝑛} ⊂ 𝑁 that

Δ𝑢𝑛22 − 𝑢𝑛𝑝𝑝 = ∫
Ω
𝑓𝑢𝑛𝑑𝑥,

∫
Ω
𝑓𝑢𝑛𝑑𝑥 = (𝑝 − 2) 𝑢𝑛𝑝𝑝 + 𝑜 (1) . (45)

By the estimate of ‖Δ𝑢𝑛‖2 from (38), we have that ‖𝑢𝑛‖𝑝 ≥ 𝛾 >0 and
0 < 𝜇0𝛾5𝑁/4 ≤ 𝑢𝑛𝑁/4𝑝 𝐴 (𝑢𝑛) ≤ 𝐶𝑁 Δ𝑢𝑛(𝑁+4)/42

− (𝑝 − 2) 𝑢𝑛𝑝+(𝑁+4)/4𝑝 = (𝑝 − 2) ( 1𝑝 − 1)
(𝑁+4)/8

⋅ Δ𝑢𝑛(𝑁+4)/42 − (𝑝 − 2) 𝑢𝑛𝑝+(𝑁+4)/4𝑝 = (𝑝 − 2)
⋅ [[(Δ𝑢𝑛22𝑝 − 1 )(𝑝−2)/(𝑝−1) − (𝑢𝑛𝑝𝑝)(𝑝−2)/(𝑝−1)]]
= 𝑜 (1) .

(46)

This is impossible. So, ‖Δ𝑢𝑛‖22−(𝑝−1)‖𝑢𝑛‖𝑝𝑝 is away from zero.
Thus, we conclude that𝐼 (𝑢𝑛) → 0 as 𝑛 → ∞. (47)

Let 𝑢0 ∈ 𝐷 be the weak limit in 𝐷 of {𝑢𝑛}. From (47) we can
get that 𝑢0 is a weak solution for (1). In fact, 𝑢0 ∈ 𝑁 and

𝑐0 ≤ 𝐼 (𝑢0) ≤ lim
𝑛→+∞

𝐼 (𝑢𝑛) = 𝑐0. (48)

So, we have that 𝑢𝑛 → 𝑢0 strongly in 𝐷 and 𝐼(𝑢0) = 𝑐0 =
inf𝑢∈𝑁 𝐼(𝑢). Moreover, 𝑢0 ∈ 𝑁+. By using standard method,
we canprove that𝑢0 is a globalminimum for 𝐼 in𝐷 (See [25]).

4. Proof of Theorem 2

In this section, we shall give the proof of Theorem 2. Since
the embedding 𝐷 → 𝐿2𝑁/(𝑁−4)(Ω) is not compact, we need
to find some way to recover this compactness. Motivated by
previous works of [1, 22, 23], we will seek the level in which(𝑃𝑆)𝑐-conditionwill recover.Thenwe shall use theMountain-
Pass principle to get the second nontrivial solution of (1).
The related problems have been studied in [23], and such
an approach has been used. The threshold is found in the
following lemma to obtain the compactness.

Lemma 7. Assume that the sequence {𝑢𝑛} ⊂ 𝐷 satisfying

(i) 𝐼(𝑢𝑛) → 𝑐with 𝑐 < 𝑐0+(2/𝑁)𝑆𝑁/4, where 𝑐0 is defined
in (12).

(ii) ‖𝐼(𝑢𝑛)‖ → 0 as 𝑛 → ∞.

Then {𝑢𝑛} has a convergent subsequence.

Proof. It is clear that ‖Δ𝑢𝑛‖22 is uniformly bounded from
condition (i) and (ii). For a subsequence of 𝑢𝑛, we can get a𝑤0 ∈ 𝐷 such that

𝑢𝑛 ⇀ 𝑤0 in 𝐷. (49)

So, from (ii), we obtain that

⟨𝐼 (𝑤0) , 𝑤⟩ = 0, for ∀𝑤 ∈ 𝐷. (50)

Then𝑤0 is a weak solution of (1),𝑤0 ̸= 0, and𝑤0 ∈ 𝑁, 𝐼(𝑤0) ≥𝑐0. Let 𝑢𝑛 = 𝑤0 + V𝑛. So, V𝑛 ⇀ 0 in 𝐷. By Brezis-Lieb lemma
(see [24]), we conclude that

𝑢𝑛𝑝𝑝 = 𝑤0 + V𝑛
𝑝𝑝 = 𝑤0𝑝𝑝 + V𝑛𝑝𝑝 + 𝑜 (1) . (51)

Thus, for 𝑛 large enough, we get

𝑐0 + 2𝑁𝑆𝑁/4 > 𝐼 (𝑤0 + V𝑛)
= 𝐼 (𝑤0) + 12 ΔV𝑛22 − 1𝑝 V𝑛𝑝𝑝 + 𝑜 (1)
≥ 𝑐0 + 12 ΔV𝑛22 − 1𝑝 V𝑛𝑝𝑝 + 𝑜 (1) ,

(52)

which means

12 ΔV𝑛22 − 1𝑝 V𝑛𝑝𝑝 < 2𝑁𝑆𝑁/4 + 𝑜 (1) . (53)

Moreover, we infer from condition (ii) that
𝑜 (1) = ⟨𝐼 (𝑢𝑛) , 𝑢𝑛⟩

= ⟨𝐼 (𝑤0) , 𝑤0⟩ + ΔV𝑛22 − V𝑛𝑝𝑝 + 𝑜 (1)
= ΔV𝑛22 − V𝑛𝑝𝑝 + 𝑜 (1) ,

(54)

and then we obtain

ΔV𝑛22 − V𝑛𝑝𝑝 = 𝑜 (1) . (55)

Next we shall prove that if (53) and (55) hold, then there exists
the subsequence of {V𝑛} (still denoted by {V𝑛}), which satisfiesΔV𝑛2 → 0, 𝑛 → +∞. (56)

We assume {V𝑛} is bounded away from 0; that is

∃𝐶 > 0,ΔV𝑛2 ≥ 𝐶, ∀𝑛 ∈ N. (57)

So from (55) we can get

V𝑛𝑝−2𝑝 ≥ 𝑆 + 𝑜 (1) ,
V𝑛𝑝𝑝 ≥ 𝑆𝑁/4 + 𝑜 (1) . (58)
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We infer from (53) and (55) that

2𝑁𝑆𝑁/4 ≤ 2𝑁 V𝑛𝑝𝑝 + 𝑜 (1)
= 12 ΔV𝑛22 − 1𝑝 V𝑛𝑝𝑝 + 𝑜 (1) < 2𝑁𝑆𝑁/4 (59)

for 𝑛 large. This is contradiction. So, we can get 𝑢𝑛 → 𝑤0
strongly in𝐷.

Note that 𝑢0 ̸= 0. Following [23], we set Σ ⊂ Ω to be a set
of positive measures such that 𝑢0 > 0 on Σ. Let us define

𝑈𝜀,𝑎 (𝑥) = 𝜉𝑎 (𝑥) 𝑢𝜀,𝑎 (𝑥) , 𝑥 ∈ R
𝑁, (60)

where 𝑢𝜀,𝑎(𝑥) and 𝜉𝑎(𝑥) are defined in Section 1. Without loss
of generality, we take 𝑢𝜀,𝑎(𝑥) = 𝜀(𝑁−4)/2/(𝜀2 + |𝑥 − 𝑎|2)(𝑁−4)/2.
Then we have the following estimates for 𝑈𝜀,𝑎.
Lemma 8. ∀𝑅 > 0 and 𝑎.𝑒. 𝑎 ∈ Σ, there exists 𝜀0 > 0 such that

𝐼 (𝑢0 + 𝑅𝑈𝜀,𝑎) < 𝑐0 + 2𝑁𝑆𝑁/4 (61)

for every 0 < 𝜀 < 𝜀0.
Proof. Let 𝐵 = ∫

R𝑁
|Δ𝑢1(𝑥)|2𝑑𝑥 and 𝐴 = ∫

R𝑁
|𝑢1(𝑥)|2𝑑𝑥. By

the definition of 𝑢𝜀(𝑥), we can get the Sobolev embedding
exponent 𝑆 = 𝐵/𝐴2/𝑝. A direct computation shows that

∫
Ω

Δ𝜉𝑎 (𝑥)2 𝑢𝜀,𝑎 (𝑥)2 𝑑𝑥 = 𝑂 (𝜀𝑁−4) ,
∫
Ω

∇𝜉𝑎 (𝑥)2 ∇𝑢𝜀,𝑎 (𝑥)2 𝑑𝑥 = 𝑂(𝜀𝑁−4) ,
∫
Ω

Δ𝜉𝑎 (𝑥) 𝜉𝑎 (𝑥) 𝑢𝜀,𝑎 (𝑥) Δ𝑢𝜀,𝑎 (𝑥) 𝑑𝑥
= 𝑂(𝜀𝑁−4) ,

∫
Ω

Δ𝜉𝑎 (𝑥) ∇𝜉𝑎 (𝑥) ∇𝑢𝜀,𝑎 (𝑥) 𝑢𝜀,𝑎 (𝑥) 𝑑𝑥
= 𝑂(𝜀𝑁−4) ,

∫
Ω

∇𝜉𝑎 (𝑥) 𝜉𝑎 (𝑥) Δ𝑢𝜀,𝑎 (𝑥) ∇𝑢𝜀,𝑎 (𝑥) 𝑑𝑥
= 𝑂(𝜀𝑁−4) ,

∫
Ω

𝜉𝑎 (𝑥)2 Δ𝑢𝜀,𝑎 (𝑥)2 𝑑𝑥 = 𝐵 + 𝑂 (𝜀𝑁−4) ,
𝑈𝜀,𝑎 (𝑥)𝑝𝑝 = 𝐴 + 𝑂(𝜀𝑁) .

(62)

Now we take the 𝐶∞0 (Ω) function 𝜉𝑎(𝑥) such that

𝜉𝑎 (𝑥) ≡ 1, when |𝑥 − 𝑎| ≤ 𝑟0,
0 ≤ 𝜉𝑎 (𝑥) ≤ 1, when 𝑟0 ≤ |𝑥 − 𝑎| ≤ 2𝑟0,

𝜉𝑎 (𝑥) ≡ 0, when |𝑥 − 𝑎| ≥ 2𝑟0,

∇𝜉𝑎 (𝑥) ≤ 𝐶𝑟0 ,
Δ𝜉𝑎 (𝑥) ≤ 𝐶𝑟20 ,

(63)

where 𝑟0 > 0. On the other hand, we see that

𝑢𝜀,𝑎 (𝑥) = 𝜀(𝑁−4)/2
(𝜀2 + |𝑥 − 𝑎|2)(𝑁−4)/2 ,

∇𝑢𝜀,𝑎 = (𝑁 − 4) 𝜀(𝑁−4)/2 (𝑥 − 𝑎)
(𝜀2 + |𝑥 − 𝑎|2)(𝑁−2)/2 ,

Δ𝑢𝜀,𝑎
= (𝑁 − 4) 𝜀𝑁/2 − (𝑁 − 4) (𝑁 − 3) 𝜀(𝑁−4)/2 |𝑥 − 𝑎|2

(𝜀2 + |𝑥 − 𝑎|2)𝑁/2 .

(64)

So, by direct computation we infer that

∫
Ω

Δ𝜉𝑎 (𝑥)2 𝑢𝜀,𝑎 (𝑥)2 𝑑𝑥
≤ 𝐶𝑟40 ∫𝑟0≤|𝑥−𝑎|≤2𝑟0

𝜀𝑁−4
(𝜀2 + |𝑥 − 𝑎|2)𝑁−4𝑑𝑥

= 𝐶𝜔𝑁−1𝑟40 ∫2𝑟0/𝜀
𝑟0/𝜀

𝜀4𝑟𝑁−1
(1 + 𝑟2)𝑁−4𝑑𝑟

≤ 𝐶𝜔𝑁−1𝜀4𝑟40 ∫2𝑟0/𝜀
𝑟0/𝜀

𝑟7−𝑁𝑑𝑟 = 𝑂 (𝜀𝑁−4) ,

(65)

where 𝜔𝑁−1 is the measure of the unit sphere in R𝑁.
Moreover, we have that

∫
Ω

∇𝜉𝑎 (𝑥)2 ∇𝑢𝜀,𝑎 (𝑥)2 𝑑𝑥 ≤ 𝐶𝑟20
⋅ ∫
𝑟0≤|𝑥−𝑎|≤2𝑟0

𝜀𝑁−4 |𝑥 − 𝑎|2
(𝜀2 + |𝑥 − 𝑎|2)𝑁−2𝑑𝑥 = 𝐶𝜔𝑁−1𝑟20

⋅ ∫2𝑟0/𝜀
𝑟0/𝜀

𝜀2𝑟𝑁+1
(1 + 𝑟2)𝑁−2𝑑𝑟 ≤ 𝐶𝜔𝑁−1𝜀2𝑟20 ∫2𝑟0/𝜀

𝑟0/𝜀
𝑟5−𝑁𝑑𝑟

= 𝑂(𝜀𝑁−4) ,
∫
Ω

Δ𝜉𝑎 (𝑥) 𝜉𝑎 (𝑥) 𝑢𝜀,𝑎 (𝑥) Δ𝑢𝜀,𝑎 (𝑥) 𝑑𝑥 ≤ 𝐶𝑟20
⋅ ∫
𝑟0≤|𝑥−𝑎|≤2𝑟0

𝜀𝑁−2 + 𝜀𝑁−4 |𝑥 − 𝑎|2
(𝜀2 + |𝑥 − 𝑎|2)𝑁−2 𝑑𝑥
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= 𝐶𝜔𝑁−1𝑟20 (∫2𝑟0/𝜀
𝑟0/𝜀

𝜀2𝑟𝑁−1
(1 + 𝑟2)𝑁−2𝑑𝑟

+ ∫2𝑟0/𝜀
𝑟0/𝜀

𝜀2𝑟𝑁+1
(1 + 𝑟2)𝑁−2𝑑𝑟)

≤ 𝐶𝜔𝑁−1𝑟20 (∫2𝑟0/𝜀
𝑟0/𝜀

𝜀2𝑟3−𝑁𝑑𝑟 + ∫2𝑟0/𝜀
𝑟0/𝜀

𝜀2𝑟5−𝑁𝑑𝑟)
= 𝑂 (𝜀𝑁−2) + 𝑂 (𝜀𝑁−4) = 𝑂 (𝜀𝑁−4) ,

∫
Ω

Δ𝜉𝑎 (𝑥) ∇𝜉𝑎 (𝑥) ∇𝑢𝜀,𝑎 (𝑥) 𝑢𝜀,𝑎 (𝑥) 𝑑𝑥 ≤ 𝐶𝑟30
⋅ ∫
𝑟0≤|𝑥−𝑎|≤2𝑟0

𝜀𝑁−4 |𝑥 − 𝑎|
(𝜀2 + |𝑥 − 𝑎|2)𝑁−3𝑑𝑥 = 𝐶𝜔𝑁−1𝑟30

⋅ ∫2𝑟0/𝜀
𝑟0/𝜀

𝜀3𝑟𝑁
(1 + 𝑟2)𝑁−3𝑑𝑟 ≤ 𝐶𝜔𝑁−1𝜀3𝑟30 ∫2𝑟0/𝜀

𝑟0/𝜀
𝑟6−𝑁𝑑𝑟

= 𝑂 (𝜀𝑁−4) ,
∫
Ω

∇𝜉𝑎 (𝑥) 𝜉𝑎 (𝑥) Δ𝑢𝜀,𝑎 (𝑥) ∇𝑢𝜀,𝑎 (𝑥) 𝑑𝑥 ≤ 𝐶𝑟0
⋅ ∫
𝑟0≤|𝑥−𝑎|≤2𝑟0

𝜀𝑁−2 |𝑥 − 𝑎| + 𝜀𝑁−4 |𝑥 − 𝑎|3
(𝜀2 + |𝑥 − 𝑎|2)𝑁−1 𝑑𝑥

= 𝐶𝜔𝑁−1𝑟0 (∫2𝑟0/𝜀
𝑟0/𝜀

𝜀𝑟𝑁
(1 + 𝑟2)𝑁−1𝑑𝑟

+ ∫2𝑟0/𝜀
𝑟0/𝜀

𝜀𝑟𝑁+2
(1 + 𝑟2)𝑁−1𝑑𝑟)

≤ 𝐶𝜔𝑁−1𝑟30 (∫2𝑟0/𝜀
𝑟0/𝜀

𝜀𝑟2−𝑁𝑑𝑟 + ∫2𝑟0/𝜀
𝑟0/𝜀

𝜀𝑟4−𝑁𝑑𝑟)
= 𝑂 (𝜀𝑁−2) + 𝑂 (𝜀𝑁−4) = 𝑂 (𝜀𝑁−4) ,

∫
Ω

𝜉𝑎 (𝑥)2 Δ𝑢𝜀,𝑎 (𝑥)2 𝑑𝑥 ≤ ∫
|𝑥−𝑎|≤𝑟0

Δ𝑢𝜀,𝑎 (𝑥)2 𝑑𝑥
+ ∫
𝑟0≤|𝑥−𝑎|≤2𝑟0

Δ𝑢𝜀,𝑎 (𝑥)2 𝑑𝑥
≤ 𝐶∫2𝑟0/𝜀
𝑟0/𝜀

( 𝑟𝑁−1
(1 + 𝑟2)𝑁 + 𝑟𝑁+3

(1 + 𝑟2)𝑁𝑑𝑟
+ 𝑟𝑁+1

(1 + 𝑟2)𝑁)𝑑𝑟 + ∫
R𝑁

𝑦2
(1 + 𝑦2)𝑁𝑑𝑦 ≤ 𝐵

+ 𝑂 (𝜀𝑁) + 𝑂 (𝜀𝑁−4) + 𝑂 (𝜀𝑁−2) = 𝐵 + 𝑂 (𝜀𝑁−4) .
(66)

Thus, we infer from [23] that

𝑢0 + 𝑅𝑈𝜀,𝑎𝑝𝑝 = 𝑢0𝑝𝑝 + 𝑅𝑝 𝑈𝜀,𝑎𝑝𝑝
+ 𝑝𝑅∫

Ω

𝑢0𝑝−2 𝑢0𝑈𝜀,𝑎𝑑𝑥
+ 𝑝𝑅𝑝−1 ∫

Ω
𝑈𝑝−1𝜀,𝑎 𝑢0𝑑𝑥

+ 𝑜 (𝜀(𝑁−4)/2) .

(67)

From all of the above, noticing that 𝑢0 ∈ 𝑁, one has that

𝐼 (𝑢0 + 𝑅𝑈𝜀,𝑎) = 12 ∫
Ω

Δ (𝑢0 + 𝑅𝑈𝜀,𝑎)2 𝑑𝑥 − 1𝑝
⋅ ∫
Ω

𝑢0 + 𝑅𝑈𝜀,𝑎𝑝 𝑑𝑥 − ∫
Ω
𝑓 (𝑢0 + 𝑅𝑈𝜀,𝑎) 𝑑𝑥

= 12 ∫
Ω

Δ𝑢02 + 𝑅∫
Ω
Δ𝑢0Δ𝑈𝜀,𝑎𝑑𝑥 + 12

⋅ 𝑅2 ∫
Ω

Δ𝑈𝜀,𝑎2 𝑑𝑥 − 1𝑝 ∫
Ω

𝑢0 + 𝑅𝑈𝜀,𝑎𝑝 𝑑𝑥
− ∫
Ω
𝑓 (𝑢0 + 𝑅𝑈𝜀,𝑎) 𝑑𝑥 = (12 ∫

Ω

Δ𝑢02
− 1𝑝 ∫

Ω

𝑢0𝑝 𝑑𝑥 − ∫
Ω
𝑓𝑢0𝑑𝑥)

+ 𝑅(∫
Ω
Δ𝑢0Δ𝑈𝜀,𝑎𝑑𝑥 − ∫

Ω

𝑢0𝑝−2 𝑢0𝑈𝜀,𝑎𝑑𝑥
− ∫
Ω
𝑓𝑈𝜀,𝑎𝑑𝑥) + 𝑅22 𝐵 − 𝑅𝑝𝑝 𝐴

− 𝑅𝑝−1 ∫
Ω
𝑈𝑝−1𝜀,𝑎 𝑢0𝑑𝑥 + 𝑜 (𝜀(𝑁−4)/2) = 𝐼 (𝑢0) + 𝑅22

⋅ 𝐵 − 𝑅𝑝𝑝 𝐴 − 𝑅𝑝−1∫
Ω
𝑈𝑝−1𝜀,𝑎 𝑢0𝑑𝑥 + 𝑜 (𝜀(𝑁−4)/2) .

(68)

By using an estimate obtained by G. Folland [26] and setting𝑢0 = 0 outside Ω, one gets that

∫
Ω
𝑈𝑝−1𝜀,𝑎 𝑢0 𝑑𝑥 = 𝜀(𝑁−4)/2𝑢0 (𝑎) 𝐸 + 𝑜 (𝜀(𝑁−4)/2) , (69)

where

𝐸 = ∫
R𝑁

𝑑𝑥
(1 + |𝑥|2)(𝑁+4)/2 ,

1
(1 + |𝑥|2)(𝑁+4)/2 ∈ 𝐿1 (R𝑁) . (70)
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Consequently, we have

𝐼 (𝑢0 + 𝑅𝑈𝜀,𝑎) = 𝑐0 + 𝑅22 𝐵 − 𝑅𝑝𝑝 𝐴
− 𝑅𝑝−1𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2
+ 𝑜 (𝜀(𝑁−4)/2) .

(71)

We set

ℎ (𝑠) = 𝐵2 𝑠2 − 𝐴𝑝 𝑠𝑝 − 𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2𝑠𝑝−1, 𝑠 > 0, (72)

and assume ℎ(𝑠) achieves its maximum at 𝑠1 > 0, which
satisfies

𝑠1𝐵 − 𝑠𝑝−11 𝐴 = (𝑝 − 1) 𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2𝑠𝑝−2. (73)

We define

𝑠0 = (𝐵𝐴)1/(𝑝−2) , (74)

which is the maximum point of ℎ1(𝑠) = (𝐵/2)𝑠2 − (𝐴/𝑝)𝑠𝑝.
We can conclude that 0 < 𝑠1 < 𝑠0, and 𝑠1 → 𝑠0 (𝜀 → 0). Let𝑠1 = 𝑠0 (1 − 𝛿). It is easy to see that 𝛿 → 0 (𝜀 → 0). From
(73) we can get

𝑠0 (1 − 𝛿) 𝐵 − 𝑠𝑝−10 (1 − 𝛿)𝑝−1 𝐴
= (𝑝 − 1) 𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2𝑠𝑝−20 ( (1 − 𝛿)𝑝−2 (75)

and then expanding for 𝛿, we can get

(𝑝 − 2)(𝐵(𝑝−1)/(𝑝−2)𝐴1/(𝑝−2) )𝛿
= (𝑝 − 1) 𝐵𝐴𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2 + 𝑜 (𝜀(𝑁−4)/2) .

(76)

So, one sees that

𝐼 (𝑢0 + 𝑅𝑈𝜀,𝑎) = 𝑐0 + 𝑅22 𝐵 − 𝑅𝑝𝑝 𝐴
− 𝑅𝑝−1𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2
+ 𝑜 (𝜀(𝑁−4)/2)

≤ 𝑐0 + 𝑠212 𝐵 − 𝑠𝑝1𝑝 𝐴
− 𝑠𝑝−11 𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2 + 𝑜 (𝜀(𝑁−4)/2)

= 𝑐0 + 𝑠202 𝐵 − 𝑠𝑝0𝑝 𝐴 − 𝑠20𝐵𝛿 + 𝑠𝑝0𝐴𝛿
− 𝑠𝑝−10 𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2 + 𝑜 (𝜀(𝑁−4)/2)

= 𝑐0 + 2𝑁𝑆𝑁/4 − 𝑠𝑝−10 𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2
+ 𝑜 (𝜀(𝑁−4)/2) .

(77)

When we take small 𝜀0 > 0, we arrive at
𝐼 (𝑢0 + 𝑅𝑈𝜀,𝑎) < 𝑐0 + 2𝑁𝑆𝑁/4, ∀0 < 𝜀 < 𝜀0. (78)

This finishes the proof.

Now we are ready to give the proof of Theorem 2.

Proof of Theorem 2. It is clear that the uniqueness of 𝑡1(𝑢)
satisfies the following condition:

𝑡1 (𝑢) 𝑢 ∈ 𝑁−,
𝐼 (𝑡1 (𝑢) 𝑢) = max

𝑡≥𝑡𝑚𝑎𝑥
𝐼 (𝑡𝑢) ,

for every 𝑢 ∈ 𝐷, ‖𝑢‖ = 1.
(79)

At the same time, 𝑡1(𝑢) is a continuous function of 𝑢. And𝑁− divides 𝐷 into two components 𝐷1 and 𝐷2, which are
disconnected from each other. Let

𝐷1 = {𝑢 = 0 or 𝑢 : ‖𝑢‖ < 𝑡1 ( 𝑢‖𝑢‖)} ,
𝐷2 = {𝑢 = 0 or 𝑢 : ‖𝑢‖ > 𝑡1 ( 𝑢‖𝑢‖)} .

(80)

Obviously, 𝐷 − 𝑁− = 𝐷1 ∪ 𝐷2, and we can check 𝑁+ ⊂ 𝐷1,𝑢0 ∈ 𝐷1. We can choose a constant 𝐶0, which satisfies
0 < 𝑡1 (𝑢) ≤ 𝐶0, ∀ ‖𝑢‖ = 1, (81)

and claim that

𝑤 = 𝑢0 + 𝑅0𝑈𝜀,𝑎 ∈ 𝐷2, (82)

where 𝑅0 = ((1/𝐵)|𝐶20 − ‖𝑢0‖2|)1/2 + 1. In fact, a direct com-
putation shows that

‖𝑤‖2 = 𝑢02 + 𝑅20 𝑈𝜀,𝑎2 + 2𝑅0 ∫
Ω

Δ𝑢0 Δ𝑈𝜀,𝑎 𝑑𝑥
= 𝑢02 + 𝑅20𝐵 + 𝑜 (1) > 𝐶20 ≥ [𝑡1 ( 𝑤‖𝑤‖)]2

(83)

for 𝜀 > 0 small enough. Thus, claim (82) holds.
We fix 𝜀 > 0 such that both (61) and (82) hold by the

choice of 𝑅0 and 𝑎 ∈ Σ. We set

Γ = {𝛾 ∈ 𝐶 ([0, 1] , 𝐷) : 𝛾 (0) = 𝑢0, 𝛾 (1) = 𝑢0
+ 𝑅0𝑈𝜀,𝑎} , (84)

and take ℎ(𝑡) = 𝑢0 + 𝑡𝑅0𝑈𝜀,𝑎, which belongs to Γ. From
Lemma 7, we conclude that

𝑐 = inf
ℎ∈Γ

max
𝑡∈[0,1]

𝐼 (ℎ (𝑡)) < 𝑐0 + 2𝑁𝑆𝑁/4. (85)

Since every ℎ ∈ Γ intersects 𝑁−, we get that
𝑐1 = inf
𝑁−

𝐼 ≤ 𝑐 < 𝑐0 + 2𝑁𝑆𝑁/4. (86)
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Next we use Mountain-Pass lemma to prove Theorem 2. Let{𝑢𝑛} ⊂ 𝑁− be such that

𝐼 (𝑢𝑛) → 𝑐1,𝐼 (𝑢𝑛) → 0. (87)

We deduce from Lemma 7 that there exists a subsequence
(still denoted by {𝑢𝑛}) of {𝑢𝑛}, and 𝑢1 ∈ 𝐷 such that

𝑢𝑛 → 𝑢1 in 𝐷. (88)

So, 𝑢1 is a critical point for 𝐼, 𝑢1 ∈ 𝑁− and 𝐼(𝑢1) = 𝑐1.
Remark 9. We point out that the results of Theorems 1–2 can
be generalized to polyharmonic problem. Precisely, we can
consider the semilinear polyharmonic problem

(−Δ)𝑚 𝑢 = |𝑢|𝑝−2 𝑢 + 𝑓, 𝑥 ∈ Ω,
𝑢 = 𝐷𝑢 = ⋅ ⋅ ⋅ = 𝐷𝑚−1𝑢 = 0, 𝑥 ∈ 𝜕Ω, (89)

where Ω is a smooth bounded domain in R𝑁(𝑁 ≥ 2𝑚 +1).𝑚 ∈ N+, 𝑝 = 2𝑁/(𝑁 − 2𝑚) denotes the critical Sobolev
exponent for (−Δ)𝑚, and 𝑓 ∈ 𝐿𝑞(Ω)(𝑞 = 2𝑁/(𝑁 +2𝑚))(𝑓 ̸= 0) is small enough. We can define the energy
functional:

𝐼 (𝑢) = 12 ‖𝑢‖2𝑚 − 1𝑝 ∫
Ω
|𝑢|𝑝 𝑑𝑥 − ∫

Ω
𝑓𝑢𝑑𝑥, 𝑢 ∈ 𝐻, (90)

where

𝐻 = 𝐻𝑚0 (Ω)
= {V ∈ 𝐻𝑚 (Ω) | 𝐷𝑖V = 0 on 𝜕Ω, ∀0 ≤ 𝑖 < 𝑚} . (91)

𝐻 is Hilbert space and endowed with the scalar product

(𝑢, V)
= {{{{{{{

∫
Ω
((−Δ)𝑘 𝑢) ((−Δ)𝑘 V) )𝑑𝑥, 𝑖𝑓 𝑚 = 2𝑘 𝑖𝑠 𝑒V𝑒𝑛,

∫
Ω
(∇ (−Δ)𝑘 𝑢) (∇ (−Δ)𝑘 V) 𝑑𝑥, 𝑖𝑓 𝑚 = 2𝑘 + 1 𝑖𝑠 𝑜𝑑𝑑

(92)

and ‖ ⋅ ‖𝑚 is the corresponding norm. Let

𝑢𝜀 (𝑥) = 𝐶𝑁,𝑚 𝜀(𝑁−2𝑚)/2
(𝜀2 + |𝑥|2)(𝑁−2𝑚)/2 (93)

be an extremal function for the Sobolev inequality in R𝑁,
and the constant 𝐶𝑁,𝑚 be independent of 𝜀. By dividing the
Nehari manifold, we can prove (𝑃𝑆)𝑐 condition when 𝑐 <𝑐0+(𝑚/𝑁)𝑆𝑚/2𝑁, where 𝑐0 = 𝐼(𝑢0) and 𝑢0 is the first solution.
By using the same idea of this article, one can obtain that (89)
has at least two nontrivial solutions.

Appendix

In this appendix we mainly focus on the proof of Lemma 4.

Proof of Lemma 4. For 𝑢 ∈ 𝐷, we define

𝐺 (𝑢) = 𝐶𝑁 ‖Δ𝑢‖(𝑁+4)/42 − ∫
Ω
𝑓𝑢𝑑𝑥. (A.1)

Let {𝑢𝑛} be the minimizing sequence of (21) with ‖𝑢𝑛‖𝑝 = 1.
That is, we have that

𝐺(𝑢𝑛) = 𝜇0 + 𝑜 (1) , (A.2)

and 𝑢𝑛 ⇀ 𝑢0 in 𝐷, 𝑢𝑛 → 𝑢0 a.e in Ω and ‖𝑢0‖𝑝 ≤ 1. If‖𝑢0‖𝑝 = 1, then the conclusion holds. In the following we
consider the case ‖𝑢0‖𝑝 < 1 by using contradiction argument.
Let 𝑢𝑛 = 𝑢0 + 𝑤𝑛. So, 𝑤𝑛 ⇀ 0 in 𝐷. From Brezis-Lieb lemma
[27], we obtain that

1 = 𝑢0 + 𝑤𝑛𝑝𝑝 = 𝑢0𝑝𝑝 + 𝑤𝑛𝑝𝑝 + 𝑜 (1) ,
𝑤𝑛2𝑝 = (1 − 𝑢0𝑝𝑝)2/𝑝 + 𝑜 (1) . (A.3)

By Sobolev’s inequality, we conclude that

𝜇0 + 𝑜 (1)
= 𝐶𝑁 Δ (𝑢0 + 𝑤𝑛)(𝑁+4)/42 − ∫

Ω
𝑓 (𝑢0 + 𝑤𝑛) 𝑑𝑥

= 𝐶𝑁 (Δ𝑢022 + Δ𝑤𝑛22)(𝑁+4)/8 − ∫
Ω
𝑓𝑢0𝑑𝑥

+ 𝑜 (1)
≥ 𝐶𝑁 (Δ𝑢022 + 𝑆 (1 − 𝑢0𝑝𝑝)2/𝑝 + 𝑜 (1))(𝑁+4)/8

− ∫
Ω
𝑓𝑢0𝑑𝑥 + 𝑜 (1) .

(A.4)

Hence we get

𝐶𝑁 (Δ𝑢022 + 𝑆 (1 − 𝑢0𝑝𝑝)2/𝑝)(𝑁+4)/8 − ∫
Ω
𝑓𝑢0𝑑𝑥

≤ 𝜇0.
(A.5)

Frompaper [23], we know that for every 𝑢 ∈ 𝐷, ‖𝑢‖𝑝 < 1, and𝑎 ∈ Ω, there exists 𝐶𝜀 = 𝐶𝜀(𝑎) > 0 such that𝑢 + 𝐶𝜀𝑈𝜀,𝑎𝑝 = 1, (A.6)

where𝑈𝜀,𝑎 is defined in (60). We infer from (A.6) that

1 = 𝑢 + 𝐶𝜀𝑈𝜀,𝑎𝑝𝑝
= ‖𝑢‖𝑝𝑝 + 𝐶𝑝𝜀𝐴 + 𝑜 (1) ,

𝐶2𝜀 = (1 − ‖𝑢‖𝑝𝑝)2/𝑝𝐴2/𝑝 + 𝑜 (1) ,
(A.7)

Δ (𝑢 + 𝐶𝜀𝑈𝜀,𝑎)22 = ‖Δ𝑢‖22 + 𝐶2𝜀𝐵 + 𝑜 (1)
= ‖Δ𝑢‖22 + 𝑆 (1 − ‖𝑢‖𝑝𝑝)2/𝑝

+ 𝑜 (1) .
(A.8)
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Thus, for each 𝑢 ∈ 𝐷 and ‖𝑢‖𝑝 < 1, we obtain that

𝜇0 ≤ 𝐺 (𝑢 + 𝐶𝜀𝑈𝜀,𝑎)
= 𝐶𝑁 Δ (𝑢 + 𝐶𝜀𝑈𝜀,𝑎)(𝑁+4)/42

− ∫
Ω
𝑓 (𝑢 + 𝐶𝜀𝑈𝜀,𝑎) 𝑑𝑥

= 𝐶𝑁 (‖Δ𝑢‖22 + 𝑆 (1 − ‖𝑢‖𝑝𝑝)2/𝑝)(𝑁+4)/8

− ∫
Ω
𝑓𝑢𝑑𝑥 + 𝑜 (1) .

(A.9)

Combining (A.5) and (A.9), we get

𝐶𝑁 (Δ𝑢022 + 𝑆 (1 − 𝑢0𝑝𝑝)2/𝑝)(𝑁+4)/8

− ∫
Ω
𝑓𝑢0𝑑𝑥 = 𝜇0.

(A.10)

Moreover, for each 𝑤 ∈ 𝐷 one has

𝑑𝑑𝑡 [𝐶𝑁 (Δ (𝑢0 + 𝑡𝑤)22
+ 𝑆 (1 − 𝑢0 + 𝑡𝑤𝑝𝑝)2/𝑝)(𝑁+4)/8

− ∫
Ω
𝑓 (𝑢0 + 𝑡𝑤) 𝑑𝑥]

𝑡=0

= 0.
(A.11)

That is,

𝑁 + 44 𝐶𝑁 [Δ𝑢022 + 𝑆 (1 − 𝑢0𝑝𝑝)2/𝑝 )](𝑁−4)/8

× [∫
Ω
Δ𝑢0Δ𝑤𝑑𝑥

− 𝑆 (1 − 𝑢0𝑝𝑝)(2−𝑝)/𝑝 ∫
Ω

𝑢0𝑝−2 𝑢0𝑤𝑑𝑥]
− ∫
Ω
𝑓𝑤𝑑𝑥 = 0.

(A.12)

Let 𝑘 = ((𝑁 + 4)/4)𝐶𝑁[‖Δ𝑢0‖22 + 𝑆(1 − ‖𝑢0‖𝑝𝑝)2/𝑝)](𝑁−4)/8 > 0
and 𝜆 = 𝑆(1 − ‖𝑢0‖𝑝𝑝)(2−𝑝)/𝑝. Then (A.12) implies that 𝑢0 is the
weak solution of

Δ2𝑢 = 𝜆 |𝑢|𝑝−2 𝑢 + 1𝑘𝑓. (A.13)

Since 𝑓 ̸= 0, we can conclude that 𝑢0 ̸= 0. Recall that 𝑢0(𝑎) >0, ∀𝑎 ∈ Σ, and Σ ⊂ Ω. Replace 𝑢0 with −𝑢0, and 𝑓 with −𝑓 if
necessarily. For 𝑎 ∈ Σ, we take 𝑐𝜀 = 𝑐𝜀(𝑎) such that𝑢0 + 𝑐𝜀𝑈𝜀,𝑎𝑝 = 1. (A.14)

We obtain the contradiction if we prove that

𝐺 (𝑢0 + 𝑐𝜀𝑈𝜀,𝑎) < 𝜇0 (A.15)

for a suitable choice of 𝑎 ∈ Σ and small 𝜀.

From (A.7), we infer that 𝑐𝜀 ↗ 𝑐0 as 𝜀 → 0, where 𝑐0 =(1 − ‖𝑢0‖𝑝𝑝)1/𝑝/𝐴1/𝑝. Let 𝑐𝜀 = 𝑐0(1 − 𝛿𝜀), where 𝛿𝜀 → 0 as𝜀 → 0. A direct computation shows that

𝑐𝑝0 𝐴𝛿𝜀
= 𝜀(𝑁−4)/2 [𝑐0 ∫

Ω

𝑢0𝑝−2 𝑢0𝜉𝑎|𝑥 − 𝑎|𝑁−4 𝑑𝑥 + 𝑐𝑝−10 𝑢0 (𝑎) 𝐸]
+ 𝑜 (𝜀(𝑁−4)/2) ,

(A.16)

where 𝐸 = ∫
R𝑁

(𝑑𝑥/(𝜀2 + |𝑥|2)(𝑁+4)/2). We deduce from (A.10)
and (A.16) and the definition of 𝑐0 that

𝐺 (𝑢0 + 𝑐𝜀𝑈𝜀,𝑎) = 𝐶𝑁 Δ (𝑢0 + 𝑐𝜀𝑈𝜀,𝑎)(𝑁+4)/42

− ∫
Ω
𝑓 (𝑢0 + 𝑐𝜀𝑈𝜀,𝑎) 𝑑𝑥 = 𝐶𝑁 [Δ𝑢022

+ 2𝑐0 ∫
Ω
Δ𝑢0Δ𝑈𝜀,𝑎𝑑𝑥 + 𝑐20 (1 − 2𝛿𝜀) 𝐵

+ 𝑜 (𝜀(𝑁−4)/2)](𝑁+4)/8 − ∫
Ω
𝑓 (𝑢0 + 𝑐𝜀𝑈𝜀,𝑎) 𝑑𝑥

= 𝐶𝑁 [Δ𝑢022 + 𝑐20𝐵](𝑁+4)/8 − ∫
Ω
𝑓𝑢0𝑑𝑥

+ 𝑁 + 48 𝐶𝑁 [Δ𝑢022 + 𝑐20𝐵](𝑁−4)/8
⋅ [2𝑐0∫

Ω
Δ𝑢0Δ𝑈𝜀,𝑎𝑑𝑥 − 2𝑐20𝛿𝜀𝐵]

− 𝑐0 ∫
Ω
𝑓𝑈𝜀,𝑎𝑑𝑥 + 𝑜 (𝜀(𝑁−4)/2) = 𝜇0

+ 𝑘𝜆𝑐0∫
Ω

𝑢0𝑝−2 𝑢0𝑈𝜀,𝑎𝑑𝑥 − 𝑘𝑐20𝐵𝛿𝜀
+ 𝑜 (𝜀(𝑁−4)/2)

(A.17)

and, furthermore, we infer from (A.16) that

𝑐0 ∫
Ω

𝑢0𝑝−2 𝑢0𝑈𝜀,𝑎𝑑𝑥
= 𝜀(𝑁−4)/2 ∫

Ω

𝑢0𝑝−2 𝑢0𝜉𝑎|𝑥 − 𝑎|𝑁−4 𝑑𝑥 + 𝑜 (𝜀(𝑁−4)/2)
= 𝑐𝑝0 𝐴𝛿𝜀 − 𝑐𝑝−10 𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2 + 𝑜 (𝜀(𝑁−4)/2) .

(A.18)

Also, we notice that

𝜆𝑐𝑝0 𝐴 = 𝑆 (1 − 𝑢0𝑝𝑝)(2−𝑝)/𝑝 (1 − 𝑢0𝑝𝑝)
= 𝐵𝐴2/𝑝 (1 − 𝑢0𝑝𝑝)2/𝑝 = 𝑐20𝐵.

(A.19)
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Hence it follows that

𝐺 (𝑢0 + 𝑐𝜀𝑈𝜀,𝑎)
= 𝜇0 + 𝑘𝜆 (𝑐𝑝0𝐴𝛿𝜀 − 𝑐𝑝−10 𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2)

− 𝑘𝑐20𝐵𝛿𝜀 + 𝑜 (𝜀(𝑁−4)/2)
= 𝜇0 − 𝑘𝜆𝑐𝑝−10 𝑢0 (𝑎) 𝐸𝜀(𝑁−4)/2 + 𝑜 (𝜀(𝑁−4)/2)
< 𝜇0.

(A.20)

This finishes the proof.
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