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The problemof optimal design of the statically indeterminate arch girder which constitutes the primary structural systemof the arch
bridge is presented.The task is to determine the optimal shape of the axis of the arch girder, as well as the optimal distribution of the
cross section height, ensuring theminimum arch volume as well as fulfillment of the standard requirements.This optimisation task,
with numerous control functions and constraints, is formulated as a control theory problem with maintaining the formal structure
of the minimum principle and then transformed to the multipoint boundary value problem and solved by means of numerical
methods. The numerical results are obtained with optimal control methods, using the Dircol software. Since the changes in the
shape and cross-section of the arch affect the distribution of the dead and moving loads transferred on the girder from the bridge
deck, the optimisation procedure is combined with the finite element method analysis, which together with the complexity of the
multidecision arch optimisation problem accounts for the novelty of the proposed approach.The numerical analysis reveals that the
optimal girder shape is the frame-arched structure, with considerable lengths of straight sections and only short arch elements, in
the areas of the application of concentrated forces andmoments.The presentedmethod can be successfully extended to optimisation
of structures with different static schemes and load categories taken into account.

1. Introduction

Arches have been widely used as bridge structural elements
for centuries. In contemporary engineering, arch girders are
highly attractive to designers and architects due to their
resistance, safety, and the possibility of shaping their various
forms; as a result, they actively influence the landscape. Arch
girders are therefore important, expensive, and often unique
structural elements of many bridge structures, so the crucial
issue is searching for optimal girder shapes and optimal
geometry of their cross sections that will reduce construction
costs while simultaneously meeting all the constraints arising
both from standards and imposed by developers.

The need to take into account all these constraints, as well
asmany load combinations and control variables significantly
increases the dimensions of optimisation problems and
complexity of mathematical modelling. This often results in
the necessity of task simplification in order to fit into the
model.

Some early work on the optimal design of the cross
section of the simple arched structures can be found in
[1, 2]. Solutions for the optimal shape of the plane-statically
determined arches subjected to uniform vertical loads were
presented in [3, 4]. Some papers have been published
addressing the issue of the shaping of the arch axis and the
interesting aesthetic and structural aspects of this matter [5–
7]. The buried concrete arch was studied in the paper by
Houšt et al. [8], where the optimal shape with regard to
the minimisation of the maximal stresses was found. The
issue of minimisation of the maximal stress over an arch
structure in the context of linear elastic thin shell theory
was analysed in [9]. Examples of the determination of the
optimum shape of brick masonry arches under dynamic
loads by cellular automata were presented by Kumarci et
al. [10]. Issues related to the optimal design of a steel arch
bridge using a genetic algorithm were presented in [11], where
the effectiveness of the optimal design of an arch bridge
made of high performance steel was analysed in comparison
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Figure 1: Diagram of the pre-optimisation arch bridge structure.

with a conventional design. The problem concerning the
shape optimization of concrete open spandrel arch bridges
by the simultaneous perturbation stochastic approximation
algorithm was discussed in [12].

However, it can be observed that there are still many
unsolved problems related to the discussed topic. A large
majority of the research works regarding arch optimisation
are only related to the search for an optimal arch axis or only
for optimal cross section geometry.

There is a lack of research regarding multidecision
optimisation problems that additionally account for many
constraints and loads, especially with regards to searching for
the optimal curvature of the arch axis. The methods capable
of solving such sophisticated structural design optimisation
problems are based on the optimal control theory.

Most optimal control problems in engineering are related
to time-optimal issues [13]. The use of control theory in the
optimal design of structural elements became possible after
interesting relationships between shape optimisation and the
optimisation of processes were discovered. The defining of
optimisation problems of bar elements within the formalism
of the Pontryagin minimum principle [14] became particu-
larly possible as a result of adopting an independent variable,
namely, the coordinate measured along a bar geometric axis
instead of time. Various problems in the optimal design of
bar systems have been solved, especially the optimisation of
reinforced concrete and steel frames [15], the optimisation of
thin-walled beams [16], and multispan girders [16–18].

This paper investigates the more complex optimal design
task of a real bridge structure.The application of Pontryagin’s
minimum principle in combination with FEM computations
allow global solutions to design problems to be reached.They
provide all the information on shaping a girder of variable
curvature and stiffness in away that guarantees theminimisa-
tion of the accepted objective function while simultaneously
meeting all the constraints arising from standards and the
constraints additionally imposed by developers.

2. Description of the Optimised Structure

The concrete arch under consideration constitutes the pri-
mary structural system of the arch bridge. The span length

of the arch girder is 39.56m, its preoptimisation shape is
parabolic with a rise of 7.92m, and the rectangular cross-
section dimensions are width b = 3.5m and initial height h =
0.62m. The road has two traffic lanes which are 2.75m wide,
a hard strip and a vehicle parapet (1.2m wide) on each side.
The reinforced concrete deck, 50m long, with a slab and beam
cross section (7.9 × 0.2m slab, strengthened by three beams
0.6× 0.4m), is supported by eight equally spaced columns, six
of which are founded in the girder.The column cross sections
are 3.5 × 0.55m. The bridge geometry and dimensions are
presented in Figure 1.

For dead load assessment, the following non-structural
elements are considered: a safety barrier with a cornice at each
side (combined total of 6 kN/m), and the waterproofing and
asphalt layerswith a combined thickness of 8 cm (2.78 kN/m).
The traffic load is represented by a uniform distributed load
with a weight density of 60.6 kN/m and the concentrated
loads of the tandem (a system of two concentrated axle forces
675 kN each, separated by 1.2m) according to EN 1991-2 [19].
Wind and thermal actions on the bridge are not taken into
account.

In order to identify the least favourable load combi-
nations, the whole bridge structure is initially analysed
in the Abaqus FEM code. The FEM model of the bridge
is constructed from linear Euler-Bernoulli beam elements
(to adjust the beam model to the conditions decided for
the optimisation problem). The number of beam elements
is around 1300. All discussed loads are considered with
arbitrary positions of tandem forces.

The ten tandem positions giving the most extreme
stresses in the arch girder are identified out of a possible
eighty-two, and the appropriate loads from the column
footings are transferred to the arch in the form of normal and
tangential forces and bendingmoments (Figure 2).Thegirder
is also subjected to self-weight. The global system (𝑥, 𝑦, 𝑧)
consists of the principal central axes of inertia.

The geometry of the arch cross section as well as the shape
of the arch axis is subjected to optimisation. The curvature
of the arch axis is controlled, thus allowing any shape for
the optimal arch girder, assuming a fixed position for the
end supports (characteristic points P0 and P7) and fixed
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Figure 2: Diagram of the arch girder with loads.

spans between the columns. The eight characteristic points
determine seven characteristic intervals.

In comparison to the initial girder, the rise of the
optimal arch axis and its cross-sectional characteristics are
altered. This automatically leads to changes in the length of
the six columns and in the structure’s stiffness. Thus, the
whole bridge structure model with the optimal arch shape is
analysed once more by FEM, and verified for both ultimate
and serviceability limit states.

In the mathematical model developed for the optimi-
sation problem under discussion, the use of linear elastic
material and slightly curved bars is assumed and Bernoulli’s
principle (plane cross section assumption) is applied. The
considerations are limited to the arch axis, assuming that
both it and the load lie in the same plane overlaying the
main bending plane and that the system is protected against
stability loss. The girder is assumed to be homogenous and
made of reinforced concrete, with elastic modulus𝐸 = 30GPa
and specific weight 𝛾 = 25 kN/m3.

3. Formulation of the Optimal
Control Problem

The optimisation problem is defined as the search for the
optimal shape of the girder axis and the optimal distribution
of the height of the cross section that minimises the assumed
objective function, while meeting all the constraint condi-
tions.

Elements of the formal structure of the optimal control
problem in question are state equations, boundary conditions
and internal point conditions, constraint conditions, and the
objective function.

3.1. State Equations. State equations are defined by means
of a system of first order ordinary differential equations
and provide relationships between state variables, control
variables, and structural parameters. Control and state vari-
ables are functions of the independent variable 𝑥 and can
be discontinuous in a finite number of points. The state
variables may be adopted as components of an internal force

vector, components of a displacement vector, components of
a strain state, and components of a stress state. The structural
parameters depend on geometric and physical properties of a
structure.

Themathematical model of the analysed arch girder with
a variable axis curvature is developed and arranged as a set of
nine first-order differential equations (1) [16, 20, 21]:

d𝑁
d𝑥 = −𝑄 ⋅ 𝜅

cos 𝜃 − 𝑞𝑠
cos 𝜃

d𝑄
d𝑥 = 𝑁 ⋅ 𝜅

cos 𝜃 − 𝑞𝑛
cos 𝜃

d𝑀
d𝑥 = 𝑄

cos 𝜃
d𝑢
d𝑥 = 𝑁

𝐸 ⋅ 𝐴 ⋅ cos 𝜃 + 𝑤 ⋅ 𝜅
cos 𝜃

d𝑤
d𝑥 = −𝑢 ⋅ 𝜅

cos 𝜃 + 𝜑
cos 𝜃

d𝜑
d𝑥 = 𝑀

𝐸 ⋅ 𝐼𝑧 ⋅ cos 𝜃
d𝑦
d𝑥 = 𝑡𝑔𝜃
d𝜃
d𝑥 = 𝜅

cos 𝜃
d𝑉
d𝑥 = 𝐴

cos 𝜃

(1)

where N is axial force; Q is transverse force; M is bending
moment; u is displacement tangent to the girder axis; w is
displacement perpendicular to the girder axis; 𝜑 is angular
displacement; y is girder axis coordinate; 𝜃 is the inclination
angle of the girder axis towards axis x; V is total volume
of material of the girder; 𝑞𝑠 and 𝑞𝑛 are continuous loads in
directions tangent and normal to the axis, respectively.

Two control variables are implemented: the first is
assumed as the girder axis curvature 𝑈1 = 𝜅, the second, as
the girder cross-section height 𝑈2 = ℎ.
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Constraints for the trajectories of control variables are
also imposed:

𝑈1 min ≤ 𝑈1 ≤ 𝑈1 max (2)

𝑈2 min ≤ 𝑈2 ≤ 𝑈2 max (3)

The girder’s cross section area and its moment of inertia may
be defined from the relations:

𝐴 = 𝑏 ⋅ 𝑈2,

𝐼𝑧 = 𝑏 ⋅ 𝑈23
12

(4)

Given that all ten load states have to be considered,
sixty-three state variables are defined, six state variables
(𝑁, 𝑄, 𝑀, 𝑢, 𝑤, 𝜑) for each load state 𝑖 = 1, 2, . . . 10, respec-
tively, and three state variables that define the shape of the
girder axis and its total volume (𝑦, 𝜃, 𝑉).

Eventually, a set of sixty-three state equations is defined
separately for each characteristic intervals in the form of
(5).

d𝑁𝑖
d𝑥 = −𝑄𝑖 ⋅ 𝑈1

cos 𝜃 + 𝛾 ⋅ 𝑏 ⋅ 𝑈2 ⋅ tan 𝜃
d𝑄𝑖
d𝑥 = 𝑁𝑖 ⋅ 𝑈1

cos 𝜃 − 𝛾 ⋅ 𝑏 ⋅ 𝑈2
d𝑀𝑖
d𝑥 = 𝑄𝑖

cos 𝜃
d𝑢𝑖
d𝑥 = 𝑁𝑖

𝐸 ⋅ 𝑏 ⋅ 𝑈2 ⋅ cos 𝜃 + 𝑤𝑖 ⋅ 𝑈1
cos 𝜃

d𝑤𝑖
d𝑥 = −𝑢𝑖 ⋅ 𝑈1

cos 𝜃 + 𝜑𝑖
cos 𝜃

d𝜑𝑖
d𝑥 = 12𝑀𝑖

𝐸 ⋅ 𝑏 ⋅ 𝑈23 ⋅ cos 𝜃
d𝑦
d𝑥 = 𝑡𝑔𝜃
d𝜃
d𝑥 = 𝑈1

cos 𝜃
d𝑉
d𝑥 = 𝑏 ⋅ 𝑈2

cos 𝜃
for 𝑖 = 1, 2, . . . , 10

(5)

3.2. Boundary Conditions and Interior Point Conditions.
Boundary conditions and interior point conditions result
from the manner in which the arch girder is supported and
loaded by concentrated forces and moments. In general, for
the task under discussion, 441 (63× 7) conditions are defined.
They comprise the 321 explicit conditions listed in Table 1 and
120 implicit conditions.

Implicit conditions are defined for state variables 𝑁𝑖 and𝑄𝑖 for each load state 𝑖 = 1, 2, . . . 10, and result from the
need to take into account all concentrated forces applied to

the characteristic points P1 to P6. The 120 implicit conditions
are defined in accordance with (6).

𝑁+
𝑖

− 𝑁−
𝑖

− V1𝑖 ⋅ sin (𝜃) − H1𝑖 ⋅ cos (𝜃) = 0
𝑄+
𝑖

− 𝑄−
𝑖

+ V1𝑖 ⋅ cos (𝜃) − H1𝑖 ⋅ sin (𝜃) = 0
𝑁+
𝑖

− 𝑁−
𝑖

− V2𝑖 ⋅ sin (𝜃) − H2𝑖 ⋅ cos (𝜃) = 0
𝑄+
𝑖

− 𝑄−
𝑖

+ V2𝑖 ⋅ cos (𝜃) − H2𝑖 ⋅ sin (𝜃) = 0
𝑁+
𝑖

− 𝑁−
𝑖

− V3𝑖 ⋅ sin (𝜃) − H3𝑖 ⋅ cos (𝜃) = 0
𝑄+
𝑖

− 𝑄−
𝑖

+ V3𝑖 ⋅ cos (𝜃) − H3𝑖 ⋅ sin (𝜃) = 0
for each: 𝑖 = 1, 2, . . . , 10

𝑁+
𝑖

− 𝑁−
𝑖

− V4𝑖 ⋅ sin (𝜃) − H4𝑖 ⋅ cos (𝜃) = 0
𝑄+
𝑖

− 𝑄−
𝑖

+ V4𝑖 ⋅ cos (𝜃) − H4𝑖 ⋅ sin (𝜃) = 0
𝑁+
𝑖

− 𝑁−
𝑖

− V5𝑖 ⋅ sin (𝜃) − H5𝑖 ⋅ cos (𝜃) = 0
𝑄+
𝑖

− 𝑄−
𝑖

+ V5𝑖 ⋅ cos (𝜃) − H5𝑖 ⋅ sin (𝜃) = 0
𝑁+
𝑖

− 𝑁−
𝑖

− V6𝑖 ⋅ sin (𝜃) − H6𝑖 ⋅ cos (𝜃) = 0
𝑄+
𝑖

− 𝑄−
𝑖

+ V6𝑖 ⋅ cos (𝜃) − H6𝑖 ⋅ sin (𝜃) = 0

(6)

In addition, it is necessary to define explicit interior point
conditions for control variables (Table 2).

3.3. Objective Function. In the case of structural optimal
design, different optimisation criteria may be adopted.
The strength criterion is adopted in problems concerning
minimization of maximum deflections, maximum bending
moments or maximum normal stress. Other criteria concern
the cost of constructing the engineering structure. The
material costs can be included by assuming the volume of
the structure as an objective function. However, the costs
of construction processes for optimally shaped elements are
difficult to define clearly.Thus, they aremostly not considered
in an objective function. Therefore, when assuming structure
volume as a function which will be minimised in the optimi-
sation task, efforts should bemade to find an optimal solution
which will not generate significant costs in construction.

For the problem under discussion, volume minimisation
is assumed as an optimisation criterion. The optimal control
problem of the Lagrange functional in the form (7)

𝐽 (X (𝑥) ,U (𝑥)) = ∫𝑥𝑃7
0

𝐴
cos 𝜃d𝑥 (7)

is transformed, thanks to the introduction of the state
equation d𝑉/d𝑥 = 𝐴/ cos 𝜃, into a Mayer problem with
functional (8) and initial condition (9):

𝐽 (X (𝑥) ,U (𝑥)) = 𝑉 (X (𝑥𝑃7) ,U (𝑥𝑃7)) (8)

𝑉 (X (0) ,U (0)) = 0 (9)

where X(𝑥),U(𝑥) are vectors of state variables and control
variables, respectively.
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Table 2: Explicit interior point conditions for control variables.

Control
variable

Characteristic point

P0
P1 P2 P3 P4 P5 P6 P7Left

(-)
Right
(+)

Left
(-)

Right
(+)

Left
(-)

Right
(+)

Left
(-)

Right
(+)

Left
(-)

Right
(+)

Left
(-)

Right
(+)

𝑈1 = 𝜅 - 𝜅− = 𝜅+ 𝜅− = 𝜅+ 𝜅− = 𝜅+ 𝜅− = 𝜅+ 𝜅− = 𝜅+ 𝜅− = 𝜅+ -
𝑈2 = ℎ - ℎ− = ℎ+ ℎ− = ℎ+ ℎ− = ℎ+ ℎ− = ℎ+ ℎ− = ℎ+ ℎ− = ℎ+ -

3.4. Constraint Conditions. The inequality constraint con-
ditions result from the need to meet the ultimate and
serviceability limit states.

For the optimisation task under discussion, two inequal-
ity constraint conditions resulting from the limits of maxi-
mum normal stresses and displacements are implemented in
the numerical calculation by the Dircol software, which takes
into account the ten least favourable load states. Additionally,
verification calculations for the whole bridge structure with
the optimal arch girder are performed in the Abaqus FEM
code each time after receiving the optimal solution. The
purpose of these calculations is to verify the limit states for
the optimal structure with regard to all eighty-two possible
load states. The limit value of normal compressive stresses is
assumed to be 13.3MPa, and the value of allowable vertical
displacement is set as 0.132m.

The first constraint condition in the optimisation task
refers to the limit of maximum normal compressive stresses:

𝑔1 = 𝜎0 − max 󵄨󵄨󵄨󵄨𝜎𝑥𝑐󵄨󵄨󵄨󵄨 ≥ 0 (10)

where 𝜎0 is allowable normal compressive stress, which will
not cause the ultimate limit state to be exceeded.

Normal stresses are defined in lower fibres 𝜎𝑙, in accor-
dance with (11) and upper fibres 𝜎𝑢 (12) for each load state:

𝜎𝑙𝑖 = 𝑁𝑖
𝐴 + 𝑀𝑖

𝐼𝑧 ⋅ 𝑈2
2 for each: 𝑖 = 1, 2, . . . , 10 (11)

𝜎𝑢𝑖 = 𝑁𝑖
𝐴 − 𝑀𝑖

𝐼𝑧 ⋅ 𝑈2
2 for each: 𝑖 = 1, 2, . . . , 10 (12)

The envelopes of maximum andminimum normal stresses in
lower and upper fibres out of all load states are calculated:

max𝜎𝑙 = max (𝜎𝑙𝑖) for 𝑖 = 1, 2, . . . , 10
max𝜎𝑢 = max (𝜎𝑢𝑖)

(13)

min𝜎𝑙 = min (𝜎𝑙𝑖) for 𝑖 = 1, 2, . . . , 10
min𝜎𝑢 = min (𝜎𝑢𝑖)

(14)

The envelope of maximum normal compressive stresses is
determined from relation (15):

max 󵄨󵄨󵄨󵄨𝜎𝑥𝑐󵄨󵄨󵄨󵄨 = max (󵄨󵄨󵄨󵄨min𝜎𝑙󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨min𝜎𝑢󵄨󵄨󵄨󵄨) (15)

The envelope of maximum normal tensile stresses may also
be calculated, to help design an appropriate reinforcement for
the reinforced concrete element.

The second inequality type constraint condition is related
to the maximum vertical displacement limit:

𝑔2 = 𝑊0 − max𝑊 ≥ 0 (16)

where 𝑊0 is allowable vertical displacement.
Vertical displacement 𝑊 is defined for each load state in

relation (17).

𝑊𝑖 = 󵄨󵄨󵄨󵄨𝑢𝑖 ⋅ sin 𝜃 + 𝑤𝑖 ⋅ cos 𝜃󵄨󵄨󵄨󵄨 for 𝑖 = 1, 2, . . . , 10 (17)

An envelope of maximum vertical displacement of all load
states is calculated:

max𝑊 = max (𝑊𝑖) for 𝑖 = 1, 2, . . . , 10 (18)

The search for the arch girder with an optimally shaped
axis and an optimal cross-section geometry is carried out for
various initial assumptions regarding permissible limit values
of the control variables 𝑈1 min, 𝑈1 max,𝑈2 min, 𝑈2 max in order
to find an optimal solution with the smallest value of the
objective function.

In view of the assumption that slightly curved bars
are being considered restrictions must be placed on the
proportion of the lateral cross-section dimension ℎ to the
radius of curvature 𝑅.The influence of a strong axis curvature
may be ignored below the limit value of h / R = 0.2 [20, 21].
Based on this condition, for an arch axis with a negative
curvature, we impose the limit values of the control variables
𝑈1 min as: 𝑈1 min = −0.3m−1. Other permissible limit values
of the control variables are provided in the next section.

The strong axis curvature effect can also be incorporated
in the optimization task; this issue was analysed in our earlier
work on different theoretical examples [16].

4. Optimal Solution and Numerical Results

Optimal controls are determined in accordance with the
Pontryagin minimum principle. For the objective function
and provided constraints, the Hamilton function and the
adjoint equations are defined for each characteristic interval.
The boundary conditions for the adjoint variables result from
the transversality conditions.

The Hamilton function for the problem under discussion
is linearly dependent on the control variable 𝑈1 and, for
this reason, it is necessary to produce constraints on the
control 𝑈1 in the form of (2). In a case of the irregular
Hamilton function, singular control or bang-bang control
may be obtained for the control variable 𝑈1. At the same
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Table 3: Comparison of the most important results for the initial task and optimisation tasks 1-4.

Task no. Arch axis curvature
𝜅 [m−1]

Cross-section height
ℎ [m]

Rise of an arch
𝑓 [m]

Volume of concrete
𝑉 [m3]

Percentage of
material savings

[%]

0.
(initial task)

parabolic arch, not
optimal

−0.0404860 ≤ 𝜅 ≤
−0.0192541

ℎ = 𝑐𝑜𝑛𝑠𝑡
ℎ = 0.62 7.92 94.294 -

1. 𝜅 = 𝑈1−0.04 ≤ 𝑈1 ≤ −0.02
ℎ = 𝑈20.5 ≤ 𝑈2 ≤ 0.7 5.56 75.684 19.74

2. 𝜅 = 𝑈1−0.04 ≤ 𝑈1 ≤ −0.02
ℎ = 𝑈20.45 ≤ 𝑈2 ≤ 0.7 5.97 69.812 25.96

3. 𝜅 = 𝑈1−0.3 ≤ 𝑈1 ≤ −0.02
ℎ = 𝑈20.5 ≤ 𝑈2 ≤ 0.7 5.74 75.596 19.83

4. 𝜅 = 𝑈1−0.3 ≤ 𝑈1 ≤ −0.02
ℎ = 𝑈20.45 ≤ 𝑈2 ≤ 0.7 6.36 69.361 26.44

time, there is no linear dependency of the Hamiltonian on
the control variable 𝑈2.

The optimal control task is transformed into a multipoint
boundary value problem. In order to find the solution to a
multipoint boundary value problem for the arch optimisation
task, the numerical methods are applied. Among the numer-
ical calculation methods, a direct method is chosen, since
it allows for the solution of complex multi-interval tasks.
The software based on direct methods, used in discussed
problems, is the Dircol 2.1 program: “A Direct Collocation
Method for the Numerical Solution of Optimal Control
Problems” [22, 23]. Dircol is based on the direct collocation
method; the infinite dimensional optimal control problem
is transcribed into a sequence of nonlinearly constrained
optimization problems (NLPs) by a discretization of state
and control variables. The NLPs are solved by means of the
sequential quadratic programming (SQP).

The optimal solutions meeting all necessary optimality
conditions are found for a number of optimisation tasks with
various assumptions regarding permissible limit values of the
control variables.

The selection of appropriate limits for control variables
starts with the analysis of the initial girder with parabolic arch
axis with the rise of f = 7.92m and a constant initial height of
h = 0.62m (the minimal value for which the ultimate limit
state is fulfilled).

From among the numerous carried out calculations,
solutions of the eight most interesting examples are presented
in this article. The first two optimisation tasks deal with the
search for optimal solutions within the range of permissible
values of the curvature which are close to the range of the
curvature of the initial parabolic arch, i.e. −0.04m−1 ≤ 𝜅 ≤
−0.02m−1. The possible courses for the optimal girder height
are adopted as: 0.5m ≤ ℎ ≤ 0.7m for task no. 1, and 0.45m ≤
ℎ ≤ 0.7m for task no. 2. As expected, a slight extension of the
range of permissible values of the girder height for task no. 2
enabled obtaining a solution characterised by a smaller value
of the objective function (Table 3). A further reduction of the
permissible minimum height ℎmin is not possible due to the
need to fulfil technological and design requirements.

For the remaining tasks the allowable values of curvature
are not so strictly limited. For tasks 3 and 4, the lower
curvature limit is reduced to the minimal value satisfying the
condition for slightly curved bars. From cases 1 to 4 the one
with the smallest value of the objective function is further
expanded upon in tasks 5-8, where the impact of the upper
curvature limit is analysed.

The calculation results are obtained for each optimisation
task as a set of numerical data and in graphic form as
diagrams of sixty-three state variables, sixty-three adjoint
variables, two control variables, the Hamilton function, and
two constraint conditions, inter alia. All conditions for the
adjoint variables resulting from the transversality conditions
are met. The optimal distributions of the control variables
providing the minimisation of the material volume are
obtained for each optimisation task. Because of the Hamilton
function’s linear dependency on control𝑈1 , singular solutions
are found, and also the control variable 𝑈1 takes values from
the boundary of the allowable area. The most important
results obtained for the first four optimisation tasks are listed
in Table 3.

The implementation of two control variables, these being
the arch axis curvature and cross-section height, makes it
possible to obtain a significant minimisation of the objective
function while simultaneously meeting the ultimate and
serviceability limit states for the whole bridge structure.
The volume of material for the arch girder is reduced from
approximately 94m3 for the initial task, to 69m3 for task no.
4. The optimal arches are also less elevated than the original
one. The diagrams of the optimal distribution of the girder
height, the optimal curvature, and the corresponding shape
of an arch girder axis and the course of inclination angle for
tasks 3 and 4 are set out in Figures 3–6.

Optimal height distributions for each of the four obtained
solutions show a significant increase of height in the area of
the application of concentrated forces andmoments. For each
task, this height is shaped differently depending, inter alia, on
the optimal distribution of curvature.

The whole bridge structure model with each of the four
optimal girders is analysed once more by FEM and checked
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Figure 3: Control variables for task no. 3.
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Figure 4: Optimal arch axis shape and corresponding optimal inclination angle for task no. 3.
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Figure 5: Control variables for task no. 4.

for both ultimate and serviceability limit states. The stress
and deflection envelopes for the initial and optimal arches are
presented in Figures 7–11.

A considerable change in the distribution of the compres-
sive stress envelopes can be observed. The stresses values are
significantly closer to the allowable stress for the optimally
shaped girder than for the initial task. Due to the necessity
of taking into account all eighty-two load states and the
fulfillment of ultimate and serviceability limit states for each

of these load states, it is not possible to obtain a distribution
of normal stresses along the entire length of the arch close
to the allowable value. Deflections for the optimal and
therefore lighter arch increase but do not exceed the limit
value.

In order to find the optimal solution with the smallest
value of the objective function, the calculations of four addi-
tional tasks are carried out, with expanded upper curvature
limits, as shown in Table 4.
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Figure 7:The stress envelopes by Abaqus FEM code for the initial task.
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Figure 8: The stress envelopes by Abaqus FEM code for task no. 3.
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Figure 9: The stress envelopes by Abaqus FEM code for task no. 4.
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Table 4: Comparison of the most important results for the next optimisation tasks.

Task no. Arch axis curvature
𝜅 [m−1]

Cross-section height
ℎ [m]

Rise of an arch
𝑓 [m]

Volume of concrete
𝑉 [m3]

Percentage of
material savings

[%]
5. 𝜅 = 𝑈1−0.3 ≤ 𝑈1 ≤ −0.015

ℎ = 𝑈20.45 ≤ 𝑈2 ≤ 0.7 6.17 69.035 26.79

6. 𝜅 = 𝑈1−0.3 ≤ 𝑈1 ≤ −0.01
ℎ = 𝑈20.45 ≤ 𝑈2 ≤ 0.7 6.06 68.873 26.96

7. 𝜅 = 𝑈1−0.3 ≤ 𝑈1 ≤ −0.005
ℎ = 𝑈20.45 ≤ 𝑈2 ≤ 0.7 5.68 68.664 27.18

8. 𝜅 = 𝑈1−0.3 ≤ 𝑈1 ≤ 0
ℎ = 𝑈20.45 ≤ 𝑈2 ≤ 0.7 5.54 68.369 27.49
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Figure 12: Control variables for task no. 8.
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Figure 13: Optimal girder axis shape and corresponding optimal inclination angle for task no. 8.

Comparing the volume obtained for the optimally shaped
girder for the best task, no. 8 (V = 68.369m3), with the value
obtained for the initial arch (V = 94.294m3), it can be seen
that the objective function has been reduced by over 27%.

The set of the most important diagrams for task number
8 with the smallest value of objective function is shown in
Figures 12–14.

As mentioned in the previous section, efforts should be
made to find an optimal solution which will not generate sig-
nificant costs in construction. For the optimisation problem
under discussion, the optimal solution of task no. 8 with the

minimum volume of material is also the solution that is the
simplest in its construction. The optimally shaped girder for
that task is a frame-arched girder which has a considerable
length of straight sections with short arch elements in the
areas of the application of concentrated forces and moments.

As in previous tasks, the whole bridge structure with
each of the optimal girders is verified for ultimate and
serviceability limit states byAbaqus FEMcode.The stress and
deflection envelopes for the optimal arch with the smallest
value of the objective function are presented in Figures 15 and
16.
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Figure 14: Volume of material for task no. 8.
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Figure 15: The stress envelopes by Abaqus FEM code for task no. 8.
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Figure 16: The deflection envelopes by Abaqus FEM code for task no. 8.

5. Conclusions

In this paper, a method of optimal design of an arch girder of
variable curvature and stiffness by means of control theory
is presented. The methodology is based on the application

of Pontryagin’s minimum principle in combination with
FEM computations. The objective is to minimise the total
volume of girder’s material while simultaneously meeting
all constraint conditions. The solutions meeting all neces-
sary optimality conditions are found for numerous tasks.
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The trajectories of all state variables, adjoint variables, the
Hamilton function, and symmetrical optimal solutions prove
the correctness of the obtained results. It should also be
emphasised that singular control of the optimal design task
is obtained, which is particularly interesting for a problem of
such complexity in the context of control theory.

Based on the formulations presented in this article,
calculations for various real structures can be performed.The
method of the optimal design of the girder with minimal
volume can be successfully extended to the optimisation
tasks of structures with various static schemes, load states,
and other objective functions or boundary conditions. The
obtained results confirm that the optimisation method, based
on the optimal control theory in combination with FEM
computations, can be used successfully in calculations for
complex structural systems.
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