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This paper adopted the strip element method to research the displacement response of functionally graded material structure with
variable gradient parameters under mechanical loading. Based on the dynamic equilibrium equation of the system, strip element
method theory was established through the principle of virtual work to get the control equations of functionally graded materials
plane problem, using the modal superposition method to complete the solution of the equation and obtain the displacement
distribution of the FGM plates with variable gradient parameters. The accuracy of the calculation method was verified by
comparison with the result of finite element method. The results show that the displacement response of the strip element method
is consistent with the finite element method. With the increase of the gradient coefficient, the ceramic content is increased and the
material stiffness is also increased; then the displacement response caused by external loading is decreased. With the increase of
the gradient coefficient, the influence of the gradient coefficient on the displacement response is decreased gradually.

1. Introduction

Functionally graded materials (FGM) [1] are a newly devel-
oped material in recent years. Their distinguishing feature is
that the composition of the material presents a continuous
gradient change in the direction of thickness.The feature and
function of the material also appear as a gradient change.

A large number of domestic and abroad scholars had
done a lot of research on the mechanical problems of func-
tionally graded materials [2, 3]. Tornabene [4] applied the
GeneralizedDifferential Quadrature (GDQ)Method to study
four parameters functionally graded and laminated com-
posite shells and panels of revolution. The free vibration of
functional gradient materials under mechanical loading and
temperature loading was analyzed using Peano-Baker series
method by Liu [5]. The dynamic characteristic analytical
solution of the quadrilateral and rhombic function gradient
plate was obtained by using the beam function group [6].
Tornabene [7] analyzed the dynamic of doubly curved shell

structures, and the natural frequencies and mode shapes of
several structures are presented and compared to numerical
solutions taken from the literature. Viola [8] studied the
dynamic behavior of moderately thick functionally graded
parabolic panels of revolution and was concerned with the
influence of the three parameters of the power-law distribu-
tion on their mechanical behavior. Reddy [9] adopted the
first-order shear deformation theory to study the structural
response of the functional gradient plate structure under
the thermomachine coupling. Based on the first-order shear
deformation theory (FSDT), Tornabene [10] focused on the
dynamic behavior of moderately thick functionally graded
parabolic panels and shells of revolution and illustrated the
influence of the parameters of the power-law distribution on
themechanical behavior of shell structures. And furthermore
the study concerned six types of shell structures that illustrate
the influence of the power-law exponent, of the power-law
distribution and of the choice of the four parameters on
the mechanical behavior of shell structures considered [11].
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Using the first-order shear deformation theory, Thai [12]
had studied the problem of bending and free vibration of
functionally graded materials. Liew [13] studied the vibra-
tion response of functionally graded material plates under
the coupling of mechanical load and electromagnetic load
based on the first-order shear deformation theory using
the finite element method. Zenkour [14] used first-order
shear deformation theory and classical elastic theory to
study the structural bending deformation of the sandwich
structure under mechanical loading. Ferreira [15] used three-
order shear deformation theory and mesh-less method to
study the structure response of functional gradient materials
under static load. Reddy [16] studied the deformation of
functional gradient rectangular plate based on the three-
order shear deformation theory. Brischetto [17] studied the
analytic solution of the structural displacement response of
functionally graded material plates under transverse loading.
Ray [18] used the finite element method to study the struc-
tural response of the functional gradient fiber piezoelectric
materials in exponential distribution. Kulikov [19] adopted
surface sampling method to solve the problem of three-
dimensional thermal stress of functional gradient materials.

Due to physical performance parameters of functionally
gradient materials with the coordinate changing continu-
ously, the constant coefficient differential equation turns
into the variable coefficient differential equation while the
theory of elastic body deformation is derived; it is difficult
to solve such problem by analytical method. The numerical
method is used to solve complex problem while the large
computation is in process. The analytical solution is very
difficult to obtain, while the precision of the solution will
be declined for numerical method for FGM structure, and
it also requires a lot of computational memories while using
numerical method. In recent years, the researchers have
proposed a seminumerical and semianalytic method, that is
called the strip elementmethod (SEM) [20], which combined
the accuracy of the analytical method with the efficiency of
the numerical method.

This study considered the boundary and initially applied
strip element method to functionally graded materials struc-
ture. Meanwhile this paper firstly considered the displace-
ment response of FGM structure with variable gradient
parameters. The paper obtained the displacement response
of functionally graded material structure under mechanical
loading and further investigated the relationship between the
gradient parameters and displacement response of function-
ally graded material structure. It provides guidance for the
application of FGM.

2. Strip Element Method Theory

The strip element method is a series of strip elements
separated by the solution domain as shown in Figure 1.
The displacement function is the continuous function of 𝑥
direction, and the displacement of the element is obtained
through the line displacement interpolation.

Based on the finite element method in 𝑦 direction, it
is assumed that the displacement functions of functionally
graded materials are
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Figure 1: Strip element method for solving model.

𝑈 = 𝑁(𝑦)𝑉 (𝑥) exp (−𝑖𝜔𝑡) , (1)

where𝑁(𝑦) representsmatrix of shape functions for displace-
ment interpolation; 𝑉(𝑥) represents continuous function of𝑥 direction; 𝑖 represents a complex unit; 𝜔 represents circle
frequency; 𝑡 represents the computing time.

The shape functions can be derived from the displace-
ment function of a single element. The matrix of shape
functions𝑁(𝑦) [20] is
𝑁(𝑦)
= [(1 − 3𝑦ℎ + 2𝑦2ℎ2) I 4(𝑦ℎ − 4𝑦2ℎ2) I (−𝑦ℎ + 2𝑦2ℎ2) I] (2)

where ℎ represents element thickness; I represents the second
order identity matrix.

According to Kausel’s equation, the dynamic equilibrium
equation of the system is

𝜌𝑈̈ − 𝐿𝑇𝜎 = 0 (3)

where 𝑈 represents displacement vector; 𝐿 represent differ-
ential operator matrix; 𝜎 represents stress vector and 𝜎 =[𝜎𝑥 𝜎𝑦 𝜏𝑥𝑦]𝑇; superscript 𝑇 denotes transpose,

where the expression for 𝐿 is

𝐿 =
[[[[[[[
[

𝜕𝜕𝑥 0
0 𝜕𝜕𝑦𝜕𝜕𝑦 𝜕𝜕𝑥

]]]]]]]
]

(4)

It can be seen that the internal displacement of the element is
obtained by the interpolation of the nodal displacement from
(1). The residual value must be generated in the interpolation
calculation, and the residual value is expressed as follows:

𝑊 = 𝜌𝑈̈ − 𝐿𝑇𝜎 (5)

Since the internal displacement function of the element is
interpolated by the nodal displacement, the residual value
must exist in the element; then𝑊 ̸= 0.
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According to the principle of virtual work, for a deformed
body in equilibrium state, the total virtual work done by the
external force is equal to the sum of the work done by the
internal force and the work done by the residual value, as
follows:

𝛿𝑉 (𝑥)𝑇 𝐹 = 𝛿𝑉 (𝑥)𝑇 𝑆 + ∫ℎ
0
𝛿𝑈𝑇𝑊𝑑𝑦 (6)

where 𝛿𝑉𝑡 is tiny virtual displacement, 𝐹 represents external
mechanical load, and 𝑆 represents nodal stress vector.

Given an external load as

𝐹 = 𝐹 exp (−𝑖𝜔𝑡) (7)

where 𝐹 represents external load amplitude, the element
stress is

𝑆𝑇 = [𝑅𝑇𝑥 󵄨󵄨󵄨󵄨󵄨𝑦=0 𝑅𝑇𝑥 󵄨󵄨󵄨󵄨󵄨𝑦=ℎ/2 𝑅𝑇𝑥 󵄨󵄨󵄨󵄨󵄨𝑦=ℎ] (8)

where stress 𝑅𝑥 is
𝑅𝑥 = 𝐿𝑇𝑥𝑐𝐿𝑈 (9)

where 𝐿𝑥 = [ 1 0 00 0 1 ]; 𝑐 is the elastic constant matrix; 𝑐 =
[ 𝑐11 𝑐12 𝑐13𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

].
The displacement function is substituted into the virtual

work equation based on the theory of thin plate deformation
and we obtain

𝐹 = −𝐴2 𝜕2𝑉 (𝑥)𝜕𝑥2 + 𝐴1 𝜕𝑉 (𝑥)𝜕𝑥 + 𝐴0𝑉 (𝑥)
− 𝜔2𝑀𝑉(𝑥)

(10)

where 𝐴0, 𝐴1, and 𝐴2 represent coefficient matrix. 𝑀
represents mass matrix.

It can be seen from (10) that the governing equation
obtained by element discretization is the ordinary differential
equation of 𝑥, which reduces the difficulty of the solution; it
also reflects the idea of 𝑦 direction discretization.

The coefficient matrix is

𝐴0 = 13ℎ [[
[
7𝐷𝑥𝑥 −8𝐷𝑥𝑥 𝐷𝑥𝑥−8𝐷𝑥𝑥 16𝐷𝑥𝑥 −8𝐷𝑥𝑥𝐷𝑥𝑥 −8𝐷𝑥𝑥 7𝐷𝑥𝑥

]]
]

(11)

𝐴1 = 13
[[[
[

3 (𝐷𝑥𝑦 − 𝐷󸀠𝑥𝑦) −4𝐷𝑥𝑦 𝐷𝑥𝑦4𝐷𝑥𝑦 0 −4𝐷𝑥𝑦
−𝐷𝑥𝑦 4𝐷𝑥𝑦 3 (𝐷𝑥𝑦 − 𝐷󸀠𝑥𝑦)

]]]
]

(12)

𝐴2 = ℎ30
[[[
[

4𝐷𝑦𝑦 2𝐷𝑦𝑦 −𝐷𝑦𝑦2𝐷𝑦𝑦 16𝐷𝑦𝑦 2𝐷𝑦𝑦−𝐷𝑦𝑦 2𝐷𝑦𝑦 4𝐷𝑦𝑦
]]]
]

(13)

where

𝐷𝑥𝑥 = [𝑐11 𝑐13𝑐13 𝑐33] ;

𝐷𝑦𝑦 = [𝑐33 𝑐23𝑐23 𝑐22] ;

𝐷𝑥𝑦 = 12 [
2𝑐13 𝑐33 + 𝑐12𝑐33 + 𝑐12 2𝑐23 ] ;

𝐷󸀠𝑥𝑦 = [𝑐13 𝑐12𝑐33 𝑐23]

(14)

The expression for the mass matrix is

𝑀 = ∫ℎ
0
𝜌𝑁 (𝑦)𝑇𝑁(𝑦) 𝑑𝑦 (15)

Assembling all elements, (10) becomes as

𝐹𝑡 = [−𝐴2𝑡 𝜕𝑉𝑡 (𝑥)𝜕𝑥2 + 𝐴1𝑡 𝜕𝑉𝑡 (𝑥)𝜕𝑥 + 𝐴0𝑡𝑉𝑡 (𝑥)
− 𝜔2𝑀𝑡𝑉𝑡 (𝑥)]

(16)

where 𝐴0𝑡, 𝐴1𝑡, and 𝐴2𝑡 are the coefficients matrix for the
element assembly in the solving domain; 𝑀𝑡 is the mass
assembly matrix; 𝐹𝑡 is the external mechanical load; 𝑉𝑡(𝑥) is
the displacement function in the solving domain.

Assume that the displacement function form is

𝑉𝑡 (𝑥) = 𝑑𝑡 exp (𝑖𝑘𝑥) (17)

Assume that external mechanical load form is

𝐹𝑡 = 𝑃𝑡 exp (𝑖𝑘𝑥) (18)

Substituting (17) and (18) into (16), we obtain

𝑃𝑡 = [𝑘2𝐴2𝑡 + 𝑖𝑘𝐴1𝑡 + 𝐴0𝑡 − 𝜔2𝑀𝑡] 𝑑𝑡 (19)

𝑃𝑡 represents the load acting on the nodal line, while 𝑃𝑡 =0 (19) is transformed into a homogeneous equation and the
eigenvalue equation for the k is obtained.

[𝑘2𝐴2𝑡 + 𝑖𝑘𝐴1𝑡 + 𝐴0𝑡 − 𝜔2𝑀𝑡] 𝑑𝑡 = 0 (20)

Equation (20) can be written

([ 0 I

𝜔2𝑀𝑡 − A0𝑡 −𝑖𝐴1𝑡] − 𝑘[I 0
0 A2𝑡

]){ 𝑑𝑡𝑘𝑑𝑡} = 0 (21)

The 2M (M = 6N−2(N−1) = 4N−2) eigenvalue is obtained
by solving (21), N is the element number, and the eigenvectors
corresponding to the 𝑗 eigenvalues are represented by 𝜙𝑗

𝜙𝑗 = [𝜙1,𝑗 𝜙2,𝑗 ⋅ ⋅ ⋅ 𝜙M,𝑗] (22)
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Bymeans of themodal superpositionmethod, the solution of
the equation can be expressed as

𝑉𝑡 = 2M∑
𝑗=1

𝐶𝑗𝜙𝑗 exp (𝑖𝑘𝑗𝑥) = 𝐺 (𝑥) 𝐶 (23)

where

𝐺 (𝑥) =
[[[[[[[
[

𝜙1,1𝑋1 𝜙1,2𝑋2 ⋅ ⋅ ⋅ 𝜙1,2𝑀𝑋𝑗𝜙2,1𝑋1 𝜙2,2𝑋2 ⋅ ⋅ ⋅ 𝜙2,2𝑀𝑋𝑗... ... d
...

𝜙𝑀,1𝑋1 𝜙𝑀,2𝑋2 ⋅ ⋅ ⋅ 𝜙𝑀,2𝑀𝑋𝑗

]]]]]]]
]

(24)

𝑋𝑗 = exp (𝑖𝑘𝑗𝑥) (25)

Equation (23) is a fundamental solution of the equation.
There are 2M constants 𝐶 in this fundamental solution, so
it is necessary to determine the unknown coefficients by the
boundary conditions.

Since (23) is the fundamental solution in the problem
domain, the displacement at any point satisfies (23) and the
displacement is satisfied at the right boundary of the solution.

𝑉𝑅𝑏𝑡 = 2𝑀∑
𝑗=1

𝐶𝑗𝜙𝑗 exp (𝑖𝑘𝑗𝑥𝑅) = 𝐺 (𝑥𝑅) 𝐶 (26)

That can be written as

𝐺(𝑥𝑅) 𝐶 = 𝑉𝑅𝑏𝑡 (27)

In the same way, on the left side

𝐺(𝑥𝐿) 𝐶 = 𝑉𝐿𝑏𝑡 (28)

Equations (27) and (28) are assembled and sorted, and the
constant 𝐶 expression can be obtained

𝐶 = 𝐺−1𝑉𝑏𝑡 = [
[
𝐺(𝑥𝑅)
𝐺 (𝑥𝐿)]]

−1

𝑉𝑏𝑡 (29)

where 𝑉𝑏𝑡 is the displacement at the boundary

𝑉𝑏𝑡 = [𝑉𝑅𝑏𝑡 𝑉𝐿𝑏𝑡] (30)

By (24), 𝐺(𝑥𝑅) can be expressed as

𝐺(𝑥𝑅) =
[[[[[[[
[

𝜙11𝑋𝑅1 𝜙12𝑋𝑅2 ⋅ ⋅ ⋅ 𝜙1𝐿𝑋𝑅𝑗
𝜙21𝑋𝑅1 𝜙22𝑋𝑅2 ⋅ ⋅ ⋅ 𝜙2𝐿𝑋𝑅𝑗... ... d

...
𝜙𝑀1𝑋𝑅1 𝜙𝑀2𝑋𝑅2 ⋅ ⋅ ⋅ 𝜙𝑀𝐿𝑋𝑅𝑗

]]]]]]]
]

(31)

𝑋𝑅𝑗 = exp (𝑖𝑘𝑗𝑥𝑅) (32)

The superscript 𝑅 represents the right boundary.

Similarly, the left boundary condition has the same
form as the displacement matrix at the right boundary. The
difference between the two forms is that the 𝑥 coordinate
value at the right boundary is changed into the 𝑥 coordinate
value at the left boundary.

𝑋𝐿𝑗 = exp (𝑖𝑘𝑗𝑥𝐿) (33)

3. Application of the Boundary Conditions

The stress vector of the internal element can be expressed as

𝑅𝑥 = 𝐷𝑥𝑥 𝜕𝑈𝜕𝑥 + 𝐷󸀠𝑥𝑦 𝜕𝑈𝜕𝑦 (34)

Substituting (1) into (34), we have

𝑅 = 𝑅1𝑉 (𝑥) + 𝑅2 𝜕𝑉 (𝑥)𝜕𝑥 (35)

where 𝑅1 and 𝑅2 are element coefficient matrices.𝑅1 is

𝑅1 = 1ℎ
[[[
[

𝐷𝑦𝑦 −4𝐷𝑦𝑦 3𝐷𝑦𝑦−𝐷𝑦𝑦 0 𝐷𝑦𝑦−3𝐷𝑦𝑦 4𝐷𝑦𝑦 −𝐷𝑦𝑦
]]]
]

(36)

𝑅2 is

𝑅2 = [[[
[

𝐷𝑦𝑥󸀠 0 0
0 𝐷𝑦𝑥󸀠 0
0 0 𝐷𝑦𝑥󸀠

]]]
]

(37)

Calculate 𝑅1 and 𝑅2 for all elements, and obtain the overall
stress vector 𝑅𝑡 as follows:

𝑅𝑡 = 𝑅1𝑡𝑉𝑡 (𝑥) + 𝑅2𝑡 𝜕𝑉 (𝑥)𝜕𝑥 (38)

where 𝑅1𝑡 and 𝑅2𝑡 are the assemble matrix of the element
coefficient matrix.

The displacement is simplified by using the left and right
boundaries

𝜕𝑉 (𝑥)𝜕𝑥 = 2𝑀∑
𝑗=1

𝑖𝑘𝑗 exp (𝑖𝑘𝑗𝑥) ⋅ 𝑐𝑗 = 𝐺󸀠 ⋅ 𝐶
= 𝐺󸀠 ⋅ 𝐺𝑑−1𝑉𝑏𝑡

(39)

The stress vector of the inner nodal line is equal to the
average value of the stress vector of the adjacent left and right
elements. We obtain

𝑅𝑏𝑡 = 𝐾𝑉𝑏𝑡 (40)

In (40), 𝑅𝑏𝑡 = [𝑅𝑅𝑏𝑡 𝑅𝐿𝑏𝑡] is an external load acting on the left
and right boundaries, where the stiffness matrix𝐾 is

𝐾 = [𝑅1𝑡 0
0 𝑅2𝑡] + [𝑅2𝑡𝐺𝑅󸀠𝐺−1𝑑𝑅2𝑡𝐺𝐿󸀠𝐺−1𝑑 ] (41)
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Table 1: Physical properties of 1Cr18Ni11Nb and Si3N4 materials.

material Modulus of elasticity/MPa Poisson’s ratio
1Cr18Ni11Nb 2.38 × 105 0.3177
Si3N4 3.22 × 105 0.2400

In (41), 𝐺𝑅󸀠 and 𝐺𝐿󸀠 have the same expressions as 𝐺𝑅 and 𝐺𝐿.
The difference is that𝐺𝑅 and𝐺𝐿 in𝑋𝑅𝑗 and𝑋𝐿𝑗 are replaced by𝑋𝑅󸀠𝑗 = 𝑖𝑘𝑗 exp(𝑖𝑘𝑗𝑥𝑅) and𝑋𝐿󸀠𝑗 = 𝑖𝑘𝑗 exp(𝑖𝑘𝑗𝑥𝐿), respectively.

Equation (40) reflects the relationship between the stress
boundary condition and displacement; the stress and dis-
placement boundary conditions are transformed into dis-
placement boundary conditions by (40); a constant 𝐶 can
be obtained by substituting the boundary displacement into
(29); from (23) and (1) the displacement can be obtained in
the solving problem.

4. Establishment of Gradient Parameter Model

The functional gradient materials studied in this paper and
the model is composite by metal and ceramic materials. The
metal material is 1Cr18Ni11Nb and the ceramic material is
Si3N4.The physical properties of the twomaterials are shown
in Table 1.

Because functionally graded materials are continuously
changed by different materials according to the design
requirements, the physical performance parameters of the
materials are expressed as a function of the volume fraction
of the material, the physical properties of the materials, and
the content of components; it denotes

𝐸 (𝑦) = (𝐸C − 𝐸M) 𝑄C + 𝐸M

] (𝑦) = (VC − ]M) 𝑄C + ]M

𝜌 (𝑦) = (𝜌C − 𝜌M) 𝑄C + 𝜌M
(42)

where 𝐸(𝑦), ](𝑦), and 𝜌(𝑦) are the elastic modulus, Poisson’s
ratio, and density of FGM plates, respectively. 𝐸C, ]C, and𝜌C are the elastic modulus, Poisson’s ratio, and density of
ceramic materials, respectively. 𝐸M, ]M, and 𝜌M are the elastic
modulus, Poisson’s ratio, and density of metal materials,
respectively. 𝑄C is the volume fraction of the ceramic.

To ensure the continuity of the material, the sum of the
metal volume fraction and the ceramic volume fraction at any
location of the material is 1.

𝑄C + 𝑄M = 1 (43)

where 𝑄M is the volume fraction of metals.
The volume fraction change function of the functionally

graded metal is

𝑄M = (1 − 𝑎 (1 − 𝑦𝐻) + 𝑏 (1 − 𝑦𝐻)𝑐)𝑝 (44)

where 𝑦 is the vertical position and 0 ≤ 𝑦 ≤ 𝐻; 𝐻 is FGM
plate thickness; 𝑝 ≥ 0 is the gradient parameters.

By (44), it can be seen that when 𝑝 = 0, 𝑄M = 1 and𝑄C = 0. Substituting that into (42) we have 𝐸(𝑦) = 𝐸M,
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Figure 2: Law of change of volume fraction of metal with thickness
under different gradient parameters at 𝑎 = 1 and 𝑏 = 0.

](𝑦) = ]M, and 𝜌(𝑦) = 𝜌M and functionally graded material
degenerates into pure metal homogeneous material. When
p tends to infinity, 𝑄C tends to 1 and (42) can be obtained𝐸(𝑦) = 𝐸C, ](𝑦) = ]C, and 𝜌(𝑦) = 𝜌C and the material is
reduced to a pure ceramic homogeneous material.

When 𝑎 = 1 and 𝑏 = 0 are functionally graded materials,
the volume fraction of metals varies as shown in Figure 2.
Figure 2 can be shown: when 𝑦 = 0, metal volume fraction
is 0 and this position is pure ceramic material; when 𝑦 = 𝐻,
metal volume fraction is equal to 1 and this position is the
pure metal homogeneous material. So when 𝑎 = 1 and 𝑏 = 0,
the transition form of materials is a continuous transition
of ceramic to metal. When the gradient parameter 𝑝 = 1,
the change of the volume fraction of the functionally graded
material is continuous linear change. When the gradient
parameter is lesser than 1, the change of the metal volume
fraction decreases. When the gradient parameter is greater
than 1, the metal volume fraction of the functional gradient
material is slower in the early and then the volume fraction is
accelerated with the thickness increased.

5. Computational Model

5.1. Validation of Strip Element Method. Based on the finite
element (FEM) theory, we used ANSYS to verify the results
of SEM solution. The model of Figure 3 is solved by using
the strip element method and finite element method. In
Figure 3, 𝐿 = 100mm, 𝐻 = 100mm, the lower boundary is
fixed, 𝑞 = 100N/mm, and uniform load is applied on the
upper boundary. The solution domain is divided into 20
elements and the material properties in each element are
metal material. The metallic material property is shown in
Table 1. The displacement of 𝑥-direction and 𝑦-direction at𝑦 = 10mm, 𝑦 = 50mm, and 𝑦 = 90mm is shown in Figures
4 and 5 by strip element method and finite element method
(FEM).

From Figures 4 and 5 we can see that the displacement
obtained by strip element method and finite element method
in 𝑥-direction and 𝑦-direction at different position is almost
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Figure 3: Physical model of plane problem.

Figure 4: The displacement in 𝑥-direction in different position by
FEM and SEM.

the same. From 𝑦 = 10mm and 𝑦 = 50mm to 𝑦 = 90mm, the
displacement in 𝑦-direction is increased.The accuracy of the
strip element method is verified.

5.2. The Influence of Element Number for the Results. In the
calculation process, because of the discrete of the solving
domain, the size of the element has an influence on the
accuracy of the displacement solution. Figures 6 and 7 are the𝑥-direction displacement and the𝑦-direction displacement at𝑦 = 10mm using 10 elements, 20 elements, and 50 elements,
respectively. It can be known that displacement results have
small difference when the element numbers are 10 and 20,
while when the element numbers are 20 and 50, the result
difference is not obvious, so in this calculation the element
number is set to 20 for ensuring that precision and calculation
speed.

5.3. Structural ResponseAnalysis of Functionally GradedMate-
rials. The displacements with different gradient parameters
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Figure 5: The displacement in 𝑦-direction in different position by
FEM and SEM.
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Figure 6: Calculation results of 𝑥 direction displacement at 𝑦 =
10mm.

are shown in Figure 8 at 𝑦 = 10mm in the 𝑥 direction. It
can be seen from Figure 8, with the increase of gradient
coefficient, that the displacement response decreases, and
this is due to the fact that metal volume fraction decreases
in the functionally graded materials and ceramic volume
fraction increases, causing the structure stiffness to increase.
In addition, the displacement in the 𝑥 direction at 𝑦 = 10mm
has nonlinear characteristics.

The displacements with different gradient parameters
are shown in Figure 9 at 𝑦 = 10mm in the 𝑦 direction.
It can be seen from Figure 9 that the displacement in 𝑦
direction at 𝑦 = 10mm with the increase of 𝑥 coordinate
has the characteristics of first increasing, then decreasing,
and then increasing. As the gradient parameter increases, the
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Figure 7: Calculation results of 𝑦 direction displacement at 𝑦 =
10mm.
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Figure 8: 𝑥 direction displacement of different gradient parameters
at 𝑦 = 10mm.

displacement of the same position decreases. As the gradient
coefficient increases, the influence of the gradient coefficient
for the displacement response decreases gradually.𝑥 direction of displacement is shown in Figures 10 and
11 at 𝑦 = 50mm and 𝑦 = 90mm. They have the same law
at 𝑦 = 50mm and 𝑦 = 90mm. The displacement absolute
value of 𝑥 direction with respect to 𝑥 = 50mm is symmetrical
and, with the increase of gradient coefficient, 𝑥 direction
displacement is reduced; this is due to the increase of the
gradient coefficient; the ceramics content of the material
keeps increasing causing the structure stiffness to increase.𝑦 direction of displacement is shown in Figures 12 and
13 at 𝑦 = 50mm and 𝑦 = 90mm. It can be seen that the
displacement in 𝑦 direction has class parabolic distribution,
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Figure 9: 𝑦 directional displacement of different gradient parame-
ters at 𝑦 = 10mm.
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Figure 10: 𝑥 directional displacement of different gradient parame-
ters at 𝑦 = 50mm.

and as the change of spatial coordinates, the curve is approx-
imatively changed to straight with the increase of gradient
coefficient, structural stiffness is gradually increased and the
displacement response under external loading is reduced.

6. Conclusion

This paper presents the variable gradient parametersmodel of
the functional gradient materials.The displacement response
of considering different gradient parameters model is ana-
lyzed in mechanics loading using the strip element method;
there are some useful results.
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Figure 11: 𝑥 direction displacement for different gradient parame-
ters at 𝑦 = 90mm.
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Figure 12:𝑦 direction displacement of different gradient parameters
at 𝑦 = 50mm.

(1) The displacement response result is almost the
same by using finite element method and strip element
method, so as to verify the validation of the strip element
method.

(2) With the ceramic volume fraction increasing, the
metal volume fraction decreases in the functionally graded
materials, the structure stiffness increases, and displacement
response decreases.

(3) As the gradient coefficient increases, the influence
of the gradient coefficient on the structure displacement
response decreases gradually.

10 20 30 40 50 60 70 80 90 1000
x coordinate

0.027

0.028

0.029

0.030

0.031

0.032

0.033

0.034

0.035

0.036

0.037

y
 d

ire
ct

io
n 

di
sp

la
ce

m
en

t (
m

m
)

p=0.05
p=0.1
p=1

p=10
p=20

Figure 13: 𝑦 direction displacement for different gradient parame-
ters at 𝑦 = 90mm.
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