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A new method using collective responses of starling birds is developed to enhance the global search performance of standard
particle swarm optimization (PSO). The method is named chaotic starling particle swarm optimization (CSPSO). In CSPSO, the
inertia weight is adjusted using a nonlinear decreasing approach and the acceleration coefficients are adjusted using a chaotic logistic
mapping strategy to avoid prematurity of the search process. A dynamic disturbance term (DDT) is used in velocity updating to
enhance convergence of the algorithm. A local search method inspired by the behavior of starling birds utilizing the information
of the nearest neighbors is used to determine a new collective position and a new collective velocity for selected particles. Two
particle selection methods, Euclidean distance and fitness function, are adopted to ensure the overall convergence of the search
process. Experimental results on benchmark function optimization and classic clustering problems verified the effectiveness of this
proposed CSPSO algorithm.

1. Introduction

The particle swarm optimization (PSO) algorithm is a global
optimization method based on intelligent search strategy
in population inspired by the behavior of birds flocking.
As a swarm intelligence algorithm, each particle flies in
the search space, called the solution space, with a certain
velocity and updates its velocity and position through a
linear combination of individual and global best positions in
history. Compared with other evolutionary algorithms, PSO
uses individual and global experiences of the particles and
has well-balanced mechanism between its exploitation and
exploration abilities [1]. Therefore, it has been successfully
applied to many difficult optimization problems [2].

PSO provides good exploitation and exploration per-
formance for solving optimization problems. The global
experience guides the direction of the particle population,
and individual experience gives a more precise direction in
the search space. In this way, the particle population will
move gradually closer to the global optimum. Hence, it has
short computing time and is easy to implement. However,
like most swarm intelligence algorithms, this algorithm can
be easily trapped into local optima in later generations or

iterations, and the search process may premature. Many
works have been done to improve the standard or traditional
PSO algorithm [3–6].

Data clustering has been an important technology in
data analysis. The purpose of data clustering is to discover
valuable informative patterns and implicit information [7].
As an unsupervised classification technique, data clustering
classifies similar data into the same groups or clusters using
the characteristics of the data without any prior knowledge
about the groups or clusters. Therefore, data clustering can
extract potential patterns or knowledge from the dataset
and can help in obtaining and understanding the valuable
information in the data [8]. Because data clustering problems
areNP-hard, traditionalmethods are sometimes ineffective in
solving these problems [9]. Therefore, a lot of work has been
done to solve this problem by adopting PSO, and some recent
researches and works are summarized below.

Netjinda et al. [10] presented a new PSO procedure,
called starling PSO, inspired by the collective responses
of starlings. Dor et al. [11] proposed a dynamic topology
DCluster algorithm based on two topologies using a four-
cluster approach and afitness function to solve the underlying
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for 𝑖 = 1 to𝑀
V𝑖𝑗 (𝑡 + 1) = 𝑤 ∗ V𝑖𝑗 (𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡)) + 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑔𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡));𝑥𝑖𝑗 (𝑡 + 1) = 𝑥𝑖𝑗 (𝑡) + V𝑖𝑗 (𝑡 + 1);
if Particle(𝑖).Fitness<Particle(𝑖).Best.Fitness

Particle(𝑖).Best.Position=Particle(𝑖).Position;
Particle(𝑖).Best.Fitness= Particle(𝑖).Fitness;
if Particle(𝑖).Best.Fitness<Best Particle.Fitness

Best Particle.Position=Particle(𝑖).Best.Position;
Best Particle.Fitness=Particle(𝑖).Best.Fitness;
End if

End if
End for

Algorithm 1: The Standard PSO Algorithm.

problem. Ali [12] presented a new variant of the position
updating rule of PSO, in which each particle is treated as a
bidimensional vector. Armano et al. [13] proposed a multiob-
jective clustering PSO algorithm with two objective functions
defined to integrate data connectivity and cohesion. Niu et
al. [14] proposed a population-based clustering algorithm
which combines different PSO and k-means algorithms to
help particles escape from local optima.

Exploring the topological neighborhood of the k-nearest
neighbors and employing pattern search are considered
to be useful tools to improve the performance of PSO
[15]. Cormark [16] proposed a PSO procedure using Renyi
entropy clustering, which contains two steps, initialization
and particle removal. Bharti and Singh [17] proposed a binary
PSO procedure with an opposition-based learning mecha-
nism using chaotic mapping, dynamic inertia weight, and a
mutation operator. Song et al. [18] added an environment
factor to the velocity adjustment in PSO to enhance the
robust behavior of the particles. Liu et al. [19] proposed a
modified coevolutionary multiswarm PSO procedure based
on new velocity updating and similarity detection to solve
multiobjective clustering problems.

Although PSO has been widely used in many fields and
has shown a great potential in solving optimization problems,
it still has some limitations. For example, it is easily trapped
into local optima and has a low convergence speed. So far,
no effective methods have been developed to balance local
and global searching abilities [20]. Therefore, more works
are needed to enhance the performance of PSO [21]. On
the other hand, data clustering, as one of the most popular
data mining techniques in discovering potential information
and knowledge from data, needs effective methods to obtain
better clustering results. In this study, a chaotic starling
particle swarm optimization (CSPSO) algorithm is proposed
to obtain better clustering results by improving the PSO
performance.

CSPSO has three major parts. A chaotic mapping, rather
than a random generation, method is introduced to generate
the acceleration parameters. A dynamic disturbance term
(DDT) is added in velocity updating to avoid trapping into
local optima. In order to improve the search ability, a local
search strategy based on the behavior of starling birds is used,

and the information of neighbors is collected to guide the
direction of the particle.

The rest of this paper is organized as follows. The
traditional PSO and the clustering problem are described
in Section 2. The CSPSO is developed and described in
detail in Section 3. In Section 4, simulation experiments
are conducted and comparisons with existing methods are
performed to analyze the effectiveness of CSPSO. Section 5
gives conclusions and future research directions.

2. Preliminary

In this section, the basic concepts of PSO and data clustering
problems, related to the development of the proposed algo-
rithm, are described in some detail.

2.1. The Standard PSO. PSO is one of the swarm intelligence
algorithms inspired by social behavior of bird flocking [26].
In PSO, the population size of the particles is denoted by𝑀,
and the dimension of the search space is denoted by𝐷. Each
particle 𝑖 has a position vector𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2, ⋅ ⋅ ⋅ 𝑥𝑖𝐷}, a velocity
vector V𝑖 = {V𝑖1, V𝑖2, ⋅ ⋅ ⋅ V𝑖𝐷}, and an individual best position in
history 𝑝𝑖 = {𝑝𝑖1, 𝑝𝑖2, ⋅ ⋅ ⋅ 𝑝𝑖𝐷}. The best position found by all
particles in the swarm, called the global best, is represented
by 𝑝𝑔 = {𝑝𝑔1, 𝑝𝑔2, ⋅ ⋅ ⋅ 𝑝𝑔𝐷}. At iteration 𝑡, the new updated
position and velocity of particle 𝑖 are determined by (1) and
(2), respectively, in the following:

V𝑖𝑗 (𝑡 + 1) = 𝑤 ∗ V𝑖𝑗 (𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡))
+ 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑔𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡)) , (1)

𝑥𝑖𝑗 (𝑡 + 1) = 𝑥𝑖𝑗 (𝑡) + V𝑖𝑗 (𝑡 + 1) , (2)

where 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are the acceleration
coefficients controlling the step size, and 𝑟1 and 𝑟2 are
two independently generated random numbers uniformly
distributed between 0 and 1. Two termination criteria are
used. One is when a preset maximal number of iterations
is reached and the other is when a tolerance level has
been achieved. The standard PSO algorithm is described in
Algorithm 1.
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Figure 1: Bifurcation diagram for the logistic map.

2.2. Chaotic Mapping. Chaotic maps are mapping methods
used to generate random numbers with features like ergodic-
ity and nonlinear and random similarity [27].There aremany
kinds of chaoticmaps, such as tentmap, Tchebychevmap, and
logistic map. Specifically, the logistic map developed by May
[28] can explore in the vicinity of a solution by oscillating in
the region. One chaotic variant based on logistic mapping is
given by (3) in the following [29]:

𝐶ℎ (𝑡 + 1) = 𝑢 ∗ 𝐶ℎ (𝑡) ∗ (1 − 𝐶ℎ (𝑡)) ,
𝐶ℎ (𝑡) ∈ (0, 1) , 𝑢 ∈ (0, +∞) , (3)

where 𝐶ℎ(𝑡) represents the value of the chaotic num-
ber at time 𝑡, 𝑢 is the control parameter, and 𝐶ℎ(0) ∉{0, 0.25, 0.5, 0.75, 1.0}. In (3), the parameter 𝑢 controls the
behavior of the chaotic variant 𝐶ℎ. The values of 𝐶ℎ(𝑡) for
varying values of 𝑢 are shown in Figure 1.

2.3. Data Clustering Problems. Let 𝑋 = {𝑋𝑞}, for 𝑞 =1, 2, . . . , 𝑁, be a dataset containing𝑁 data points or instances.
Data point 𝑞 is represented by𝑋𝑞 = {𝑋𝑞1, 𝑋𝑞2, . . . , 𝑋𝑞𝑑} with𝑑 representing the dimension of the data. The purpose of a
data clustering problem is to find a partition of the dataset
by optimizing a fitness function. A partition is represented
by 𝐶 = {𝐶𝑘}, for 𝑘 = 1, 2, . . . , 𝐾, where 𝐾 is the number
of clusters [30]. A partition must satisfy the following con-
ditions:

(i) 𝐶𝑘1 ∩ 𝐶𝑘2 = ⌀, ∀𝑘1 ̸= 𝑘2
(ii) ⋃𝐾𝑘=1 𝐶𝑘 = 𝑋
(iii) 𝐶𝑘 ̸= ⌀, ∀𝑘 = 1, 2, . . . , 𝐾.

Usually, the Euclidean distance is used to measure the
difference or similarity between two data points𝑋𝑞1 and𝑋𝑞2 .
Let 𝑧 = {z𝑘}, for 𝑘 = 1, 2, . . . , 𝐾, represent the centers of the𝐾
cluster 𝐶𝑘. The intracluster distance of cluster 𝐶𝑘 is the sum

of the distances of all data points in the cluster to 𝑧𝑘 given by
(4) in the following:

𝐷 (𝑋,𝐶𝑘) = ∑
𝑋𝑞∈𝐶𝑘

𝑋𝑞 − 𝑧𝑘 . (4)

The quality of the clustering results for the dataset can be
measured by the sum of the intracluster distances over all
clusters given by (5) in the following [31]:

𝐹 = 𝐹 (𝐶1, 𝐶2, . . . , 𝐶𝑘) = 𝐾∑
𝑘=1

𝐷(𝑋,𝐶𝑘)

= 𝐾∑
𝑘=1

∑
𝑋𝑞∈𝐶𝑘

𝑋𝑞 − 𝑧𝑘 .
(5)

𝐹 defined in (6) is used as the fitness function in clustering in
the following.

3. The Chaotic Starling Particle Swarm
Optimization Algorithm

Some efforts have been made in order to enhance the search
performance and convergence speed of PSO. In this section, a
chaotic mapping method and a DDT are introduced into the
PSOalgorithm to improve the global search ability, and a local
search technique based on starling birds is added to improve
the convergence speed. This improved PSO method is the
CSPSO algorithm. The major components and the details of
the CSPSO algorithm are discussed in this section.

3.1. Dynamic Update of CSPSO Parameters. Three compo-
nents, velocity of the previous iteration, individual factor,
and social factor, are used to update the velocity of a
particle. Three parameters, 𝑤, 𝑟1, and 𝑟2, control the relative
contributions of the three components. The inertia weight 𝑤
controls the influence of the velocity of the previous iteration.
The cognitive coefficients 𝑐1 and 𝑐2 balance the contributions
of the individual and social factors. Furthermore, the accel-
eration coefficients 𝑟1 and 𝑟2 control the proportion retained
in the individual and social factors. Each parameter plays an
important role in the velocity update and also consequently
affects the particle position update. Instead of using fixed
values, logistic mapping is used to generate the acceleration
coefficients 𝑟1 and 𝑟2 in each generation. In addition, the
inertia weight is adjusted using an exponential function. The
modifications of these parameters are shown in (6) and (7):

𝑟𝑝 (𝑡 + 1) = 4 ∗ 𝑟𝑝 (𝑡) ∗ (1 − 𝑟𝑝 (𝑡)) ,
𝑟𝑝 (𝑡) ∈ (0, 1) , 𝑝 = 1, 2, (6)

𝑤 (t) = wmin + (wmax − wmin) ∗ e(−t/(tmax−t)), (7)

where𝑤min and𝑤max are the minimum and maximum of the
inertia weight and 𝑡max is the maximum number of iterations.

3.2. The Dynamic Disturbance Term. As an optimization
algorithm based on swarm intelligence, PSO uses the
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trajectory of particles in the population by comparing the
fitness function values to select the local and global best
positions. Because of local optimal solutions, the velocity of
a particle is gradually decreasing during the later iterations.
Therefore, the majority of the particles fall into, and cannot
easily jump out of, local optimal points, called premature
convergence and evolutionary stagnation. To overcome these
problems, a method based on DDT [32] is used to change
the velocity update of each particle. DDT is embedded into
velocity updating when the velocity of a particle becomes too
low or when its position stays unchanged in the middle and
final generations. The modified velocity is updated using (8)
and the DDT, represented by 𝑇, is updated using (9) in the
following:

V𝑖𝑗 (𝑡 + 1) = 𝑤 ∗ V𝑖𝑗 (𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡))
+ 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑔𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡)) + 𝑇, (8)

𝑇 = 𝑚 ∗ ( t
tmax

− 0.5) , (9)

where 𝑚 is an accommodation coefficient with a value
between 0 and 1. This improvement helps in preventing a
particle from flying out of the boundary of the search space
when its velocity is too high in early generations, and in
escaping from a local optimal point by increasing its velocity
so as to improve the overall searching capacity. Besides, 𝑇
increases linearly to avoid oscillation and to keep a relatively
stable search direction in the optimization process.

3.3. Local Search Based on Starling Birds. In nature, a star-
ling bird spreads some kinds of information to its nearby
neighbors in order to defend its position, and the information
coming from one starling bird can spread to everywhere
in the swarm. Inspired by this phenomenon, a local search
method based on starling bird behavior is used in the
developed PSO procedure. Each particle seeks a new position
and velocity in the neighborhood by a weighted method that
can be seen as a kind of information communication between
an individual and its nearby neighbors.This mechanism tries
to seek a better solution in the local exploration around the
particle and reduces the time needed in local search [25].

Dynamic Neighborhood Selection. For each particle 𝑖, the
neighborhood 𝐻 is a subset of the particle population. The
particles in the population are listed in decreasing order of
the fitness-Euclidean distance ratio (FER) fromparticle 𝑖 [23],
and the𝑁𝑒 particles ranked on the top are taken as the ones in
the neighborhood of the particle. FER is determined by (10)
in the following:

𝐹𝐸𝑅(𝑥𝑖, 𝑥𝑖1) = 𝑎 ∗ ((𝐹 (𝑥𝑖) − 𝐹 (𝑥𝑖1))𝐸𝐷(𝑥𝑖, 𝑥𝑖1) ) ,
𝑖1 = 1, 2, . . . ,𝑀,

(10)

where ED(𝑥𝑖, 𝑥𝑖1) is the Euclidean distance between 𝑥𝑖 and𝑥𝑖1 , 𝛼 = ‖𝑠‖/(F(𝑥𝑤) − F(𝑥𝑏)), 𝑥𝑏 and 𝑥𝑤 are the best and

worst positions of the particles in the current population, 𝑠
is the size of search space defined as 𝑠 = √∑𝐷𝑗 (𝑥𝑢𝑗 − 𝑥𝑙𝑗)2,
and 𝑥𝑢𝑗 and 𝑥𝑙𝑗 are the maximum and minimum values of the𝑗th dimension of the data points in the dataset. The number
of neighbors 𝑁𝑒 is the size of the neighborhood. In order to
explore different search scope, a dynamic strategy is used to
adjust the size of the neighborhood specified in (11) in the
following:

𝑁𝑒 = 𝑁𝑒min + INT(𝑡 ∗ ((𝑁𝑒max − 𝑁𝑒min)𝑡max
)) , (11)

where 𝑁𝑒max and 𝑁𝑒min are the maximum and minimum
sizes of the neighborhood and INT(𝑎) is the integral function
taking only the integer part of 𝑎.
Position Update. The position of particle 𝑖 is adjusted using
the information of the particles in the neighborhood. Using
the weighted positions of the neighbors, the new position of
particle 𝑖 is determined by (12):

𝑥𝑖 = 𝑥𝑖 + 𝑟3 ∗ (( 1𝑁𝑒) ∗ ∑
𝑖1∈𝐻

𝑥𝑖1) , (12)

where 𝑥𝑖 is the current position of particle 𝑖, 𝑥𝑖 is the new
position after the adjustment, and 𝑟3 is a randomly generated
real number uniformly distributed between −1 and 1.

Velocity Update. Similar to the update of the position, the
velocity of particle 𝑖 is updated using the velocity information
of the particles in the neighborhood. The new velocity of
particle 𝑖 is determined by (13) in the following:

V̂𝑖 = V𝑖 + 𝑟4 ∗ (( 1𝑁𝑒) ∗ ∑
𝑖1∈𝐻

V𝑖1) , (13)

where V𝑖 and V̂𝑖 are the current and updated velocities of
particle 𝑖 and 𝑟4 is a randomly generated real number uni-
formly distributed between 0 and 1. The collective responses
of starling birds are described by the pseudocode shown in
Algorithm 2.

4. The CSPSO for Clustering Problems

4.1. Particle Selection. In the previous section, a local search
method based on starling bird behavior is used in the
neighborhood of a particle to search for better solutions.
Time needed by this method will increase. In order to
accelerate search speed and reduce time needed, the local
search method is not applied to all particles. Two methods
are adopted to select particles from the population. The local
searchmethod is then applied to all the particles selected with
these two methods.

An Euclidean Distance Method. In each generation, all the
particles are sorted in ascending order of their Euclidean
distances from the global best. The particles are divided
into 𝑆𝑒 groups of approximately equal size based on their



Mathematical Problems in Engineering 5

Input: 𝑁𝑒
for Particle 𝑖

Find the𝑁𝑒 neighbors in the neighborhood𝐻 of particle 𝑖 using FER
The new position of particle 𝑖: 𝑥𝑖 = 𝑥𝑖 + 𝑟3 ∗ ((1/𝑁𝑒) ∗ ∑𝑖1∈𝐻 𝑥𝑖1)
The new position of particle 𝑖: V̂𝑖 = V𝑖 + 𝑟4 ∗ ((1/𝑁𝑒) ∗ ∑𝑖1∈𝐻 V𝑖1 )
if Particle(�̂�).Fitness<Particle(𝑖).Fitness

Particle(𝑖).Fitness=Particle(�̂�).Fitness;
Particle(𝑖).Position=Particle(�̂�).Position;
Particle(𝑖).Velocity=Particle(�̂�).Velocity;

End if
Return Particle 𝑖

End for
Output: Particle 𝑖

Algorithm 2: Starling Birds Collective Responses.

Particle swarm 
initialization 

Update velocity 
and position of
each particle 

Update 
individual best 

and global
best positions

Local search method in starling birds

Sort the particle 
population 
using fitness

values

Selected 
particles using 

Euclidean 
distance

particles using 
Fitness function

Max 
iteration

Return global 
best position

Particles

Identify 
neighbors

Position and 
velocity 

adjustment

Select particle
using fitness values,

update position
and velocity

Update global
best position

NO

YES

=+

 Selected 

Figure 2: A local search method in the CSPSO algorithm.

Euclidean distances to the global best. The particle ranked
on the top of each group is selected. As a result, a total of 𝑆𝑒
particles are selected. The particles selected in this method
diversify the search and enhance exploration of the CSPSO
procedure.

A Fitness Function Method. In each generation, all the
particles are sorted in the ascending order of their fitness
function values. A total of 𝑆𝑓 particles ranked on the top
are selected. The particles selected in this method focus on
the promising regions in the search space so as to enhance
exploitation of the CSPSO procedure.

The two particle selection methods described above are
used in CSPSO to improve its convergence and increase
diversity. As a result, a total of 𝑆 = 𝑆𝑒+𝑆𝑓 particles are selected.
In the implementation, 𝑆𝑒 = 𝑆𝑓 is used. Particles selected

through the Euclidean distance method are diversified in the
search space to effectively avoid premature convergence. The
particles selected through the fitness function method will
lead the search direction. Figure 2 gives more details about
the process of particle selection.

4.2. Population Initialization. In the implementation of
CSPSO, each cluster center is the position of a particle, each
cluster center represents a cluster, and different cluster centers
represent different clusters.The set of cluster centers 𝑧 = {𝑧𝑘},
for 𝑘 = 1, 2, . . . , 𝐾, represents a partitioning result and also
represents the position of a particle 𝑥𝑖 = {𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖𝐾}.
In the initialization, the initial position of each particle is
generated randomly in the entire search space. Dimension 𝑗
of the position of particle 𝑖 represented by 𝑥𝑖𝑗 is generated
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Input: 𝑀, 𝑡max, 𝑁𝑒min, 𝑁𝑒max, 𝑤min, 𝑤max
Particle Swarm Population Initialization
for 𝑖 = 1 to𝑀 (Population Size)

Particle(𝑖).Best.Position=Particle(𝑖).Position;
Particle(𝑖).Best.Fitness=Particle(𝑖).Fitness;
if Particle(𝑖).Best.Fitness<Best Particle. Fitness

Best Particle.Position=Particle(𝑖).Best.Position;
Best Particle.Fitness=Particle(𝑖).Best.Fitness;

End if
End for
for 𝑡 = 1 to 𝑡max (Max Iteration)
Algorithm 1: The Standard PSO Algorithm
(See Algorithm 1)

Particle Selection𝑆𝑒 = Euclidean Distance Function (Best Particle.Position);𝑆𝑓 = Fitness Function (Particle(𝑖).Fitness);𝑆 = 𝑆𝑒 + 𝑆𝑓
Algorithm 2: Starling Birds Collective Responses

for 𝑖 = 1 to 𝑆
Find the𝑁𝑒 neighbors in the neighborhood𝐻 of particle 𝑖 using FER.
The new position of particle 𝑖: 𝑥𝑖 = 𝑥𝑖 + 𝑟3 ∗ ((1/𝑁𝑒) ∗ ∑𝑖1∈𝐻 𝑥𝑖1);
The new position of particle 𝑖: V̂𝑖 = V𝑖 + 𝑟4 ∗ ((1/𝑁𝑒) ∗ ∑𝑖1∈𝐻 V𝑖1 );
if Particle(�̂�).Fitness<Particle(𝑖).Fitness
Particle(𝑖).Fitness=Particle(�̂�).Fitness;
Particle(𝑖).Position=Particle(�̂�).Position;
Particle(𝑖).Velocity=Particle(�̂�).Velocity;
if Particle(�̂�).Fitness<Best Particle.Fitness

Best Particle.Position=Particle(�̂�).Best.Position;
Best Particle.Fitness=Particle(�̂�).Best.Fitness;

End if
End if

End for

𝑁𝑒 = 𝑁𝑒min + INT(𝑡 ∗ ((𝑁𝑒max − 𝑁𝑒min)𝑡max
));

End for
Output: Best Particle.Fitness

Algorithm 3: A Chaotic Starling PSO Algorithm.

randomly between 𝑥𝑙𝑗 and 𝑥𝑢𝑗 , where 𝑥𝑙𝑗 and 𝑥𝑢𝑗 are the
minimum and maximum values of dimension 𝑗 of the search
space and also are the limits of the positions of the particles.
Therefore, 𝑥𝑖𝑗 ∈ [𝑥𝑙𝑗 , 𝑥𝑢𝑗 ], for 𝑖 = 1, 2, . . . ,𝑀 and 𝑗 =
1, 2, . . . , 𝐷. The values of 𝑥𝑙𝑗 and 𝑥𝑢𝑗 are determined as (14):

𝑥𝑙𝑗 = min (𝑋𝑖𝑗 | 𝑖 = 1, 2, . . . , 𝑁) ,
𝑥𝑢𝑗 = max (𝑋𝑖𝑗 | 𝑖 = 1, 2, . . . , 𝑁) ,

for 𝑗 = 1, 2, . . . , 𝑑,
(14)

where 𝑋𝑖𝑗 is dimension 𝑗 of data point 𝑋𝑖. In particular, the
dimension 𝐷 of a particle is D = 𝐾 ∗ 𝑑.
4.3. Boundary Handling. If a particle flies outside or across
the boundary of the search space, this particle no longer
represents a solution. The position and velocity of such a
particle are adjusted. If the position of a particle in dimension

𝑗 is below the lower (above the upper) limit of that dimension,
it is set to the lower (upper) limit of that dimension.
Accordingly, the velocity of this particle along dimension𝑗 is reversed. These adjustments can limit the scope of the
positions and change the velocities, as well as changing the
directions of the flying paths, of the particles. The position
and velocity of such a particle are adjusted as follows:

𝑥𝑖𝑗 = 𝑥𝑙𝑗, if 𝑥𝑖𝑗 < 𝑥𝑙𝑗,
𝑥𝑖𝑗 = 𝑥𝑢𝑗 , if 𝑥𝑖𝑗 > 𝑥𝑢𝑗 ,
V̂𝑖𝑗 = −V𝑖𝑗,

(15)

where 𝑥𝑖𝑗 is the new value of dimension 𝑗 of the position and
V̂𝑖𝑗 is the new value of dimension 𝑗 of the velocity of particle 𝑖
after the adjustments.

4.4.The Pseudocode of the Proposed CSPSO. Thepseudocode
of the proposed CSPSO is presented in Algorithm 3.
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Table 1: Benchmark Functions.

Benchmark Functions Function Expression Domain 𝑋min 𝐹min

Sphere 𝑓min = 𝐷∑
𝑖=1

𝑥2𝑖 [–100, 100]D {0}𝐷 0

Rastrigin 𝑓min = 𝐷∑
𝑖=1

[𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖) + 10] [–5.12, 5.12]D {0}𝐷 0

Griewank 𝑓min = 𝐷∑
𝑖=1

( 𝑥2𝑖4000) − 𝐷∏
𝑖=1

cos( 𝑥𝑖√𝑖) + 1 [–600, 600]D {0}𝐷 0

Rosenbrock 𝑓min = 𝐷∑
𝑖=1

[(𝑥2𝑖+1 − 𝑥2𝑖 )2 + (1 − 𝑥𝑖)2] [–2.048, 2.048]D {1}𝐷 0

Sphere
Rastrigin

×104
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Figure 3: The Sphere and Rastrigin Function for 𝐷 = 2.

5. Simulation Experiments

Three experiments are conducted to evaluate the perfor-
mance of CSPSO. The first experiment validates the optimal
parameter values in CSPSO using the Sphere and Rastrigin
[33] benchmark functions. The second experiment validates
the performance of CSPSO using four classical numerical
benchmark functions [33]. These functions, all to be min-
imized, and their domains are presented in Table 1. The
third experiment checks the effectiveness of CSPSO in data
clustering using some datasets from the Artificial Datasets
[34] and the UCI Machine Learning Repository [35]. CSPSO
is implemented in MATLAB and all the experiments are
conducted on a LENOVO desktop computer with an Intel
3.20 GHz i5-4460/P4 processor and 8GB of RAM in a
Windows 8 environment.

5.1. Experiment on Parameter Settings. As described above,
the values of the parameters have important influences on
the performance of CSPSO.This section focuses on checking
the influences of the three critical parameters in CSPSO, the
inertia weight 𝑤, the size of the neighborhood 𝑁𝑒, and the
number of selected particles 𝑆, so as to find appropriate values
for them. The Sphere and Rastrigin functions are used to
study the influences of different values of the parameters in

CSPSO. The shape and ranges of the Sphere and Rastrigin
functions for 𝐷 = 2 are depicted in Figure 3. The dimension
of benchmark functions is𝐷 = 10 in the experiment. CSPSO
ran 30 times for each of the two benchmark functions.

For the validity of the experiments and fair comparisons,
parameters not to be tested in the experiments are kept at
the same values. These parameters are the population size𝑀 = 50, the max number of iterations 𝑡max = 100, and the
cognitive coefficients 𝑐1 = 𝑐2 = 2.

The influences of the inertia weight 𝑤 is tested first. Its
value is adjusted according to (8).Thevalues of𝑤min and𝑤max
directly determine the decline speed of 𝑤 and consequently
affect the convergence speed of CSPSO. Their values are
varied in the experiments. When the value of 𝑤 varies, the
minimum and maximum sizes of the neighborhood are kept
at 𝑁𝑒min = 2 and 𝑁𝑒max = 5, and the number of selected
particles is kept at 𝑆 = 10. The best and mean values of the
Sphere and Rastrigin functions are reported in Table 2.

The differences in these results are obvious. The optimal
values of the Sphere and Rastrigin functions were obtained at
different values of 𝑤. However, the mean values are different
for the Rastrigin function because it is multimodal with
many local optima. Generally, it is difficult to find global
optimal solutions for multimodal functions with traditional
optimization algorithms. Based on these results, the optimal
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Table 2: Results when varying the inertia weight 𝑤.
Inertia weight (𝑤min − 𝑤max) Sphere Rastrigin Mean Time taken by Sphere Mean Time taken by Rastrigin
0.2−0.6 0(0.0022) 0(0.9684) 3.3773 3.1321
0.2−0.9 0(0) 0(1.6269) 3.1235 3.1358
0.4−0.9 0(0) 0(1.7282) 3.1258 3.1309
0.4−1.2 0(0) 0(0.7567) 3.1229 3.1359

Table 3: Results when varying the size of the neighbourhood𝑁𝑒.
Neighbor size (𝑁𝑒min − 𝑁𝑒max) Sphere Rastrigin Mean Time taken by Sphere Mean Time taken by Rastrigin
2-5 0(0.1382) 0(1.0071) 3.1503 3.1420
2-7 0(0) 0(0.7359) 3.1389 3.1416
2-9 0(0) 0(1.3716) 3.1403 3.1446

Table 4: Results when varying the number of selected particles 𝑆.
𝑆𝑒, 𝑆𝑓 𝑆 Sphere Rastrigin Mean Time taken by Sphere Mean Time taken by Rastrigin
5 10 0(0) 0(0.6586) 3.1808 3.1966
7 14 0(0.7567) 0(1.5407) 4.2845 4.2645
9 18 0(2.5609) 0(2.4015) 5.3850 5.3840

values of the lower and upper limits of the inertia weight are
set to 𝑤min = 0.4 and 𝑤max = 1.2 where the minimum mean
values are achieved.

The influences of the size of the neighborhood 𝑁𝑒 is
examined next. In CSPSO, the size of the neighborhood 𝑁𝑒
increases gradually to enhance the local search ability. Large
values will lead to slow convergence and small values will
restrain the local search ability. An appropriate value balances
exploration and exploitation. The lower and upper limits on
the size of the neighborhood are set to different values and the
best and mean values of the Sphere and Rastrigin functions
are reported in Table 3.

Table 3 shows that the best results are obtained when the
size of the neighborhood is between the lower and upper
limits 𝑁𝑒min = 2 and 𝑁𝑒max = 7. The influences of the
number of selected particles 𝑆 are then tested. It has influences
on both convergence and search ability. Different values for 𝑆𝑒
and 𝑆𝑓 are used and the results are reported in Table 4.

The results in Table 4 show that the best number of
selected particles is 10 when the mean values of the test
functions and computation time are both low. It is easy to
see that more particles do not always lead to better results.
Because of randomness built into the algorithm, sometimes
most of the particles may just gather around local optima.

Based on these results, the lower and upper limits on
the inertia weight 𝑤min and 𝑤max are set to 0.4 and 1.2,
respectively, the lower and upper limits on the size of
the neighborhood 𝑁𝑒min and 𝑁𝑒max are set to 2 and 7,
respectively, and the number of selected particles 𝑆 is set to
10. These parameter values in CSPSO are kept the same and
are used in the following experiments.

5.2. Benchmark Functions. In this section, the 4 classical
numerical benchmark functions presented in Table 1 are used
to validate the effectiveness of CSPSO. The dimension of the

benchmark functions, which determines the dimension of
the search space, is set to𝐷 = 10, 20, and 30.Theperformance
of CSPSO is compared with those of PSO, fitness-Euclidean
distance ratio particle swarm optimization (FER-PSO) [23],
and starling particle swarm optimization (SPSO) [25]. PSO is
the basic swarm intelligent algorithm that was developed by
Kennedy and Eberhart [26]. FER-PSO utilizes the individual
best of a neighbor selected based on the Euclidean distance
and fitness function value to replace the individual best of its
own. The SPSO uses the collective responses of the particles
to adjust the positions and velocities of the particles when the
algorithm stagnates.

The values of the adjustable parameters in these compet-
itive algorithms are the best ones reported in the respective
references as listed in Table 5. These competitive algorithms
were also run for 50 independent times each so as to get
some meaningful results. The best fitness function values for
these functions obtained by these algorithms are reported in
Table 6.

Figure 4 shows the convergence of some functions of
the three algorithms. Compared with PSO and FER-PSO
in Figures 4(b) and 4(c), the curves of the function values
obtained by CSPSO decline slowly at the beginning of the
evolutionary process because of the time taken by local
search. Hence, it has a slow convergence speed. Relying on
DDT and chaotic mapping, CSPSO can find lower fitness
values than other algorithms after about half of evolutionary
process rather than falling into local optima. The local search
strategy in the neighborhood helps in finding better solutions
in the nearby neighborhood of the current position of a
particle. In particular, the curve of the Sphere function
obtained by CSPSO disappeared after the best value 0 has
been found because this value cannot be marked on the
chart. As shown in Figure 4(d) for the Rosenbrock function,
a multimodal function, and traditional algorithms like PSO,
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Table 5: Parameter settings in the experiment.

Parameters PSO ABC [22] FER-PSO [23] GABC [24] SPSO [25] CSPSO
Population (𝑀) 50 50 50 50 50 50𝑡max 200 200 200 200 200 200𝑐1, 𝑐2 2,2 − 2,2 − 2,2 2, 2𝑟1, 𝑟2 (0, 1) (−1, 1) (0.1, 0.4) (−1, 1) (0, 1) (0, 1)(𝑤min, 𝑤max) 1 − 1 1 (0.2, 0.4) (0.4. 1.2)
Neighbors (𝑁𝑒) − − 7 − 7 2−7
Selected (𝑆) − − − − − 10
Sub-population − − − − 14 −
Stagnant limit − − − − 2 −
Trial limit − 10 − 10 − −

Table 6: Best fitness function values obtained by different algorithms for the test functions.

Function 𝐷 PSO FER-PSO SPSO CSPSO

Sphere
10 0 0 0 0
20 0.5285 0.1613 8.2232e-12 0
30 2.4235 0.8891 5.1645e-12 0

Rastrigin
10 0.0727 0.03647 0 0
20 0.3595 0.1895 0 0
30 1.0374 0.4847 0 0

Griewank
10 0.5965 0.1135 0 0
20 1.4575 1.0994 0 0
30 3.2947 1.6874 0 0

Rosenbrock
10 6.3220 6.8162 5.2486 0.7037
20 19.8643 19.2219 18.7899 9.8431
30 38.1130 33.7894 28.7863 18.6928

FER-PSO, and SPSO are easily trapped into local optima, but
CSPSO can find the smallest function values among those
found by these algorithms. These results show that CSPSO
has strong global search ability through the use of DDT and
chaotic mapping. It can quickly escape local optima.

As the results of the 4 classic functions show in Table 6,
CSPSO and SPSO perform better than PSO and FER-PSO
on the Rastrigin and Griewank functions, and CSPSO per-
forms better than the other three algorithms on the Sphere
and Rosenbrock functions. In general, the results show
that CSPSO has more powerful global search ability than
traditional algorithms like PSO, FER-PSO, and SPSO both
in single modal and multimodal functions. Furthermore, as
indicated by the results in Table 6, the better performance of
CSPSO than others provides evidence that the improvement
in CSPSO is effective in enhancing the performance of PSO
and CSPSO can find the global optimum more often than
other algorithms in the experiments.

5.3. Clustering Problems. In this section, experiments on
clustering problemswith different datasets are performed and
results of different algorithms, including CSPSO, are reported
and discussed. Eight benchmark datasets are used. They
are Data 3 2, Data 5 2, Data 10 2, and Data 4 3 from the
work reported in [34] and Iris, Glass, Contraceptive Method

Choice (CMC), and Wine from the UCI Machine Learning
Repository [35]. More details about these datasets are given
in Table 7. Data 5 2 and Data 4 3 are also plotted in Figure 5.

The optimized values of the parameters in the other algo-
rithms shown in Table 5 are adopted in the experiments. In
order to perform fair comparisons, all the algorithms run on
all the clustering datasets for 50 times to eliminate the effects
random factors. As simple statistics, best values (Best), worst
values (Worst), mean values (Mean), and standard deviations
(S.D.) are used as the evaluation criteria to measure the
effectiveness of these clustering algorithms. The environment
of experiment is the same for all clustering algorithms.

Figure 6 shows the convergence of these algorithms on
four datasets for typical runs of the algorithms. The fitness
functions of CSPSO decline slowly at the beginning of
the evolutionary process and continue to decline, rather
than dropping into local optimum, at the middle of the
evolutionary process, possibly because DDT gives the par-
ticles high velocities. Local search based on Euclidean and
fitness neighborhood structure also helps the particles find
better positions. This phenomenon is more evident on high-
dimensional datasets such as the Glass dataset.

To be more clear, Figure 7 gives more details about
the convergence of these algorithms near the end of the
search process on three out of the four same datasets.
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Table 7: Description of the datasets used in the experiments.

Datasets Clusters (𝐾) Features (𝑑) Total instances (𝑁) Instances in each clusters
Data 3 2 3 2 76 (25,25,26)
Data 5 2 5 2 250 (50,50,50,50,50)
Data 10 2 10 2 500 (50,50,50,50,50,50,50,50,50,50)
Data 4 3 4 3 400 (100,100,100,100)
Iris 3 4 150 (50,50,50)
Glass 6 9 214 (70,17,76,13,9,29)
CMC 3 9 1473 (629,334,510)
Wine 3 13 178 (59,71,48)

 Iteration 
0 20 40 60 80 100 120 140 160 180 200

Be
st 

Va
lu

es
 

CSPSO
PSO

SPSO
FER-PSO

104

103

102

101

100

10−1

10−2

(a) Sphere function

CSPSO
PSO

SPSO
FER-PSO

Iteration 
0 20 40 60 80 100 120 140 160 180 200

 B
es

t V
al

ue
s 

103

102

101

100

(b) Rastrigin function

CSPSO
PSO

SPSO
FER-PSO

Iteration 
0 20 40 60 80 100 120 140 160 180 200

Be
st 

Va
lu

es
 

105

100

10−10

10−5

10−15

10−20

(c) Griewank function

Iteration 
0 20 40 60 80 100 120 140 160 180 200

Be
st 

Va
lu

es
 

103

102

101

100

CSPSO
PSO

SPSO
FER-PSO

(d) Rosenbrock function

Figure 4: Convergence of the algorithms on some functions (D = 10).

CSPSO has the best performance among all these clustering
algorithms. ABC is the first converging to a local optimal
point possibly because of the influence of randomly selected
neighbors. GABC has a poor performance for large data
volumes, such as the Data 5 2 and Glass datasets, possibly

due to the local search behavior of onlooker bees. FER-PSO
has apparently better convergence performance than other
algorithms possibly due to the strategy that only one of the
neighbors is selected to guide the search of a particle, but it is
easily trapped in local optimal points in the later generations
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Figure 5: Distributions of data points in some datasets.

of the search process. SPSO shows a better performance in
searching for a global optimum, but its local search strategy is
not working on high-dimensional datasets. The above results
and discussions reveal the different performances among
PSO, ABC, FER-PSO, GABC, SPSO, and CSPSO and verify
the good performance of CSPSO as a clustering algorithm.

It can be seen from Table 8 that CSPSO has a better
performance on these classical clustering problems. For the
Data 3 2, Data 5 2, and Data 10 2 datasets, CSPSO obtained
lower mean fitness values than others, but other algorithms
perform better than CSPSO on the best fitness values. This
is possibly due to the randomness of the swarm intelligence
algorithms. For the Data 4 3 datasets, because of their large
numbers of data points, the ability of local search in CSPSO
is affected by the selected neighbors. ABC has better stability
on this dataset, but has a poor ability in searching for a
global optimum than the others due to the random strategy.
CSPSO outperforms the other algorithms and obtains lower
mean fitness values than others on the Iris, Glass, CMC, and
Wine datasets. Therefore, it has better performance on high-
dimensional data. This proposed algorithm with embedded
DDT and chaotic mapping has better global search ability
and is more stable than traditional PSO through the use of
a local search method based on starling birds. Furthermore,
as the sizes of the datasets increase in both the dimension
and number of data points, CSPSO has better performance
than PSO, ABC, GABC, FER-PSO, and SPSO. It is more
capable of dealing with big data in the current information
age.

6. Conclusions

Because the performance of standard PSO depends on
its parameter values, parameter adjustment is one of the
most useful ways for PSO to obtain good exploration and
exploitation abilities. CSPSO proposed in this study enhances
the overall convergence of the searching process. Nonlinear
adjustment of the inertia weight and the chaotic search

method based on logistic mapping enhance the global search
performance of the traditional PSO and help particles escape
from local optima. DDT added to velocity update increases
the velocities of the particles in later iterations and also helps
particles escape from local optima. The local search strategy
based on behavior of starling birds utilizes the information of
the nearest neighbors in the neighborhood and determines
a new collective position and a new collective velocity. The
twoparticle selectionmethods, Euclideandistance and fitness
function value, maintain population diversity of the particles.
These improvements help particles avoid stagnation and find
better solutions in the search space.

The results of simulation experiments in both benchmark
function optimization and classical clustering problems show
the effectiveness of CSPSO. Compared with the traditional
PSO and other evolutionary algorithms, CSPSO has better
convergence properties and stronger global search ability.
However, as for other swarm intelligence algorithms, CSPSO
may be trapped into, and may stagnate around, local optimal
points and, therefore, may be unstable when applied to
problemswith multiple local optima. In future works, CSPSO
will be applied to other combinatorial optimization problems,
such as scheduling problems. Other metaheuristic methods
and optimization techniques may also be used to improve the
performance of PSO.
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Figure 6: Convergence of the algorithms on some datasets.
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Table 8: Comparison of performance of CSPSO with other clustering algorithms.

Datasets Parameters Algorithms
PSO ABC FER−PSO GABC SPSO CSPSO

Data 3 2

Best 47.5287 47.7630 47.5290 47.5282 47.5733 47.5282
Worst 59.1935 60.1039 49.7856 59.1895 53.1721 47.5382
Mean 48.4644 50.9702 47.8771 48.2279 47.8934 47.5300
S.D. 3.1956 3.1345 0.4967 2.7975 0.8551 0.0022

Data 5 2

Best 326.4386 337.5538 326.9987 329.7155 326.4666 326.4432
Worst 392.2899 411.0786 332.6651 364.8400 327.0877 326.9676
Mean 329.6249 373.6977 328.7897 343.5928 326.7493 326.5300
S.D. 12.9978 20.1046 1.1594 9.6214 0.1536 0.0942

Data 10 2

Best 1.0793e+03 916.4320 875.6264 1.3134e+03 843.2274 849.8712
Worst 1.4459e+03 1.2718e+03 1.2068e+03 1.1657e+03 1.1827e+03 1.0141e+03
Mean 1.2875e+03 1.0608e+03 1.0066e+03 63.8046 941.8921 918.2542
S.D. 70.4484 76.1788 67.1964 1.3134e+03 85.5520 50.5344

Data 4 3

Best 751.8897 1.0937e+03 830.5456 750.4056 749.9506 749.6738
Worst 1.2866e+03 1.6347e+03 1.3753e+03 1.8485e+03 1.2726e+03 1.2725e+03
Mean 838.8670 1.3838e+03 1.0312e+03 1.1489e+03 793.8641 784.5028
S.D. 181.8515 122.3579 150.0554 271.3938 142.5136 125.1508

Iris

Best 100.5216 113.1201 98.0975 96.6829 96.6605 96.6605
Worst 130.6931 156.8960 102.9780 127.6869 98.6906 98.0888
Mean 113.7655 133.1161 100.3761 105.0487 96.9465 96.9194
S.D. 7.1771 11.0706 1.2211 11.2307 0.3921 0.2931

Glass

Best 329.1487 333.7214 278.6565 288.5152 235.3554 229.6544
Worst 436.5615 503.1607 326.5351 402.5881 309.0997 278.9187
Mean 376.4035 422.3809 297.3875 346.4078 280.5624 257.0244
S.D. 21.5371 32.0309 11.1730 26.9515 14.5045 10.3633

CMC

Best 5.8449e+03 5.9895e+03 5.6153e+03 5.6704e+03 5.5615e+03 5.5404e+03
Worst 6.9260e+03 7.2137e+03 5.9728e+03 6.4143e+03 5.7676e+03 5.5861e+03
Mean 6.1772e+03 6.4821e+03 5.7297e+03 5.8864e+03 5.6426e+03 5.5562e+03
S.D. 186.7542 243.2599 73.0180 140.8947 44.6957 8.7806

Wine

Best 1.6308e+04 1.6399e+04 1.6312e+04 1.6309e+04 1.6305e+04 1.6298e+04
Worst 1.6798e+04 1.7317e+04 1.6376e+04 1.6482e+04 1.6356e+04 1.6313e+04
Mean 1.6438e+04 1.6705e+04 1.6336e+04 1.6355e+04 1.6322e+04 1.6304e+04
S.D. 95.0097 219.7057 15.9233 35.4218 12.0030 3.3799
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