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The measure of complexity of Lempel-Ziv (LZC) is used for the analysis of time series generated by dynamic systems with the
objective of determining its complexity. This work measures LZC of different series coming from periodic functions, probabilistic
functions, and chaotic systems. Later, these metrics of complexity are applied to the average of the number of parts in the waiting
line in a manufacturing workshop. The results demonstrate the efficiency of the LZC to establish the level of the dynamic behavior
of the manufacturing systems, through the time series.

1. Introduction

For Efthymiou et al. [1] a complex system is composed of
a structure defined for a great amount of elements, with
different types of interactions and characterized by a behavior
with uncertainty. Preliminary studies published by Alfaro
and Sepulveda [2] consider the manufacturing systems as
complex systems. A manufacture system consists of many
entities: flexible machines, hundreds of products, thousands
of operations, location of the operations, variable context
in the political, economic, and environmental factors, and
uncertainty of the demands; these features define the struc-
ture of a complex system. In Elmaraghy et al. [3] other sources
of complexities in the manufacturing systems are defined:
customer requirements, products complexity, control sys-
tems, product structure, and manufacturing technology.

Complex systems are also found in natural, social, and
economic systems. Nonlinear relations of the variables com-
posing the system structured its complex behavior. Abarbanel
and Lall [4] studied the time series of the aquifer volume of
the Great Salt Lake of Utah, using the theory of nonlinear

systems, and obtained as a result the chaotic behavior of
the series. Other natural complex systems are presented in
the patterns of natural formation of lands [5], in systems
consisting of multiple natural and human subsystems [6]
and Holling [7] develops the term panarchy to expose the
evolution of adaptive systems formed by interconnected
natural, human, and socioecological systems.

Themeasures of complexity in the manufacturing system
can be separated into two types ofmetrics: (1) metric oriented
to the measure of the static or structural complexity and (2)
metric directed to determine the dynamic complexity of the
system. According toModrak et al. [8] the static complexity is
defined by the configuration of the system and the number of
components.Thedynamic complexity studies the uncertainty
of the behavior of the system. The research is centered in
the metric of the complexity of a manufacture system and
of a dynamic system, independent of the variables and the
structure of the system.

To measure the structural complexity, [9–12] have based
their studies on the entropy of Shannon, deriving mathe-
matical expressions to measure static complexity, through
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the study of the amount of information needed to describe
the system. Zhu et al. [10] study the complexity through
entropy and Wang and Hu [11] develop the relation between
the static complexity and the different configurations of the
assembling system and its productivity, using the entropy.
Zhu et al. [12] propose a dynamic discrete optimization
model using the entropy to minimize the complexity in an
assembling system using the entropy. ElMaraghy et al. [13]
present a measure of static complexity based on entropy to
determine the amount and variety of information related to
themachines, equipment, inventories, andmaterial handling.
In Modrak and Marton [14] the entropy is used to measure
the static complexity and they utilized it in the design of
the structure of a supply chain. Phukan et al. [15] use a
derivative of the measures of complexity of the entropy to
determine the static complexity of manufacturing systems in
the design of production systems. Samy et al. [16] present a
measure of structural complexity based on the granularity
model allowing achieving a balance between the complexity
of the machines and the layout of the productive system.
Elmaraghy et al. [17] presented a model based on a set of
indicators that allow measuring the performance associated
with the structural complexity of the layout.

With regard to the measures of the dynamic complexity
applied to the manufacturing systems, in [18] the frac-
tal dimension of Lyapunov are described, obtained as of
the Kaplan-Yorke conjecture, and the relation between the
dynamic complexity and the flexibility in a production system
is studied. Wu et al. [19] analyzed the relation between the
operational complexity and the costs of the inventories. The
authors define the operational complexity as the amount of
information needed to describe the state of deviation with
respect to the ideal system, measuring the entropy of the
waiting line of the system. Papakostas et al. [20] propose a
measure of dynamic complexity, inspired by the definition
of the Lyapunov exponents, to determine the sensitivity of
the variables with the complexity of the manufacture system.
Zhang [21] proposes measures based on the entropy to
calculate the static and dynamic complexity. Efthymiou et al.
[22] suggest three inconveniences of the metrics of entropy
for the dynamic complexity: (1) it is difficult to determine
the state of an element or subsystem; (2) the condition of
Independence of events is not accomplished; (3) it is difficult
to identify the parties of the system to reduce the complexity.

The theory of nonlinear dynamic systems gives tools to
study the systems through the analysis of a time series [23].
A system with chaotic behavior can be rebuilt and studied
through the attractor of the system.This methodology is par-
ticularly useful when the equations that describe the system
are unknown. However, this reconstruction is particularly
difficult and requires special conditions of nonstationary time
series and determinism of the system. According to [2] the
flexible and automatized manufacture systems under certain
operation conditions show conditions of chaotic behavior. In
[24, 25] the relation between chaos and the manufacturing
systems is studied. For Fuertes et al. [26] the chaotic behavior
is a form of complex behavior; nevertheless the use of
chaos behavior to characterize the dynamic complexity is
restricted to systems with chaotic behavior. Donner et al. [24]

propose the analysis of Recurrence Quantification Analysis
(RQA) to characterized the dynamic of a manufacturing
network. March et al. [25] have studied the relation between
the dimension of inlay and the measures that gives the
RQA for some systems of low dimension which are not
modified regarding the inlay dimension. However, Hasson
et al. [27] present the relation of the sensitivity of the
RQA variables to the inlay dimension. The method RQA
analyzes the predictability of the behavior of a system of
manufacture. Efthymiou et al. [28] propose to measure the
dynamic complexity of a manufacturing system through the
LZC measure in the automotive industry. Kedadouche et al.
[29] compare the methods of processing signals based on
the LZC complexity, approximate entropy (ApEn), and the
simple entropy (SampEn), for the early detection of failures
or defects in the industrial gearboxes. The symbols used in
this research are listed in Notations.

The study searches a complexity metric to study the
dynamic complexity of a system. The complexity metric uses
the times series called work in process (WIP) from the
system of manufacture. The measurement of the dynamic
complexity of the studied productive systems delivers the
sensitivity of the systems to variables related to the productive
structure of the system. Productive systems with a high level
of dynamic complexitywith values closer to one (1) are related
to stochastic structures of unpredictable behavior [30].

The complexity measures of dynamic complexity are
mainly based on the maximal Lyapunov exponents. For the
validation of the metric based on the maximal Lyapunov
exponents, it is required to characterize the time series to
confirm its chaotic behavior. The two LZC metrics presented
in the research can be used in any time series and each
one presents different levels of sensitivity allowing a more
accurate analysis of the dynamic system.

The proposed application develops two metrics based
on the Lempel-Ziv complexity; these two metrics allow
studying the behavior of stochastic series, chaotic, of natural
phenomenon, such as the level of volume of the Great Salt
Lake of Utah, and periodic series to establish a reference
frame of study for time series of comparable productive
dynamic systems.The studied productive systemcorresponds
to a flexible system of manufacturing and the variable that
will be analyzed is the average of the amount of the pieces in
thewaiting line of flexiblemanufacturing.Themanufacturing
systems can process three types of products and the machine
shop is formed by three different machines; each operation
can be executed on any machine. The experiment modifies
the setup times and the variability of the demand of the
products to evaluate the impact of these variables in the
system of manufacture and its dynamic complexity.

The research set two metrics based on Lempel-Ziv to
analyzed and classified complex systems represented by time
series.The paper is organized as follows: section two develops
the Lempel-Ziv indicator, section three details the method-
ology, section four presents the results of the indicators and
their validation asmeasures of complexity of time series of the
work in process of a manufacturing system and the aquifer
volume of The Great Salt Lake in Utah, and section five sets
the final conclusions of the study.
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2. Lempel-Ziv Complexity

The calculation of the Lempel-Ziv complexity [31] is done
through the transformation of the time series in a sequence of
symbols 𝑃 [32, 33]. This 𝑃 sequence is examined from left to
right. A counter 𝑐(𝑛) is defined that increased in a unit each
time a new subsequence of different consecutive characters is
found, reflecting the apparition of new patterns along 𝑃.

The algorithm uses only two simple operations: com-
parison and accumulation, which allows calculating the
complexity in a simple way and with a reduced computing
cost [32]. It is possible to demonstrate the superior limit of 𝑛
given by

lim
𝑛→∞
𝑐 (𝑛) = 𝑏 (𝑛) = 𝑛

log
𝛼
(𝑛) , (1)

where 𝛼 is the number of symbols. Therefore, the counter of
complexity 𝑛 normalized is defined as

𝐶 (𝑛) = 𝑐 (𝑛)𝑏 (𝑛) , (2)

where 𝑛 represents the apparition rate of new patterns along
the sequence. Therefore, it is verified that this apparition
rate tends to zero when the number of elements 𝑛 tends to
infinity.Thepatterns are repeatedwhen the series is extended.
The counter 𝑛 will be smaller in relation to the amount of
characters of the analyzed series. As a consequence, to com-
pare the complexity of different systems, it is required to set
an equal size for all the series. The interpretation of the
extension of the series is the loss of uncertainty as a product of
the increase of information. This main characteristic corre-
sponds to a measure of dynamic complexity.

3. Methodology

For all time series two different LZCmeasures are calculated,
through the conversion of the original series, using a binary
series and a series based on three symbols (base 3).

For converting the𝑋 original series to a binary series 𝑆01,
the mathematical formula described in (3) is used: the first
element of the series 𝑆01 is always 0; if the differential of 𝑥𝑖+1−
𝑥𝑖 is greater than or equal to zero, then the element 𝑠𝑖+1 is 1; on
the contrary it is 0. Once the series 𝑆01 is obtained we proceed
to the calculation of LZC01, associated with the variation of
the elements of the binary series.

𝑠011 = 0,

𝑠01𝑖+1 =
{
{
{

0 𝑥𝑖+1 − 𝑥𝑖 < 0,

1 𝑥𝑖+1 − 𝑥𝑖 ≥ 0,

𝑖 = 1, 2, . . . , 𝑁 − 1.

(3)

The second method to develop the series 𝑆012 is started
given an 𝑋 time series and the function of density of
probability𝑓(𝑥) is estimated through the estimation based on
the normal kernel function [33], assuming a defined series

Table 1: Variance of functions of distribution of probability.

Distribution Variance
Normal 𝜎2
Exponential 𝑏2

Rectangular (𝐵 − 𝐴)2
12

defined by a stochastic system and a probability 𝑃 is calcu-
lated given by

𝑃 = 1
3 + 10 ∗max (𝑓 (𝑥))

. (4)

Once this probability is calculated, the limits of the ranks
𝑥𝑙 𝑦 𝑥𝑢 are calculated, through the functions of accumulation
of inverse probability 𝐹−1(𝑝), through

𝑥𝑙 = 𝐹−1 (𝑃) ,
𝑥𝑢 = 𝐹−1 (1 − 𝑃) .

(5)

The original 𝑋 series becomes the series 𝑆012 of three
symbols (0, 1, 2), according to the mathematical formula
described in (6). Obtaining the series of three symbols we
proceed to the calculation of LZC012; this indicator measures
the complexity of the series based on the behavior of the
elements according to their concentration.

𝑠012𝑖 =
{{{{
{{{{
{

0 𝑥𝑖 < 𝑥𝑙,

1 𝑥𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑢,

2 𝑥𝑖 > 𝑥𝑢.

(6)

3.1. Time Series. The analyzed deterministic series are the
cosine functions and the time series of the chaotic series
of Mackey-Glass and Rössler and Lorenz. The length of the
series is set in six different magnitudes (from 2001 to 12001
elements) and a step of evaluation and integration 1/𝑡 with
𝑡 being variable from 1 to 100. The initial condition for the
cosine series is 𝑡 = 0, for the equation of Mackey-Glass
is 𝑥(0) = 0, for the Rössler system is (𝑥(0), (0), 𝑧(0)) =
(−10, −10, 0), and for the Lorenz system is (𝑥(0), 𝑦(0), 𝑧(0)) =
(5, 5, 10).

The stochastic series studied are the normal, exponential,
and rectangular distributions, with length of series identical
to the determinism series. The same number of experiments
are done varying the parameters of each distribution from 1 to
100. The deviation standard for the normal distribution, the
average for the exponential distribution, and the superior
limit for the rectangular distribution are the parametersmod-
ified in the range of whole values [1 : 100]. The average for
the standard deviation and the lower limit for the rectangular
distribution keep constant with zero value.

The study is developed in three phases: (1) each experi-
ment was simulated 100 times in MatLab� to obtain the aver-
age of each indicator of complexity; (2) the comparison of the
three stochastic distributions with series of 4001 length and
equal dispersion of data was done.The variance is set accord-
ing to Table 1 and takes the whole values from 1 to 100; (3)
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Figure 1: Lyapunov’s exponents.

Table 2: Machining shop parameters.

Operations Machines
𝑀1 𝑀2 𝑀3

Operation 1 product 1 1/58 1/32 1/36
Operation 2 product 1 1/21 1/47
Operation 3 product 1 1/60 4/105
Operation 1 product 2 1/16 1/38
Operation 2 product 2 1/31
Operation 3 product 2 1/58
Operation 4 product 2 1/34 1/36
Operation 1 product 3 1/32 1/22 1/57
Operation 2 product 3 1/49
Operation 3 product 3 1/42 1/38 1/40

the analysis and classification of the time series of a flexible
manufacturing line and the series of the total volume of The
Great Salt Lake in Utah were performed.

3.2. Flexible Manufacturing System. Authors as Alfaro et al.
[34] developed a flexible manufacturing line, with three
machines or productive cells where three products are man-
ufactured. The flexibility of the manufacturing line allows
executing the manufacturing operations in any cell of pro-
duction. The operation of the system is built based on the
first-in first-out (FIFO) productive model; the assignment
to the production cell for the new product is the machine
with low waiting level and the system is balanced (rates of
arrivals of the products never tend to zero or infinity). The
rate of arrival of each product corresponds to the vector Bj
(7.28, 7.94, 15.81) with unit (amount of products/for time
unit); the parameters ofmanufacturing time are deterministic
(Table 2).

The variable in study of the manufacturing system is
work in process. The characterization of the time series
WIP confirms a chaotic behavior associated with a dynamic
system. The maximum exponent of Lyapunov has a positive
value confirming the chaotic character of the time series
(Figure 1).

To compare and analyze the relation between the com-
plexity metric of the time series WIP and the parameters of
the flexiblemanufacturing system, three experiments are per-
formed: case 1 corresponds to the systemwith the parameters
established in the literature of [34]; in case 2 the times of
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Figure 2: LZC012 values of cosine series.

manufacturing of each product are increased; in case 3 the
times of arrivals of the products are reduced. The rates of
increase and reduction are similar in both cases (30%). Finally
establishing the simulations of the experiments we proceed to
calculate the complexity metric of each series of time of the
WIP.

4. Results

The results of the metrics of LZC012 and LZC01 of the
eight following functions: (1) cosine function, (2) Lorenz
system, (3) Rössler system, (4) Mackey-Glass equation, (5)
distribution of the normal probability, (6) distribution of
rectangular probability, (7) exponential function, and (8)
stochastic distributions of equal variance, are studied through
the LZC graphics (Figures 2–17).

Figures 2 and 3 present the LZC012 and LZC01 average
value for cosine function. The tendency presented by the
series is a decrease in the LZC012 and LZC01 complexity values
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Figure 4: LZC012 values of series 𝑥(𝑡) of the Lorenz system.

with the increase of the number of elements of the series.This
variation is independent of the evaluation step.

Figures 4 and 5 show the LZC012 and LZC01 average values
for the Lorenz system.The study for the systemof Lorenz does
not converge for lower integration steps 1/13 and the value
LZC012 decreases together with the reduction of the step or
the increase of the size of the series. The LZC01 value has a
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Figure 5: LZC01 values of series 𝑥(𝑡) of the Lorenz system.
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Figure 6: LZC012 values of series 𝑥(𝑡) of the Rössler system.

similar behavior to LZC012, having only one difference in the
highest value; the series present more complexity due to the
data variation.

Figures 6 and 7 show the LZC012 and LZC01 average value
for the Rössler system. The Rössler system has a similar
behavior to the Lorentz system, with a superior step at 1/7; the
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Figure 7: LZC01 values of series 𝑥(𝑡) of the Rössler system.
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Figure 8: LZC012 values of series 𝑥(𝑡) of theMackey-Glass equation.

system converges at one point. The LZC01 value for the same
step is lower than the LZC012 value; this indicates a behavior
of the more complex series for the concentration of data.

Figures 8 and 9 show the LZC012 and LZC01 average
value for the series corresponding to the variable 𝑥(𝑡) of the
Mackey-Glass equation. For the two measures of complexity
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Figure 9: LZC01 values of series 𝑥(𝑡) of the Mackey-Glass equation.
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Figure 10: LZC012 values of the series coming from functions of
distribution of normal probability.

a reverse exponential development is observed as the step
of integration decreases. The series of the Mackey-Glass
equation present more complexity in their behavior, based on
the variation of the size of the data.

Figures 10 and 11 showed the LZC012 and LZC01 average
values for the stochastic series of normal distribution. Each
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distribution of normal probability.
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Figure 12: LZC012 values of series coming from functions of
distribution of exponential probability.

LZC012 and LZC01 complexity value is the average of 100 sim-
ulations of series withmedium value of the distribution equal
to zero and standard deviation of range [0–100]. This calcu-
lation is repeated for each size of the series. The complexity
value of LZC012 increases exponentially when the standard
deviation increases. The behavior of LZC01 has constant
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Figure 13: LZC01 values of series coming from functions of distri-
bution of exponential probability.
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Figure 14: LZC012 values of series coming from functions of
distributions of rectangular probability.

tendency regarding the change of the standard deviation
and decreases its value with the increase of the elements of
the series. The behavior of the two complexity values allows
setting an increase of the complexity associated with the
increase of the standard deviation and the decrease of the size
of the series.
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Table 3: Summary of minimum and maximum values of LZC012 and LZC01 for series of 4001 elements coming from different time series.

Type Series LZC012 LZC01

Minimum Maximum Minimum Maximum

Stochastic series
Rectangular 0.6829 0.9801 0.9587 0.9662
Normal 0.6043 0.9615 0.9589 0.9658

Exponential 0.4301 0.9228 0.9585 0.9654
Deterministic series

Chaotic
Lorenz 0.1472 0.3604 0.1974 0.4516
Rössler 0.0717 0.1837 0.0658 0.1196

Mackey-Glass 0.0249 0.1132 0.0271 0.3260
Periodic Cosine 0.0642 0.0925 0.0479 0.0658
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Figure 15: LZC01 values of series coming from functions of distri-
butions of rectangular probability.

Figures 12 and 13 show the average value of LZC012 and
LZC01 for the series of exponential distribution. Each LZC012
and LZC01 complexity value is the average of 100 simulations
of series for each medium value of the distribution in a
rank [0–100]. This calculation is repeated for each size of
the series. The LZC012 and LZC01 complexity values for the
exponential distribution have similar behavior to the normal
distribution.

Figures 14 and 15 show the LZC012 and LZC01 average
values for the series of rectangular distribution. Each LZC012
and LZC01 complexity value of 100 simulations of series for
each medium value of the highest in a rank of [0–100] keeps
the lowest limit equal to zero. This calculation is repeated for
each size of the series. The LZ012 and LZ01 complexity values
of the rectangular distribution have similar behavior to the
normal and exponential distribution.

Table 4: LZC012 and LZC01 values for the test series.

Series LZC012 LZC01

Average number of pieces in waiting line, case 1 0.4566 0.5952
Average number of pieces in waiting line, case 2 0.5234 0.6437
Average number of pieces in waiting line, case 3 0.5182 0.6322
Total volume of Great Salt Lake 0.0793 0.4067

The results of the LZC012 complexity value for series
consisting of 4001 elements coming from the normal, expo-
nential, and rectangular distribution are shown in Figure 16,
with the same variance of data and value 0 of the media of
the normal distribution and the lower limit of the rectangular
distribution. In Figure 17 the results obtained for the indicator
LZC01 for the same series are observed. With the increase of
the variance of the series the average value of LZC012 increases
in all the distributions; for any variance the lowest value
corresponds to the exponential distribution and the highest
value to the rectangular distribution.

The simulations described in Table 3 allow setting the
maximum values and the minimum of the measures of
complexity for each series of stochastic origin or determin-
ist. To establish a model of comparison, the measures of
complexity of the time series with length of 4001 elements
and equal dispersion of data for the stochastic function were
calculated.

Table 4 presents the LZC012 and LZC01 values for the
two series in study with a length of 4001 elements in the
two cases of study: average number of parts in the waiting
line and total volume of the Great Salt Lake. For the case of
the average number of parts in the waiting line of a flexible
manufacturing system the indicator LZC01 is similar to the
maximum of the series of Lorenz and the minimum of the
stochastic series. The indicator LZC012 is found between the
minimum and maximum of the values for series of exponen-
tial distributions.The indicator LZC01 increases a 30% regard-
ing the indicator LZC012 and the complexity of the series is
associated with the variation of the size of the series. For
the case of the volume of the Great Salt Lake the LZC012
metric is found between the minimum and maximum val-
ues of the Cosine series, Mackey-Glass, and Rössler. The
value of the LZC01 is located between the minimum and
maximum values for the series 𝑥(𝑡) of the Lorenz system.
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Figure 16: Comparison of values LZC012 of the series coming from
the series of functions of distribution of normal, exponential, and
rectangular probability with the same variance.

The LZC01 indicator increases 413% regarding the LZC012
metric and the complexity of the system is associated with
the variation of the size of the elements constitutive of the
series.

The results of the simulations of the three experiments of
the system of flexible manufacturing are presented in Table 4.
The complexity metrics LZC01 𝑦 LZC012 are sensitive to the
change of the parameters of the system. The metrics have
correlation respect to the variability of the demand or times
of manufacturing.

5. Conclusions

This paper is based on two measures of LZC and presents a
methodology tomeasure the dynamic complexity of a system
through the analysis of a time series associated with the
system. The two measures of LZC allow (1) comparing a
system with other known behavior systems (stochastic func-
tions, chaotic maps, or deterministic systems) to establish
its complexity level and (2) comparing two or more systems
through the classification per level of uncertainty or dynamic
complexity.

The manufacturing system presented and the study of
the complexity metric of the productive variable WIP allow
establishing a relation between the level of complexity of the
variable WIP with the setup times and the variability of the
demand of the products. The importance of the capacity to
reduce the uncertainty of the variable WIP in a productive
system is the reduction of costs of production. A lower level
of complexity of the variable WIP reduces the uncertainty of
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Figure 17: Comparison of values LZC01 of the series coming from
the series of functions of distribution of normal, exponential, and
rectangular probability with the same variance.

the productive process, reduces the unit cost of production,
and increases the capacity of satisfying the demand. Making
decisions in a working productive plant, the design of a new
plant, or the comparison between plants can be improved
using the complexity metric of the proposed variable
WIP.

A perspective of work is to use the metrics developed in
this research to address the question about the predictability
of time series. For series withmetric values similar to stochas-
tic function their level of predictability is lower regarding
series with metrics equivalent to chaotic or deterministic
functions. Future works should establish the relation between
the predictability level and the value of the LZC metric of a
time series.

Finally, it can be stated that the measures of dynamic
complexity proposed require low computing efforts in com-
parison to other metrics used for the same objectives.

Notations

LZC: Complexity of Lempel-Ziv
RQA: Recurrence Quantification Analysis
ApEn: Approximate entropy
SampEn: Simple entropy
WIP: Work in process
FIFO: First-in first-out
LZC01: Complexity of Lempel-Ziv base 2
LZC012: Complexity of Lempel-Ziv base 3
𝑆01: Binary series
𝑆012: Three-symbol series.
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