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This paper presents an efficient and flexible solution for camera autocalibration fromN≥3 views, given image correspondences and
zero (or known) skew only. The knowledge is not required on camera motion, 3D information, scene, or internal constraints. Our
method is essentially basedonly on the fundamentalmatrices and itsmain virtues are threefold. Firstly, it is shown that, in the center-
oriented metric coordinates, the focal length and aspect ratio can be estimated independent of considerable principle point shift
(PPs).Thus, ourmethod includes recursive steps: estimating focal length and aspect ratio and then calculating the PPs. Secondly, the
optimal geometric constraints are selected for calibration by using error propagation analyses. Thirdly, the Levenberg–Marquardt
algorithm is adopted for the fast final refinement of four internal parameters. Our method is fast and efficient to derive a unique
calibration. Besides, this method can be applied to calibrate the focal length from two views, without requiring the prior knowledge
of PPs. Good performance of our method is evaluated and confirmed in both the simulation experiments and the practical tests.

1. Introduction

Camera calibration is an essential topic in photogrammetry
and computer vision. Numerous works have been investi-
gated in this subject in the last decades. Besides the image
correspondences, many calibration methods need one or
more additional constraints, such as camera motion [1–3] (to
cite a few), scene constraints by using the vanishing points
[4, 5] or plumb-lines [6, 7], 3D or 2D object information
[8, 9], or partial calibration information [10, 11].

Camera autocalibration is the technique to determine
the internal parameters directly from multiple uncalibrated
images. It requires only the image correspondences to recon-
struct the metric properties of camera and scene, despite
the unknown camera motion. Thus, it offers great flexibility.
Autocalibration is vital when the camera information is
unavailable, such as performing reconstruction by using the
historical images or those downloaded from the Internet.

Autocalibration was originally introduced by Faugeras
et al. [12]. The methods based on Kruppa equation were
later developed in [13–15] by using different numerical solu-
tions. Stratification approach was proposed in [16] and the
absolute (dual) conic was introduced as a numerical device

for formulating autocalibration problem in [17]. These early
works are however quite sensitive to noise and unreliable
[18, 19]. The numerical solution using interval analysis is
presented in [20], but this solution is insufficiently accurate
and extremely slow. Recently, a novel autocalibration method
was presented by using unknown isosceles right triangle
in 3D scene and optimizing a nonlinear cost function in
[21]. Autocalibration has also found extensive applications in
intelligent transportation systems [22] and video surveillance
system [23, 24]. An excellent comprehensive review on
the early autocalibration work can be seen in [19]. Other
relevant works were studied to estimate focal length from
two views, given other internal parameters in [10, 25, 26],
to calibrate the structured-light camera [27], to calibrate
large-scale camera networks [28, 29]. These techniques are
either inaccurate, time consuming, or hard to generalize to
multiview. Generally, although it is possible to autocalibrate
camera from N≥3 views and various methods have been
proposed, it remains quite a difficult problem [19].

In this paper, we present an efficient and flexible solution
for camera autocalibration from N≥3 views (actually from
N≥2 fundamental matrices), given image correspondences
and zero (or known) skew only. The skew parameter is
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insignificant in almost all vision practice [19], and it is
considered as zero here as most of the previous methods
assumed. The other information is not required on camera
motion, object information, scene, or internal constraints.
Our method is very fast (around 0.1 second for three views)
and efficient to derive a unique calibration from N≥3 views.
It is highly flexible as well. It can be applied in two-view to
calibrate the focal length, without the prior knowledge on
principle point shifts (PPs). Any precise prior information on
the internal parameters (known aspect ratio, for instance), if
available, can be easily introduced into our solution.

Our method is based on fundamental matrix and the two
constraints of essential matrix. Its main virtues are threefold,
distinctive from previous methods. Firstly, it shows that,
in the center-oriented metric coordinates, the focal length
and aspect ratio can be precisely estimated independent
of considerable PPs. Thus, in contrast to the conventional
methods which reconstruct simultaneously all the unknown
internal parameters, ourmethod contains two recursive steps.
It first estimates focal length and aspect ratio and then
calculates PPs by fixing the estimation of focal length and
aspect ratio.ThePPs estimation returns to contribute to refine
the estimation of focal length and aspect ratio, and so on
so forth. The recursion reduces the numerical complexity
and improves the accuracy. Secondly, the technique of error
propagation analyses is introduced to choose the optimal
geometric constraints. It is shown that the selection of
optimal constraints is vital for precise calibration and fast
convergence. In fact, using nonoptimal geometric constraints
may be one main source of the failure of the early techniques,
which are similarly based on the Kruppa equation. Thirdly,
Levenberg–Marquardt algorithm is adopted for the final
refinement. This iteration is very fast since it is performed on
only four unknown internal parameters.

Another significant characteristic of the present method
is using center-oriented metric coordinate system. Rather
than CCDpixel coordinates, the metric coordinates aremuch
more convenient for efficient approximation. Nevertheless,
the pixel coordinates can be easily transformed to the metric
coordinates and vice versa. For example, the pixel size can be
simply assumed as 4𝛼 × 4 𝜇𝑚, where 𝛼 is the aspect ratio.
The focal length and PPs can then be transferred to metric
coordinates. This does not impact the metric reconstruction
at all. The center-oriented coordinate is inspired by the
obvious fact that the camera PPs is mostly around the image
center. Although the center-oriented is not mandatory, it
accelerates the convergence and is recommended.

This work was partly presented in [30]. Its mathematician
derivation is refined and extensive evaluations are performed
in this work.The rest of the paper is organized as follows.The
basic equations on projective geometry are described in the
following subsection. The autocalibration method from N≥3
views is presented in Section 2. Section 3 demonstrates the
performance of our method in the simulation and practical
experiments. The work is concluded in the end.

1.1. Basic Equations. The homogeneous metric coordinates
of image measurements are indicated by x = [𝑥, 𝑦, 1]. The
camera calibration matrix 𝐾 is denoted in

𝐾 = [[
[

𝑓 0 𝑥0
0 𝛼𝑓 𝑦0
0 0 1

]]
]

(1)

where 𝑓, 𝛼, 𝑥0, and 𝑦0 are the focal length, aspect ratio, and
PPs, respectively. The skew parameter is considered as zero in
(1).

Fundamental matrix 𝐹 is the algebraic representation of
epipolar geometry between two views, independent of the
scene structure. It has rank of two and satisfies

x󸀠𝑇𝐹x = 0 (2)

where x and x󸀠 are the corresponding image points in two
views.

The epipolar geometry is described by essential matrix𝐸 when the calibration matrices are known. An important
property of essential matrix is that a 3×3matrix is an essential
matrix if and only if two of its singular values are equal, and
the third is zero. This property, offering two constraints, can
be represented algebraically as

2𝐸𝐸𝑇𝐸 − 𝑡𝑟 (𝐸𝑇𝐸)𝐸 = 0 (3)

where 𝑡𝑟(∙) denotes the trace operation. The relation between𝐹 and 𝐸 is given in (4).

𝐸 = 𝐾󸀠𝑇𝐹𝐾 (4)
For the autocalibration problem, it is assumed that the

calibration matrices in different views are unknown but
constant, e.g., 𝐾󸀠 = 𝐾 in (4). Since there are four unknown
internal parameters in (1) and two independent constraints
in (3), two fundamental matrices shall be possible to perform
autocalibration.

2. N-View Autocalibration

Our method on autocalibration is detailed in this section.
Firstly, three basic mathematical constraints are derived from
(3) and (4). The distinctive characteristics of these three
constraints allow using a recursive solution, which reduces
the problem complexity. Proper simplified approximation is
adopted to circumvent the numerical difficulties. Selection
of the optimal geometric constraints is highlighted, which
is crucial for accurate calibration, fast convergence, and
robustness.

2.1. Mathematical Derivations. Let 𝐹 = 𝑈𝑆𝑉𝑇 by using
singular value decomposition and denote

𝑈 = (𝑢𝑖𝑗) ,
𝑉 = (V𝑖𝑗) ,
𝑆 = (𝑠𝑖𝑗) ,

𝑖, 𝑗 = 1, 2, 3
𝑠1 ≜ 𝑠11,
𝑠2 ≜ 𝑠22

(5)
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Noticing 𝑈𝑈𝑇 = 𝑉𝑉𝑇 = 1 and 𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴), we
obtain (6)-(7) from (3)-(5).

2𝐾𝑇𝐹𝐾𝐾𝑇𝐹𝑇𝐾𝐾𝑇𝐹𝐾 − 𝑡𝑟 (𝐾𝑇𝐹𝑇𝐾𝐾𝑇𝐹𝐾)𝐾𝑇𝐹𝐾
= 0 (6)

0
= 2𝑆𝑉𝑇𝐾𝐾𝑇𝑉𝑆𝑈𝑇𝐾𝐾𝑇𝑈𝑆
− 𝑡𝑟 (𝑆𝑉𝑇𝐾𝐾𝑇𝑉𝑆𝑈𝑇𝐾𝐾𝑇𝑈) 𝑆

≜ 2𝑆𝑁𝑆𝑀𝑆 − 𝑡𝑟 (𝑆𝑁𝑆𝑀)𝑆

(7)

where 𝑀 = 𝑀𝑇 = 𝑈𝑇𝐾𝐾𝑇𝑈 = (𝑚𝑖𝑗) and 𝑁 = 𝑁𝑇 =
𝑉𝑇𝐾𝐾𝑇𝑉 = (𝑛𝑖𝑗), 𝑖, 𝑗 = 1, 2, 3. 𝐾𝐾𝑇 is named as the dual
image of the absolute conic (DIAC), which was important
in early literatures [19]. We get following equations from (7),
without giving lengthy details on mathematical deduction:

𝑠21𝑚11𝑛11 − 𝑠22𝑚22𝑛22 = 0 (8)

𝑠1𝑚12𝑛11 + 𝑠2𝑚22𝑛12 = 0 (9)

𝑠1𝑚11𝑛12 + 𝑠2𝑚12𝑛22 = 0 (10)

Obviously, these three equations, of which any two are
independent, correspond to the rank of two of the fundamen-
tal matrix. For instance, (10) can be derived by inserting (8)
into (9) by using the transform 𝑠2𝑚22 = −𝑠1𝑚12𝑛11/𝑛12.

Equations (8)-(10) are the fundamental constraints in
our method. They are named as Constraints I, II, and III,
respectively. They are the functions of the three calibration
parameters and thus denoted by 𝐶𝑖(𝑓, 𝑥0, 𝑦0) (𝑖 = 1, 2, 3) or𝐶(𝑓, 𝑥0, 𝑦0) in general.

Note that these constraints are related only with 𝑚𝑖𝑗 and𝑛𝑖𝑗 (𝑖, 𝑗 = 1, 2). 𝑚𝑖𝑗 (𝑖, 𝑗 = 1, 2) are represented in (11)-(13) as
follows:

𝑚11 = (𝑢211 + 𝛼2𝑢221) 𝑓2
+ 𝑢31 (𝑢31 + 2𝑢11𝑥0 + 2𝑢21𝑦0) + 2𝑢11𝑢21𝑥0𝑦0
+ 𝑢211𝑥20 + 𝑢221𝑦20

= (𝑢211 + 𝛼2𝑢221) 𝑓2 + (𝑢31 + 𝑢11𝑥0 + 𝑢21𝑦0)2
(11)

𝑚12 = 𝑚21
= (𝑢11𝑢12 + 𝛼2𝑢21𝑢22) 𝑓2 + 𝑢31𝑢32
+ (𝑢12𝑢31 + 𝑢11𝑢32) 𝑥0 + (𝑢22𝑢31 + 𝑢21𝑢32) 𝑦0
+ + (𝑢21𝑢12 + 𝑢11𝑢22) 𝑥0𝑦0 + 𝑢11𝑢12𝑥20
+ 𝑢21𝑢22𝑦20

= (𝑢11𝑢12 + 𝛼2𝑢21𝑢22) 𝑓2
+ (𝑢31 + 𝑢11𝑥0 + 𝑢21𝑦0) (𝑢32 + 𝑢12𝑥0 + 𝑢22𝑦0)

(12)

𝑚22 = (𝑢212 + 𝛼2𝑢222) 𝑓2
+ 𝑢32 (𝑢32 + 2𝑢12𝑥0 + 2𝑢22𝑦0) + 2𝑢12𝑢22𝑥0𝑦0
+ 𝑢212𝑥20 + 𝑢222𝑦20

= (𝑢212 + 𝛼2𝑢222) 𝑓2 + (𝑢32 + 𝑢12𝑥0 + 𝑢22𝑦0)2
(13)

Similar formulae can be derived for 𝑛𝑖𝑗 (𝑖, 𝑗 = 1, 2), just
replacing 𝑢𝑖𝑗 by V𝑖𝑗 in (11)-(13).

2.2. Recursive Solution. In the center-oriented metric coordi-
nate system, the magnitude of 𝑥0 and 𝑦0 are mostly around or
smaller than 10−3 (unit: m), which corresponds to the PPs of
lee than hundreds’ pixels. Thus, (14) holds for all |𝑢𝑖𝑗| ≤ 1, by
noticing 𝑈 is an orthogonal matrix.

(𝑢31 + 𝑢11𝑥0 + 𝑢21𝑦0)2 ≈ 𝑢231
(𝑢32 + 𝑢12𝑥0 + 𝑢22𝑦0)2 ≈ 𝑢232

(14)

The benefit of approximation in (14) is that it does not
change the sign of both sides. Using (14) and ignoring the
terms of PPs, we have (15) and (16) as the approximations of
(11) and (13), respectively.

𝑚11 ≈ (𝑢211 + 𝛼2𝑢221) 𝑓2 + 𝑢231 (15)

𝑚22 ≈ (𝑢212 + 𝛼2𝑢222) 𝑓2 + 𝑢232 (16)

Similar formulae as (14)-(16) can be given for the matrix𝑁. Note that this approximation is not applied to (12) since it
may differ the sign of (12).

Since Constraint I (8) contains terms𝑚𝑖𝑖 and 𝑛𝑖𝑖 (𝑖 = 1, 2)
only, it can be reduced to be a function of 𝑓 and 𝛼 from (15)
and (16), when the information on PPs is unavailable. The
reduced (8) is given in

𝑠21 [(𝑢211 + 𝛼2𝑢221)𝑓2 + 𝑢231] [(V211 + 𝛼2V221)𝑓2 + V231]
− 𝑠22 [(𝑢212 + 𝛼2𝑢222) 𝑓2 + 𝑢232]
⋅ [(V212 + 𝛼2V222) 𝑓2 + V232] = 0

(17)

This elegant characteristic of Constraint I makes a recur-
sive solution possible and feasible. Given N≥2 fundamental
matrices, the 𝑓 and 𝛼 can be calculated from (17)-alike
equations, without requiring any knowledge on PPs. Solving
two (17)-alike equations is a plain work and the simple
elimination technique is sufficient. Particularly, eliminating 𝛼
gets a four-order polynomial of𝑓2, and eliminating 𝑓 obtains
a six-order polynomial of 𝛼2. Subsequently, the estimates of𝑓 and 𝛼 can be applied as fixed values into the constraints
(8)-(10) to calculate the PPs, whose estimates can turn back
to (8)-(10) to refine the calibration of 𝑓 and 𝛼. This recursive
process proceeds until convergence. The details on recursion
are presented in the next sections.

It is worth mentioning that (17) is exactly the reduced
Constraint I (8) by assuming 𝑥0 = 𝑦0 = 0. It is convenient
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for program implementation, with zero as the initial value
of PPs. Despite this equivalence, it must be emphasized that
the assumption of zero initialization is never the prerequisite
for the recursive solution. Equation (17) is essentially based
only on the metric coordinate system and the property of
orthogonal matrix. The numerical experiments in Section 3
will also show that calibration is independent of the amount
of PPs. This approximation (17), however, may not work well
within the pixel coordinates, since in this case PPs are much
larger than 𝑢𝑖𝑗 and V𝑖𝑗 and the approximations in (14)–(16) are
less adequate.

2.3. PPs Calculation. Given 𝑓 and 𝛼, the constraints (8)-(10)
can be represented as the function of 𝑥0 and 𝑦0, with the
general form shown in (18).

𝑎1𝑥40 + 𝑎2𝑥30𝑦0 + 𝑎3𝑥30 + 𝑎4𝑥20𝑦20 + 𝑎5𝑥20𝑦0 + 𝑎6𝑥20
+ 𝑎7𝑥0𝑦30 + 𝑎8𝑥0𝑦20 + 𝑎9𝑥0𝑦0 + 𝑎10𝑥0 + 𝑎11𝑦40
+ 𝑎12𝑦30 + 𝑎13𝑦20 + 𝑎14𝑦0 + 𝑎15 = 0

(18)

In principle, any two (18)-alike equations can be used to
calculate the PPs. Eliminating 𝑥0 from these two equations
leads to a 44-order univariate polynomial of𝑦0 and vice versa.
However, deriving high-order polynomial is technically dif-
ficult and numerically unstable. Although the numerical
methods based on the algebraic geometry techniques might
be useful, they can be very slow and unstable [31]. The
nonlinear iterative techniques, which require good initial
values, may lead to poor convergence. In fact, a simple
approximation can easily circumvent this nuisance, thanks to
again the convenience of themetric coordinates. In themetric
coordinates, the terms whose total degree is higher than two
are numerically ignorable. Thus, (18) can be simplified as

𝑎6𝑥20 + +𝑎9𝑥0𝑦0 + 𝑎10𝑥0 + 𝑎13𝑦20 + 𝑎14𝑦0 + 𝑎15 = 0 (19)

It becomes rather easy to solving 𝑥0 and 𝑦0 from two
(19)-alike equations. That is, eliminating 𝑥0 leads to a 4-order
polynomial of 𝑦0 and vice versa.

Thenumerical simulation shows, that (18) and (19) deliver
almost the same real PPs solutions. It is stressed that this
simplified approximation cannot be performed within the
pixel coordinates.

2.4. Optimal Geometric Constraints. We know from last two
subsection, that given 𝑥0 and 𝑦0, any two constraints are
sufficient to calculate𝑓 and𝛼. Aswell, any two constraints are
sufficient to calculate𝑥0 and𝑦0 by fixing𝑓 and𝛼.Thus,multi-
ple solutions can be derived fromN≥2 fundamental matrices,
since one fundamental matrix provides three constraints (8)-
(10). In order to obtain a unique calibration, the proper
constraints need to be selected. This can be accomplished by
using the technique of error propagation analysis, which is
described as follows.

We perform the partial derivate for each constraint, as in

𝑒 = 𝑒𝑓𝑑𝑓2 + 𝑒𝛼𝑑𝛼2 + 𝑒𝑥𝑑𝑥0 + 𝑒𝑦𝑑𝑦0 (20)

The amounts of 𝑒𝑓, 𝑒𝛼, 𝑒𝑥, and 𝑒𝑦 represent the impact
of erroneous 𝑓2, 𝛼2, 𝑥0, and 𝑦0 on the final accuracy.
Nevertheless, the calibration parameters maintain different
impacts on different constraints. Although it is hard to be
proved rigorously, our simulations show the general rule as
follows:

(i) Constraint I is robust to the deviation of 𝑥0 and 𝑦0,
while being sensitive to the change of 𝑓 and 𝛼. Thus,
Constraint I should be used to calculate the 𝑓 and 𝛼.

(ii) Constraints II and III are robust to the deviation of𝑓 and 𝛼, while being sensitive to the change of 𝑥0
and 𝑦0. Thus, Constraints II and III should be used
to calculate the 𝑥0 and 𝑦0.

This rule coincides to the analyses in Section 2.2, where it
is shown that the impact of PPs is insignificant on Constraint
I. Therefore, it is needed only make analyses of error propa-
gation on 𝑥0 and 𝑦0 for Constraint I and analyses on 𝑓 and 𝛼
for Constraints II and III.

Since the amounts of 𝑑𝑥0 and 𝑑𝑦0 are unknown, the error
propagation 𝑒 of Constraint I can be approximated by the
normalized forms

𝑒
𝑥0𝑦0 =

𝑒𝑥𝑦0
𝑑𝑥0𝑥0 +

𝑒𝑦
𝑥0
𝑑𝑦0𝑦0 (21)

𝑒2 ≈ ( 𝑒𝑥𝑦0)
2 + ( 𝑒𝑦𝑥0)

2

(22)

By considering 𝑥0 and 𝑦0 are unavailable (or equal to
zero) in the first recursion (see Section 2.2), (22) is reduced
to be (23) in this case.

𝑒2 ≈ (𝑒𝑥)2 + (𝑒𝑦)2 (23)

Similarly, the error propagation of 𝑓 and 𝛼 in Constraints
II and III is approximated as

𝑒2 ≈ ( 𝑒𝑓𝛼2)
2 + ( 𝑒𝛼𝑓2)

2

(24)

Then, any two constraints, whose error propagation is𝑒2𝑖 and 𝑒2𝑗 , result in a univariate polynomial of one calibra-
tion parameter (see Sections 2.2 and 2.3). This polynomial
is weighted as 1/𝑒2𝑖 𝑒2𝑗 . To avoid the potential dependence
between Constraints II and III from single 𝐹, our strategy to
select the optimal geometric constraints is as follows:

(i) Compare the weights of the Constraints II and III
from single 𝐹. The constraint of larger weight is
selected. Thus, there are N constraints and N(N-1)/2
polynomials from N fundamental matrices.

(ii) AmongN(N-1)/2 polynomials, the polynomials of top
three weights are selected as the optimal geometric
constraints to calculate the unknown parameter. This
step is applied to calculate all the calibration parame-
ters: 𝑓, 𝛼, 𝑥0, and 𝑦0.
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Usually, the polynomial of the highest weight delivers the
optimal solution. However, the second step of the strategy is
performed to avoid the cases, where the multiview geometry
is so weak that the polynomial of the highest weight might
derive no rational solution.

The rational solution must satisfy the following check.

𝑓 > 0,
𝛼 > 0,

−𝑋 ≤ 𝑥0 ≤ 𝑋,
−𝑌 ≤ 𝑦0 ≤ 𝑌

(25)

where 2𝑋 and 2𝑌 denote the image length and width (unit:
m).

More practical considerations, like 1/5 < 𝛼 < 5, can be
taken into account as well. Usually, more than one rational
solution might be obtained after the rational check (25).Then
the solution, which obtains the minimum mean square error
(MSE) of all the polynomials is chosen as the unique solution.

2.5. Nonlinear Optimization. The calibration solution of the
recursive procedure is usually suboptimal. In order to take
advantage of the whole multiview geometry and further
refine the calibration, the nonlinear optimization is recom-
mended for final refinement, by using the recursive solution
as the initial values.The Levenberg–Marquardt algorithm can
adopted and can be run very fast since there are only four
unknown internal parameters. As usual, the initial value of
the damping factor 𝜆 can be set as 10−3. It is fairly expected
that, with the good values obtained by our recursive method,
the nonlinear optimization is able to obtain the global optimal
solution.

2.6. Two-View Calibration. There are two independent con-
straints from two views (single fundamental matrix), Con-
straint I and Constraint II (or III). As mentioned previously
in Sections 2.2 and 2.4, Constraint I should be chosen to
calculate the focal length by using (17), by given the aspect
ratio only.

Compared to the other techniques [10, 25, 26], which
require known PPs and aspect ratio, ourmethod can calculate
the focal length from two views without any knowledge
on the PPs. Thus, our method is most flexible in two-view
application.

2.7. Summarizations. Ourmethod is based on the fundamen-
tal matrix of epipolar geometry. It is beyond this work on
how to derive the fundamental matrix from the image corre-
spondences. Many methods are described in [19]. Although
it is not optimal, the fast normalized 8-point algorithm [32]
is employed in this study. Our method is summarized as
follows.

Inputs: image correspondences from N≥3 images, the
image dimension 2𝑋 and 2𝑌, maximum recursive number L
(and zero skew).

Outputs: Calibration matrix 𝐾.
Algorithm:

(1) If the image correspondences, 2𝑋 and 2𝑌, are in
pixel coordinates, they are transformed to be those
in metric coordinates (unit: m, by assuming the pixel
size is 4𝛼 × 4 𝜇𝑚 for instance).

(2) Compute the fundamentalmatrices of the image pairs
by using the normalized 8-point algorithm or others
[19].

(3) Set 𝑙 = 1, 𝑓0 = 𝛼0 = 𝑥00 = 𝑦00 = 0.
(4) Use all the Constraints I to derive the unique 𝑓𝑙 and𝛼𝑙 by fixing 𝑥0𝑙−1and 𝑦0𝑙−1 (see Sections 2.2 and 2.4).
(5) Use all the Constraints II and III to derive

the unique 𝑥0𝑙 and 𝑦0𝑙 by fixing 𝑓𝑙 and 𝛼𝑙 (see
Sections 2.3 and 2.4).

(6) If either (26) or (27) is satisfied, go to Step (6).
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓𝑙 − 𝑓𝑙−1𝑓𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 10
−3,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼𝑙 − 𝛼𝑙−1𝛼𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 10
−3,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥0𝑙 − 𝑥0𝑙−1𝑥0𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 10
−3,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑦0𝑙 − 𝑦0𝑙−1𝑦0𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 10
−3

(26)

𝑙 > L (27)

Else, 𝑙 = 𝑙 + 1 and go back to Step (4).
(7) Perform Levenberg–Marquardt algorithm on the all

constraints for the final refinement.
(8) The calibration matrix in metric coordinates is trans-

formed to be that in pixel coordinates, if necessary.

Any prior information, if available, can be introduced into
this method. For example, if aspect ratio is known, then 𝛼
is fixed in the above procedure; if the good initial values are
available, they shall be used in the first recursion.

3. Experiments

Both simulated and practical experiments are carried out to
evaluate our method. All the experiments are implemented
in MATLAB, in one PC with 32-bit Windows Seven system,
CPU 2.5GHz, 3GB RAM.

3.1. Simulation Experiments. The presented autocalibration
method is evaluated in simulation studies, with respect to
different noise levels, PPs, and number of image corre-
spondences. The image resolution of the virtual camera is
2000×1600, focal length 2000 pixels (angle of view 52∘×43∘),
and aspect ratio 1.2. PPs vary in the experiments. The pixel
size is thus assumed as 4𝛼 × 4 𝜇𝑚 and all the image
correspondences transformed to be the metric coordinates.
Three typically posed images are simulated.

Each simulation experiment is run 100 times for statistical
purpose. The accuracy of focal length and aspect ratio is
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Figure 1: Performance evaluation with respect to PPs variations, by given perfect fundamental matrices (left: 𝑓 and 𝛼 (%); middle: PPs
(pixels); right: running time (sec)).
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Figure 2: Performance evaluation with respect to different noise levels (left: 𝑓 and 𝛼 (%); middle: PPs (pixels); right: running time (sec)).

quantified by relative error (%), and PPs are evaluated by
absolute error (unit: pixel). The fundamental matrices are
computed by using the fast normalized 8-point algorithm in
both simulation and practical experiments.

Given Perfect Fundamental Matrices. Since the normalized 8-
point algorithm is not a mandatory part, we first evaluate the
performance of our calibrationmethodwhen all fundamental
matrices are perfectly given.The results are shown in Figure 1,
with respect to PPs varying from0pixel to 150 pixels. Both the
relative errors of f and 𝛼 are impressively smaller than 10−7%,
and the absolute error of PPs is less than 2×10−6 pixel. The
running time is around 0.1 second in all cases. Do note that
the performance is independent of the PPs amount.

Noise Effect. The computation of fundamental matrix is
impacted by the noise, whose effect on our calibration

method is evaluated here. There are 100 correspondences for
each image pair and the real PPs are 50 pixels. The results are
illustrated in Figure 2 with the noise increasing from 0.0 to
1.0 pixel.

It is clear from Figure 2 that the relative errors of f and 𝛼
and the absolute error of PPs increase linearly with the noise
level. For the noise smaller than 0.2 pixel, the relative errors of
f and 𝛼 are smaller than 0.1% and the PPs error is smaller than
5 pixels. The running time is around 0.1 second, independent
of the noise level.

Number of Image Correspondences. The computation of fun-
damental matrix is impacted as well by the number of
the image correspondences, whose effect on calibration is
illustrated in Figure 3. The noise level is 0.1 pixel and the real
PPs are 50 pixels.
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Figure 3: Performance evaluationwith respect to the number of image correspondences (left:𝑓and𝛼 (%);middle: PPs (pixels); right: running
time (sec)).
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Figure 4: Performance evaluation with respect to PPs (left: 𝑓 and 𝛼 (%); middle: PPs (pixels); right: running time (sec)).

From Figure 3, the calibration accuracy increase sub-
stantially with the number of correspondences. When there
are around 100 image correspondences, the relative errors of𝑓 and 𝛼 are around 0.05% and the absolute errors of PPs
are 1.5 pixels. The running time is about 0.05 second in all
cases.

PPs Effect. Here we again demonstrate in Figure 4 the
calibration results with respect to PPs, under the noise of 0.1
pixel and 100 correspondences. The real PPs vary from 10 to
150 pixels. From Figure 4, the relative errors of 𝑓 and 𝛼 are
around 0.05% and the absolute error of PPs is smaller than 2
pixels. It is obvious that the calibration performance is fully
independent of the PPs deviation, coincident to the analyses
in Section 2.2 and the results in Section 3.1.

3.2. Practical Experiments. We carry out practical experi-
ments for autocalibration from two datasets. One dataset is
taken in our lab environment and another is from the EPFL
public vision dataset [8].

In the first experiment, three images are taken from our
lab as shown in Figure 5. These images are almost (not
fully) distortion free. It must be stressed that NO target
information is used in this experiment, though these images
look a bit like the checkerboard in Zhang’s method [9].
We implement such experiment since very accurate and
robust coded correspondences can be obtained by using
the commercial software Australis (http://www.solve3d.net/
ENG/Aus eproducts.htm) which gets the coded targets with
noise level less than 0.1 pixels. The autocalibration results
are compared to those derived by the standard bundle
adjustment. It must be noticed that the good initial values
of calibration parameters and external orientation are indis-
pensable for bundle adjustment method.The true aspect ratio
is fixed in this adjustment implementation.

The results in the first dataset are shown in Table 1. The
relative differences of 𝑓 and 𝛼 between autocalibration and
bundle adjustment are 0.15 % and 0.067%, respectively. The
absolute differences of 𝑥0 and 𝑦0 are 1.24 and 0.63 pixels. The
running time of autocalibration is 0.15 second while it is 3.20

http://www.solve3d.net/ENG/Aus_eproducts.htm
http://www.solve3d.net/ENG/Aus_eproducts.htm
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Figure 5: Three practical images of the first dataset for autocalibration tests.

Figure 6: Practical images of the second dataset from EPFL (from top: castle, fountain, and herzjesu).

Table 1: Calibration results of bundle adjustment and our autocali-
bration method in the first dataset.

Parameter 𝛼 𝑓 𝑥0 𝑦0 Time
(sec)

Bundle
adjustment

1.00
(fixed) 2302.82 1238.55 1027.04 3.20

Autocalibration 0.99933 2306.26 1237.66 1027.67 0.15

seconds for bundle adjustment.The autocalibration accuracy,
referenced to the adjustment results, coincides with that in
the simulation study.

In the second experiment, from EPFL dataset we select
three images of the castle, fountain, and herzjesu collections,
respectively, as illustrated in Figure 6. These three sets of
images are taken using a single camera and the image reso-
lution is 3072×2048. Image correspondences are obtained by
detecting the SIFT features and matching features using the
RASAC strategy with constraint of the fundamental matrix.

The calibration results are demonstrated in Table 2. It
is found that our method obtains very accurate calibration
results, and the average errors of 𝑓, 𝑥0, and 𝑦0 reduce to 11.8,
15.0, and 35.2 pixels, respectively. The good performance of
our method is thus confirmed in these experiments.
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Table 2: Calibration results of our autocalibrationmethod in the EPFL dataset.

data/Parameter 𝛼 𝑓 𝑥0 𝑦0 Time (sec)
Ground truth 1 2362.12 1520.69 1006.81
Castle 0.993 2375.7 1535.5 966.2 0.18
Fountain 0.996 2351.5 1509.7 980.3 0.15
Herzjesu 0.991 2352.8 1501.2 1045.4 0.21

It is also observed that the errors of𝑦0 calibration (vertical
direction) are much larger than those of 𝑥0 (horizontal
direction). This is mainly due to the geometry configurations
that the rotation variations in 𝑦0 direction are much less than
those in 𝑥0 direction in all the three image sets. In other
words, inferior calibration of 𝑦0 is mainly caused by the fact
that the calibration geometry in 𝑦0 direction is much weaker
than 𝑥0 direction.
4. Conclusions

We presented an efficient method for camera autocalibration
from N≥3 views, by given zero skew and image corre-
spondences only. This method is based on fundamental
matrix only. The focal length, aspect ratio, and PPs can be
computed from N≥2 fundamental matrices. Our method
contains two main parts: analytical recursive solution and
final nonlinear optimization. It is fast (around 0.1 second
from 3 views in all our tests) and flexible. Any prior infor-
mation on internal parameters can be easily introduced in
our method. As a byproduct, an analytical variation of our
method can be applied to calculate the focal length from
two views, without requiring any knowledge on principal
points.

Both the simulation and practical studies show our auto-
calibration method is quite efficient. Generally speaking, the
performance of autocalibration is dependent on the quality of
fundamental matrices and multiview geometry, but indepen-
dent of the PPs deviation. On the one hand, the computation
of fundamental matrix is influenced by the noise level and
the number of the image correspondences, whose impact
on autocalibration was demonstrated in this paper. The
fundamental matrix can also be influenced by the lens distor-
tion. On the other hand, multiview geometry has significant
influences on the calibration. Since autocalibration exploits
only the image correspondences only, itmay require relatively
stronger geometry than the other calibration methods. For
example, three images at least are needed for autocalibration;
pure camera translation (without rotation) and planar scene
can definitely corrupt the autocalibration. The impact of the
view geometry on autocalibration will be studied in our next
work.

Calibration is an indispensable prerequisite for orien-
tation and reconstruction. This work makes it practically
possible and feasible to perform calibration, orientation, and
reconstruction, by using only themultiview image correspon-
dences. One future work is further improving the robustness
of the present method.

Data Availability

The images and features data used to support the findings
of this study have been deposited in the Baidu repository
(DOI links: https://pan.baidu.com/s/1z5bAwwdv3S4HNAW-
gUc6H-Q). All the data are available in the file “autocalibra-
tion.zip” accessible by the links. The original codes of our
algorithm could be available as well after it is finalized.
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