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When analyzing mechanical systems with numerical simulation by the Udwadia and Kalaba method, numerical integral results of
dynamic equations will gradually deviate from requirements of constraint equations and eventually lead to constraint violation. It
is a common method to solve the constraint violation by using constraint stability to modify the constraint equation. Selection
of stability parameters is critical in the particular form of the corrected equation. In this paper, the method of selecting and
determining of stability parameters is given, and these parameters will be used to correct the Udwadia-Kalaba basic equation by the
Baumgarte constraint stability method. The selection domain of stability parameters is further reduced in view of the singularity
of the constraint matrix during the integration procedure based on the selection domain which is obtained by the system stability
analysis method. Errors of velocity violation and position violation are defined in the workspace, so as to determine the parameter
values. Finally, the 3-link spatial manipulator is used to verify stability parameters of the proposed method. Numerical simulation
results verify the effectiveness of the proposed method.

1. Introduction

The theory, which was proposed for modeling and analysis
of the constrained system dynamics by Udwadia and Kalaba,
has been applied more and more in mechanical systems [1–
5]. However, when the mechanical system is analyzed and
simulated with Udwadia and Kalaba method, the results
of numerical integration of system dynamics equation will
deviate from requirements of constraint equations over time
and eventually lead to constraint violation. In order to solve
the constraint violation problem, Udwadia has proposed a
tracking control method for nonlinear systems based on
the Lyapunov stability principle [6]. The asymptotic stability
control of the system is realized by modifying the constraint
equations. The basic idea of the method is essentially consis-
tent with the Baumgarte stabilization method for constraint
violations [7] and can be widely used in various working
environment [8–15].

The stability parameters are important for the Baumgarte
stabilization method to modify constraint violations, and

they are often selected by the experiencemethod. Although it
has been mentioned that different values of stability parame-
ters should be chosen for different constraint equations [16],
fewpeople further research on this. A variety ofmethods have
been studied in order to select appropriate parameters to keep
the system stable after constraint equations modified. The
Taylor expansion comparison method can directly calculate
values of stability parameters [17, 18]. However, the choice
of stability parameters is strictly related to the integral time
step. Stability parameters will be too large if the time step is
too small, which will make dynamic equations distorted and
the systemunstable.Themethod of system stability analysis is
used to select stable parameters, in which different numerical
integration methods [19–21] and different integration time
step [22, 23] would be considered to affect the selection
area of stability parameters. But parameters, selected from
the area of stability parameters with the method of system
stability analysis, could not guarantee the continuous stability
of the system in the numerical integration process.This paper
focuses on further reducing the area of stability parameters on
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Figure 1: The control system of the method for constrained stabilization.

the basis of system stability analysis through the singularity
determination for the constraint matrix and selecting specific
stability parameters according to engineering requirements.

The outline of the paper is presented as follows: in
Section 2 the form of modified Udwadia-Kalaba dynamic
equation with constraint stability is presented. In Section 3
the selectable region of stability parameters and the determi-
nation method of stability parameters are given. In Section 4,
the proposed method is verified and discussed; after the
circular trajectory is defined as constraint, a dynamic model
of the spatial 3-link manipulators is established and the
numerical simulation is completed. Finally, conclusions are
provided in Section 5.

2. Udwadia-Kalaba Equation with
Violation Stability

Basing on the modeling idea of multibody dynamics system,
the equation of motion for a constrained mechanical system
can be described by

Mq̈ = Q +Qc, (1)

where M > 0 is the 𝑛 × 𝑛 mass matrix, Q is the generalized
force for unconstrained system, and Qc is the generalized
force needed to be applied in the system in order to satisfy
a given constraint.

Each part of the mechanical system needs to move along
a specific trajectory, which can be regarded as a constraint
in order to accomplish a given task. If the multibody system
is composed of 𝑛 generalized coordinates, and there are 𝑚
independent movements at the position level, the constraint
equation can be written as

Φ ≡ Φ (q) = 0, (2)

where q = [q1, q2, . . . , q𝑛]T is the generalized coordinate
matrix. Formula (2) is differentiated twice with respect to
time; the constraint equation at acceleration level is

Φ̈ ≡ Aq̈ − b = 0, (3)

where A is the𝑚× 𝑛 Jacobian matrix and b = −Ȧq̇ is a𝑚× 1
vector.

According to the Udwadia-Kalaba equation, if the initial
condition of the system satisfies the constraint Eq. (2), then
the closed solution of the generalized constraint force on the
system can be obtained from [24]

Qc = M1/2 (AM−1/2)+ (b − AM−1Q) (4)

in which “+” represents the Moore–Penrose generalized
inverse.

Eq. (4) indicates the control force that the system needs to
be applied, when the unconstrained mechanical system was
required to move along the given constraint trajectory by (2).
Substitute the expression item of (4) into (1) and rewrite the
formulation in a more visible way; the fundamental equation
of Udwadia-Kalaba can be obtained as

q̈ = M−1Q +M−1/2 (AM−1/2)+ (b − AM−1Q) . (5)

The constraints represented by (2) should be satisfied by
the control force that gained from (4). However, in the simu-
lation process, the integral error of q̈ in formula (5) increases
with the time, and the motion trajectory of the mechanical
system obtained eventually deviates from the given trajectory
from (2). Therefore, the method of Baumgarte constraint
violation stability can be used to correct (3). The corrected
constraint equation can be written as

Φ̈ + 𝛼Φ̇ + 𝛽Φ = 0. (6)

This formula is the differential equation of the closed loop
system of the constrained equation, in which 𝛼 and 𝛽 can
be considered as control parameters. From the formula (6), it
can be found that the fundamental principle of the correction
equation is to correct the acceleration by the feedback of
position and velocity. The structure of the control system of
closed loop can be considered as Figure 1.

Combining (3) and (6) and arranging them, finishing can
obtain

Aq̈ = b𝐵, (7)

where b𝐵 = b − 𝛼Φ̇ − 𝛽Φ. The corrected equation for
constraint violation stabilization can be written as

q̈ = M−1Q +M−1/2 (AM−1/2)+ (b𝐵 − AM−1Q) . (8)

In order to meet the needs of the corrected trajectory, the
additional generalized constraint force on the system should
be reexpressed as

Qc = M1/2 (AM−1/2)+ (b𝐵 − AM−1Q) . (9)

3. Methods for Selection and Determination of
Stability Parameters

3.1. The Selection Scope of Stability Parameters. The method
of system stability analysis mainly is used to determine
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Figure 2: Stability region in the 𝛼1-𝛽1 plane for the first-order integral method.

the selection area of stability parameter. It is necessary to
change the integral equation into a difference equation when
solving the motion with numerical method. When the first-
order integral method is used, the numerical solution of the
equation yields

𝑦𝑛+1 = 𝑦𝑛 + 𝑓𝑛Δ𝑡, (10)

where the subscript represents the numerical solution at
the corresponding time step and Δ𝑡 is the integration time
step. Since (10) is a difference equation of the discrete data
function, the 𝑍 transform of (10) can obtain

𝑧0𝑌 (𝑧0) = 𝑌 (𝑧0) + 𝐹 (𝑧0) Δ𝑡, (11)

where 𝑧0 is the 𝑍 transform variable. Rearranging (11) yields

𝐹 (𝑧0)𝑌 (𝑧0) = 𝑧0 − 1Δ𝑡 (12)

and employing Laplace transform to the first integral equa-
tion yields

𝑌 (𝑠) = 1𝑠 𝐹 (𝑠) , (13)

where 𝑠 is the operator of Laplace domain. Analyzing the
similarities between (12) and (13), the relationship between𝑠 and 𝑧0 can be obtained as

𝑠 = 𝑧0 − 1Δ𝑡 . (14)

Then, based on the first-order integral method, substituting
(14) in any 𝐹(𝑠)/𝑌(𝑠) yields a 𝐹(𝑧0)/𝑌(𝑧0).

The Laplace transform of (6) results in

𝑠2 + 𝛼𝑠 + 𝛽 = 0. (15)

From (15), the necessary and sufficient condition for
system asymptotically stable is that roots of the characteristic

equation of the system all have negative real parts.Thatmeans𝛼 > 0 and 𝛽 > 0; the system is asymptotic stability. However,
the selection scope is too large to select appropriate values of𝛼 and 𝛽. The selection scope of 𝛼 and 𝛽 values can be further
reduced by the position of the roots of (15) in the 𝑧0-plane. On
the other hand, the position on the 𝑧0-plane should be found
out, which corresponds to the left half plane of the 𝑠-plane,
the region of system stability. According to the definition of𝑍 transform

𝑧0 = 𝑒𝑇𝑠, (16)

where 𝑇 is the sample period. From Laplace transform, 𝑠 =𝜎 + 𝑗𝜔, so it is possible to write
𝑧0 = 𝑒𝑇(𝜎+𝑗𝜔) = 𝑒𝑇𝜎𝑒𝑗𝑇𝜔 (17)

󵄨󵄨󵄨󵄨𝑧0󵄨󵄨󵄨󵄨 = 𝑒𝑇𝜎, ∠𝑧0 = 𝜔𝑇. (18)

From (18), it can be seen that if 𝜎 = 0 on the 𝑠-plane,|𝑧0| = 1 on the 𝑧0-plane; all advisable 𝑧0 values correspond to
the unit circle with the center at the origin. If the roots of the
characteristic (15) all have negative real parts, that is, 𝜎 < 0,
roots on the left half plane of the 𝑠-plane obtained by (17) will
all mapped to the interior of a unit circle with the center at the
origin on the 𝑧0-plane. Therefore, from the mapping relation
between the 𝑠-plane and the 𝑧0-plane, it is shown that, on the𝑧0-plane, the inside of the unit circle is a stable region and
the outside of the unit circle is an unstable region, and the
periphery of the unit circle is the stable boundary.

Substituting (14) into (15), the characteristic equation
about 𝑧0 can be obtained as

𝑧20 + (𝛼Δ𝑡 − 2) 𝑧0 + (𝛽Δ𝑡2 − 𝛼Δ𝑡 + 1) = 0. (19)

Letting roots of (19) fall in the unit circle, the area of
parameters𝛼 and𝛽 can be obtained, whenΔ𝑡 the time step for
integration is determined. Letting 𝛼1 = 𝛼Δ𝑡 and 𝛽1 = 𝛽Δ𝑡2,
the areas of values of 𝛼1 and 𝛽1 are shown in Figure 2 when𝑧0 locate in the unit circle.
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The stable boundary of a system is a unit circle |𝑧0| = 1,Φ
and Φ̇will converge to 0, if |𝑧0| < 1.The smaller |𝑧0|, the fasterΦ and Φ̇ converge to 0, and the smaller ∠𝑧0, the smaller the
frequency ofΦ and Φ̇. However, values of 𝛼 and 𝛽, calculated
from 𝛼1 and 𝛽1 selected from the shadow region of Figure 2,
could not guarantee the stability ofΦ and Φ̇. In order tomake
values of 𝛼 and 𝛽 not affect the final stability of Φ and Φ̇, it
is necessary to ensure that the constraint matrix is always a
nonsingularmatrix in the integral process.Therefore, the area
of values for 𝛼 and 𝛽 can be further reduced, by analyzing
the influence of 𝛼 and 𝛽 on the constraint matrix, and the
judgment of the singularity for the constraint matrix in the
integral calculation.

3.2. Determination Values of Stability Parameter. The deter-
mination of stability parameters is not only related to the
convergence speed of the constrained Φ and Φ̇, but also
related to magnitudes of instantaneous errors of the position
constraint and the speed constraint after stabilization. In
practical applications, constraints of mechanical system are
often defined in the workspace of the Cartesian coordinate
system. In order to understand the executing situation of
given constraint, errors of position and velocity which gen-
erated in the generalized coordinate system can be mapped
into the Cartesian coordinate system.

The position mapping of the given constraint trajectory
from the generalized coordinate system to the Cartesian
coordinate system is

𝑥 = 𝑓 (q) ,
𝑦 = 𝑔 (q) ,
𝑧 = ℎ (q)

(20)

and the velocitymapping between the generalized coordinate
system and the Cartesian coordinate system is

𝑥̇ = ̇𝑓 (q) q̇,
̇𝑦 = ̇𝑔 (q) q̇,
𝑧̇ = ℎ̇ (q) q̇.

(21)

The obtained position and velocity by the dynamic
equation corrected with constraint violation stabilization are
defined as 𝑥𝐵, 𝑦𝐵, 𝑧𝐵 and 𝑥̇𝐵, ̇𝑦𝐵, 𝑧̇𝐵 on the direction of𝑥, 𝑦, 𝑧 coordinate axes of the Cartesian coordinate system.
Instantaneous position errors of three axis direction between
the integral position and the given position in the Cartesian
coordinate system are

Δ𝑥 = 𝑥 − 𝑥𝐵,
Δ𝑦 = 𝑦 − 𝑦𝐵,
Δ𝑧 = 𝑧 − 𝑧𝐵.

(22)

Instantaneous velocity errors of three axis directions
between the integral velocity and the required velocity of the
given trajectory in the Cartesian coordinate system are

Δ𝑥̇ = 𝑥̇ − 𝑥̇𝐵,
Δ ̇𝑦 = ̇𝑦 − ̇𝑦𝐵,
Δ𝑧̇ = 𝑧̇ − 𝑧̇𝐵.

(23)

Thus, Instantaneous errors of velocities and positions
between integral calculation values and the given theorem
values in the Cartesian space can be defined as

𝑒1 = √Δ𝑥2 + Δ𝑦2 + Δ𝑧2,
𝑒2 = √Δ𝑥̇2 + Δ ̇𝑦2 + Δ𝑧̇2. (24)

Further, the numerical index for verifying stability param-
eters, the positional constraint error, and the velocity con-
straint error can be defined as

𝐸1 = 1𝑇√∫𝑇
0
𝑒21𝑑𝑡,

𝐸2 = 1𝑇√∫𝑇
0
𝑒22𝑑𝑡.

(25)

If selected values of parameters couldmake𝐸1 and𝐸2 smaller,
parameter values are better. But it is difficult to select the
appropriate 𝛼 and 𝛽, satisfying 𝐸1 and 𝐸2 as minimum
values. Weighting factors can be set, in line with different
requirements of the position constraint error and the velocity
constraint error, distributing the weight rationally. The error
for parameter determination is defined as

𝑒 = √𝑐𝐸21 + 𝑑𝐸22, (26)

where 𝑐 is the position weighting factor and 𝑑 is the velocity
weighting factor. 𝑒 is used as the final criteria to select 𝛼 and𝛽.
4. Numerical Examples

4.1.The SystemModel. A3-link spatialmanipulator, as shown
in Figure 3, is selected to analyze the selection of stabilizing
parameters. In Figure 3, 𝑙𝑖−1 is the length of the 𝑖 link of the
manipulator, 𝑟𝑖−1 is the distance from the gravity center of the𝑖 link to the end of the joint, and 𝑞𝑖 indicates the generalized
position of the 𝑖 joint. Suppose linkmasses of the 3-link spatial
manipulator are𝑚1 = 𝑚2 = 𝑚3 = 1 kg, lengths are 𝑙1 = 𝑙2 = 𝑙3
= 1m, distances of gravity centers are 𝑟0 = 𝑟1 = 𝑟2 = 0.5m,
moments of inertia of 𝑥 axis are 𝐼𝑥1 = 𝐼𝑥2 = 𝐼𝑥3 = 1, moments
of inertia of 𝑦 axis are 𝐼𝑦1 = 𝐼𝑦2 = 𝐼𝑦3 = 1, and moments of
inertia of 𝑧 axis are 𝐼𝑧1 = 𝐼𝑧2 = 𝐼𝑧3 = 1.

Let 𝑠𝑡 = sin 𝑡, 𝑠1 = sin 𝑞1, 𝑠2 = sin 𝑞2, 𝑠3 = sin 𝑞3, 𝑠12 =
sin(𝑞1 + 𝑞2), 𝑠13 = sin(𝑞1 + 𝑞3), 𝑠23 = sin(𝑞2 + 𝑞3), 𝑐𝑡 = cos 𝑡,𝑐1 = cos 𝑞1, 𝑐2 = cos 𝑞2, 𝑐3 = cos 𝑞3, 𝑐12 = cos(𝑞1 + 𝑞2), 𝑐13 =
cos(𝑞1 + 𝑞3), 𝑐23 = cos(𝑞2 + 𝑞3), for ease of writing.



Mathematical Problems in Engineering 5

S x

z

y

l0

l1 l2

L1

L2 L3

r0

r1 r2

q2 q3

q1

Figure 3: The 3-link spatial manipulator.

According to the general method of manipulator dynam-
ics equation, if there is no external constraint,

Mq̈ + Cq̇ + G = 0. (27)

Therefore, in (1) of Section 2,

Q = −Cq̇ − G. (28)

According to the basic method of Lagrange dynamics
modeling, the inertial matrix for the manipulator can be
obtained by

M = [[
[
𝑀11 𝑀12 𝑀13𝑀21 𝑀22 𝑀23𝑀31 𝑀32 𝑀33

]]
]
. (29)

The components ofM are given by

𝑀11 = 𝐼𝑦2𝑠22 + 𝐼𝑦3𝑠223 + 𝐼𝑧1 + 𝐼𝑧2𝑐22 + 𝐼𝑧3𝑐223 + 𝑚2𝑟21𝑐22
+ 𝑚3 (𝑙2𝑐2 + 𝑟2𝑐23)2

𝑀22 = 𝐼𝑥2 + 𝐼𝑥3 + 𝑚3𝑙21 + 𝑚2𝑟21 + 𝑚3𝑟22 + 2𝑚3𝑙1𝑟2𝑐3
𝑀33 = 𝐼𝑥3 + 𝑚3𝑟22
𝑀12 = 𝑀21 = 𝑀13 = 𝑀31 = 0
𝑀23 = 𝑀32 = 𝐼𝑥3 + 𝑚3𝑟22 + 𝑚3𝑙1𝑟2𝑐3.

(30)

Thematrix of Coriolis and centrifugal forces for the manipu-
lator are given by

C = 𝑛∑
𝑘=1

Γ𝑖𝑗𝑘 ̇𝑞𝑘. (31)

The nonzero values of Γ𝑖𝑗𝑘 are given by

Γ112 = (𝐼𝑦2 − 𝐼𝑧2 − 𝑚2𝑟21) 𝑐2𝑠2 + (𝐼𝑦3 − 𝐼𝑧3) 𝑐23𝑠23
− 𝑚3 (𝑙1𝑐2 + 𝑟2𝑐23) (𝑙1𝑠2 + 𝑟2𝑠23)

Γ113 = (𝐼𝑦3 − 𝐼𝑧3) 𝑐23𝑠23 − 𝑚3𝑟2𝑠23 (𝑙1𝑐2 + 𝑟2𝑐23)
Γ121 = (𝐼𝑦2 − 𝐼𝑧2 − 𝑚2𝑟21) 𝑐2𝑠2 + (𝐼𝑦3 − 𝐼𝑧3) 𝑐23𝑠23

− 𝑚3 (𝑙1𝑐2 + 𝑟2𝑐23) (𝑙1𝑠2 + 𝑟2𝑠23)
Γ131 = (𝐼𝑦3 − 𝐼𝑧3) 𝑐23𝑠23 − 𝑚3𝑟2𝑠23 (𝑙1𝑐2 + 𝑟2𝑐23)
Γ211 = (𝐼𝑧2 − 𝐼𝑦2 + 𝑚2𝑟21) 𝑐2𝑠2 + (𝐼𝑧3 − 𝐼𝑦3) 𝑐23𝑠23

+ 𝑚3 (𝑙1𝑐2 + 𝑟2𝑐23) (𝑙1𝑠2 + 𝑟2𝑠23)
Γ223 = −𝑙1𝑚3𝑟2𝑠3
Γ232 = −𝑙1𝑚3𝑟2𝑠3
Γ233 = −𝑙1𝑚3𝑟2𝑠3
Γ311 = (𝐼𝑧3 − 𝐼𝑦3) 𝑐23𝑠23 + 𝑚3𝑟2𝑠23 (𝑙1𝑐2 + 𝑟2𝑐23)
Γ322 = 𝑙1𝑚3𝑟2𝑠3.

(32)

The gravity terms are given by

G = 𝜕𝑉𝜕𝑞 = [[
[

0
− (𝑚2𝑔𝑟1 + 𝑚3𝑔𝑙1) 𝑐2 − 𝑚3𝑟2𝑐23−𝑚3𝑔𝑟2𝑐23

]]
]
. (33)

4.2. The Object Trajectory. From Figure 2, it is can be seen
that the origin of the Cartesian coordinate system in the
workspace of the manipulator is located at the base of the
3-link manipulator. A spatial circle is defined as the motion
trajectory of the manipulator end. The coordinate of the
circle center in the Cartesian coordinate system is (1, 1, 1),
the radius of the circle is 0.5, and the normal vector of the
circle plane is (1, 1, 1). Parametric equations of the circle can
be expressed as

𝑥 = 1 + 1
2√2𝑐𝑡 +

1
2√6𝑠𝑡 (34a)
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𝑦 = 1 − 1
2√2𝑐𝑡 +

1
2√6𝑠𝑡 (34b)

𝑧 = 1 − 2
2√6𝑠𝑡. (34c)

From Figure 2 and the forward kinematics of the manip-
ulator, the position mapping relations between the Cartesian
coordinate and the generalized coordinate can be obtained as

𝑥 = (𝑙1𝑐2 + 𝑙2𝑐23) 𝑐1 (35a)

𝑦 = (𝑙1𝑐2 + 𝑙2𝑐23) 𝑠1 (35b)

𝑧 = 𝑙0 − 𝑙1𝑠2 − 𝑙2𝑠23. (35c)

Plugging (34a), (34b), and (34c) into (35a), (35b), and
(35c), respectively, and arranging them yields

Φ =
[[[[[[[[[
[

(𝑙1𝑐2 + 𝑙2𝑐23) 𝑐1 − 1 − 1
2√2𝑐𝑡 −

1
2√6𝑠𝑡

(𝑙1𝑐2 + 𝑙2𝑐23) 𝑠1 − 1 + 1
2√2𝑐𝑡 −

1
2√6𝑠𝑡

𝑙0 − 𝑙1𝑠2 − 𝑙2𝑠23 − 1 + 2
2√6𝑠𝑡

]]]]]]]]]
]

= 0. (36)

Eq. (36) is taken as a first-order derivative relative to time,
yielding Φ̇. Eq. (36) is taken as the second-order derivative
relative to time; after arranging, items of (3) in Section 2 can
be obtained as

A = [[
[

(𝑙1𝑐2 + 𝑙2𝑐23) 𝑠1 (𝑙2𝑠23 + 𝑙1𝑠2) 𝑐1 𝑙2𝑠23𝑐1− (𝑙1𝑐2 + 𝑙2𝑐23) 𝑐1 (𝑙2𝑠23 + 𝑙1𝑠2) 𝑠1 𝑙2𝑠23𝑠10 𝑙1𝑐2 + 𝑙2𝑐23 𝑙2𝑐23
]]
]

b

=
[[[[[[[[[[
[

̇𝑞1𝑠1 (𝑙2𝑠23 ( ̇𝑞2 + ̇𝑞3) + 𝑙1 ̇𝑞2𝑠2) − 𝑐1 (𝑙2𝑐23 ( ̇𝑞2 + ̇𝑞3)2 + 𝑙1 ̇𝑞22𝑐2) + ̇𝑞1𝑠1 (𝑙2𝑠23 ( ̇𝑞2 + ̇𝑞3) + ̇𝑞2𝑙1𝑠2) − ̇𝑞21𝑐1 (𝑙1𝑐2 + 𝑙2𝑐23) + √2𝑐𝑡4 + √612 𝑠𝑡
−𝑠1 (𝑙2𝑐23 ( ̇𝑞2 + ̇𝑞3)2 + 𝑙1 ̇𝑞22𝑐2) − ̇𝑞1𝑐1 (𝑙2𝑠23 ( ̇𝑞2 + ̇𝑞3) + 𝑙1 ̇𝑞2𝑠2) + ̇𝑞1𝑐1 (𝑙2𝑠23 ( ̇𝑞2 + ̇𝑞3) + ̇𝑞2𝑙1𝑠2) − ̇𝑞21𝑠1 (𝑙1𝑐2 + 𝑙2𝑐23) − √24 𝑐𝑡 + √612 𝑠𝑡

𝑙1 ̇𝑞2 ̇𝑞2𝑠2 + 𝑙2 ( ̇𝑞2 + ̇𝑞3)2 𝑠23 − √66 𝑠𝑡

]]]]]]]]]]
]

(37)

and items in b𝐵 of (7) at Section 2 are all known except for 𝛼
and 𝛽. So, in the integral Eq. (8) of Section 2, all other items
except 𝛼 and 𝛽 in b𝐵 have been obtained.

4.3. Simulation Results and Analysis. Taking the step of
integral time is 0.1 s, the 3-link spatialmanipulator is analyzed
by the dynamicsmodel and the given constraint trajectory on
the Matlab 2015a software platform by a PC with Intel Core
i5 CPU, 3.20GHz basic frequency, and 4.00GB RAM. The
simulation results are as follows.

Figure 4 shows the selection area of stable parameter
in accordance with the method of Section 3.1, and the
program runs 8.6 s. The sparse point area is the selectable
area of parameters in which parameters are determined by
the method of system stability analysis, while the dense point
area is the final selectable area of parameters in which the
constraint matrix is a nonsingular matrix should also be
guaranteed. From Figure 4, it is can be seen that the final
selectable area is much smaller than the area determined
by the system stability analysis method. This is because the
stability analysis method takes into account given constraints
only without parameters of the system structure, which the
dense point area considers.

According to the determinationmethod of parameter val-
ues in Section 3.1, and calculating 95.38 s, influence diagrams
for𝛼 and𝛽 values on the constraint error are shown in Figures

5–7. Figure 5 shows the influence of 𝛼 and 𝛽 on positional
constraint errors. From the figure, it can be seen that at the
area which is close to 𝛼 = 5 and 𝛽 = 4, the minimum error
of the position constraint can be obtained. Figure 6 shows
the influence of 𝛼 and 𝛽 on velocity constraint errors. The
minimum error of the velocity constraint can be obtained
from the area which is close to 𝛼 = 9.5 and 𝛽 = 1. The values
of 𝛼 and 𝛽 for obtaining the minimum position constraint
error are not the same as those obtained for the minimum
speed constraint error. Therefore, it is necessary to define
the determinant error by weighting factors to select values
for stable parameters. By (26), considering weight factors𝑐 = 𝑑 = 0.5, the relation between 𝛼, 𝛽 and the parameter
determination error can be obtained in Figure 7. From
Figure 7, it is possible to obtain the minimum determination
error at 𝛼 = 9.5 and 𝛽 = 4.5. Although the selection process
takes little long time to calculate, it will not affect the real-
time performance of the robot control because it is only the
preparation stage of the control process.

Putting 𝛼 = 9.5 and 𝛽 = 4.5 into b𝐵 of (8), the ordinary
differential equation is used to numerically integrate. The
simulation time is 40 s. After the program runs 2.88 s, errors
between numerical solutions and given theoretical values
can be obtained in the Cartesian space, as shown in Figures
8–11. Figure 8 shows velocity violation errors in directions
of coordinate axes for the end point of the manipulator,
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Figure 7: The relation between 𝛼, 𝛽 and the parameter determina-
tion error 𝑒.

and Figure 9 shows the velocity violation error for the
end point of the 3-link spatial manipulator in Cartesian
coordinate system. It can be seen that when the 3-link
spatial manipulator moves along a given trajectory, velocity
violation error is limited to a specific range. Figure 10 shows
position violation errors in directions of coordinate axes for
the end point of the manipulator, and Figure 11 shows the
position violation error for the end point of the 3-link spatial
manipulator in Cartesian coordinate system. It can also be
seen that the position violation error is also controlled in a
specific small range.

If the fundamental equation of dynamics is not cor-
rected by the method of constraint violation stabilization,
the numerical integration employs (5) of Section 2 directly.
After the simulation of 14 s, the system will eventually drift
away due to the constraint violation. Figures 12–14 show
comparisons of constraint violation errors before and after
the correction of the dynamics equation in the 14 s simulation
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Figure 8: Velocity violation errors in directions of coordinate axes
for the end point of the manipulator.

3010 15 20 25 35 4050
time (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

er
ro

r (
m

/s
)

Figure 9: The velocity violation error for the end point of the
manipulator in Cartesian coordinate system.

time after the program runs 1.9 s. Figure 12 presents a
comparison of the velocity violation error. As can be seen
from the Figure, at the particularmoment prior to the 14 s, the
velocity violation error increases sharply before the equation
is corrected. Figure 13 presents a comparison of the position
violation error. It is found that the position error increases
with the time before the constraint equation is corrected. But
after the 14 s, the violation error will increase rapidly due to
the increase of the speed violation error, and the system will
drift away because of that.

Figure 14 shows comparison of required torques for each
joint before and after the correction of dynamic equation,
obtained from (4) and (9), respectively. Dashed lines repre-
sent generalized torques that need to be imposed on each
joint before the correction to meet the given trajectory. Solid
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Figure 10: Position violation errors in directions of coordinate axes
for the end point of the manipulator.
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Figure 11: The position violation error for the end point of the
manipulator in Cartesian coordinate system.

lines represent generalized torques applied to each joint after
the correction, to meet the requirement of limited trajectory
errors in a certain range. It can be seen that the control torque
curve is regular after the Baumgarte stabilization; thus the
effect of constraint drift could be avoided for the performance
of controller.

5. Conclusion

The method of acceleration feedback correction for the
constrained equation can suppress the constraint violation in
the numerical integral operation and achieve the asymptotic
stability when the initial condition does not satisfy the con-
straint equation.The system stability analysis method is used
to obtain the initial area of stability parameter values.The area
is further reduced by the requirement of nonsingularity of the
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Figure 13: Comparison of the position violation error.

corrected constraint matrix. After values which are chosen
from the reduced area correct the acceleration term, the final
stability of position constraints and velocity constraints could
be achieved.

Based on the position violation error and the velocity
violation error of Cartesian coordinate system in workspace,
the determination error with weighting factors is given for
the selection of stabilizing parameters. The determination
error can be determined byweighting factors according to the
different requirements of position constraints and position
constraints. Stability parameters are selected by theminimum
value of the determination error. The dynamic equation
of 3-link spatial manipulator is constructed by Udwadia-
Kalaba method, and the equation is corrected by the stability
parameter selected by the givenmethod.The error analysis of
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Figure 14: Comparison of required torques for each joint.

the simulation results shows the reliability and validity of the
given method for stability parameter determination.

The application of Baumgarte stabilization method can
make the system converge to the desired trajectory asymp-
totically. The paper focuses on the selection of stability
parameters from the perspective of control accuracy, and the
combination of control accuracy and convergence speed will
be the next research topic.
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