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This work is concerned with the construction of a new matrix iteration in the form of an iterative method which is globally
convergent for finding the sign of a square matrix having no eigenvalues on the axis of imaginary. Toward this goal, a new method
is built via an application of a new four-step nonlinear equation solver on a particulate matrix equation. It is discussed that the
proposed scheme has global convergence with eighth order of convergence. To illustrate the effectiveness of the theoretical results,
several computational experiments are worked out.

1. Preliminaries

The sign function for the scalar case is expressed by

sign (𝜔) = {{{1, Re (𝜔) > 0,−1, Re (𝜔) < 0, (1)

wherein 𝑧 ∈ C is not located on the imaginary axis. Roberts
in [1] for the first time extended this definition for matrices,
which has several important applications in scientific com-
puting, for example see [2–4] and the references cited therein.
For example, the off-diagonal decay of the matrix function
of sign is also a well-developed area of study in statistics and
statistical physics [5].

To proceed formally, let us consider that 𝐴 ∈ C𝑛×𝑛 is
a square matrix possessing no eigenvalues on the axis of
imaginary. We consider 𝐴 = 𝑇𝐽𝑇−1, (2)

as a form of Jordan canonical written such that𝐽 = diag (𝐽1, 𝐽2) , (3)

and the eigenvalues of 𝐽1 ∈ C𝑝×𝑝 are in the open left half-
plane, while the eigenvalues of 𝐽2 ∈ C𝑞×𝑞 are in the open

right half-plane. It is now possible to write the following
[6]:

𝑆 = sign (𝐴) = 𝑇(−𝐼𝑝 00 𝐼𝑞)𝑇−1, (4)

wherein 𝑝 + 𝑞 = 𝑛. Noting that sign(𝐴) is definable once 𝐴 is
nonsingular.

This procedure takes into account a clear application of
the formof Jordan canonical and of thematrix𝑇. Herein none
of the matrices 𝑇 and 𝐽 are unique. However, it is possible to
investigate that sign(𝐴) as provided in (4) does not rely on the
special selection of 𝑇 or 𝐽.

Here, a simpler interpretation for the sign matrix in the
case of Hermitian case (namely, all eigenvalues are real) can
be given by𝑆 = 𝑈diag (sign (𝜆1) , . . . , sign (𝜆𝑛)) 𝑈∗, (5)

wherein 𝑈∗𝐴𝑈 = diag (𝜆1, . . . , 𝜆𝑛) , (6)

is a diagonalization of the square matrix 𝐴.
The significance of calculating and finding 𝑆 in (4) is

because of the point that the function of sign plays a central
role in matrix functions theory, specially for principal matrix
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roots and the polar decomposition; for more onemay refer to
[7–9].

Bini et al. in [10] proved that the principal 𝑝-th root of
the matrix 𝐴 could be written as a multiple of the (2,1)-block
associated with the sign matrix sign(𝐶), associated with the
block companion matrix:

𝐶 = ((
(

0 𝐼0 𝐼
d d

d 𝐼𝐴 0
))
)

∈ C
𝑝𝑛×𝑝𝑛. (7)

It is requisite to focus of the most general case, i.e., when
all the eigenvalues are complex rather than being narrow over
a range of specific matrices, such as in (5).

An important point goes to the fact that although sign(𝐴)
is a square root of the unit matrix, it is not equal to 𝐼 or −𝐼
unless the 𝐴’s spectrum locates completely in the open right
or left half-plane(s), respectively. Thus, the sign function is a
nonprimary square root of 𝐼.

Apart from (4), an efficient way to derivematrix iterations
for some matrix functions is to apply the zero-finding
iterative methods for solving operator equations which here
is a matrix equation. Toward this goal, it is necessary to tackle
a nonlinear equation as comes next:𝐹 (𝑋) fl 𝑋2 − 𝐼 = 0, (8)

wherein 𝐼 is a unit matrix, so as to propose matrix methods
for 𝑆. The main motivation in this work is to extend the
recently published results of the literature [11, 12] in this
category by providing a useful novel method for calculating
sign matrix. Furthermore, the proposed procedure can be
applied for the calculation of polar decomposition, principal
matrix square root, and several other scientific computing
problems.

After this brief introduction about the matrix function
of sign in Section 1, the remaining sections of this study are
given as comes next. Section 2 shortly surveys the existing
matrix iterations and their importance for computing 𝑆. In
Section 3, it is discussed how we construct a new method
having global convergence behavior and not belonging to
the class of Padé family of iterations for computing 𝑆.
It too manifests that the proposed scheme is convergent
with high order of convergence. Computational reports are
furnished to illustrate the higher computational precision of
the constructed solvers in Section 4. A final remark of the
manuscript is given in Section 5 with some directions for
future studies.

2. The Literature

In the current research work, iterative methods are the
main focus for calculating 𝑆. As a matter of fact, such
matrix iteration methods are Newton-type schemes that are
in essence fixed-point schemes by providing a convergent
matrix sequence by imposing a sharp initial value.

The connection of matrix iterative expressions with the
function of sign is not that straightforward, but in practice,
such methods could be constructed by considering a suitable
root-finding method to the nonlinear matrix equation (8).
Noting that sign(𝐴) is a solution of this equation (refer to [12]
and the references cited therein).

Applying the classic Newton’s method (NM) to (8) yields

𝑋𝑘+1 = 12 (𝑋𝑘 + 𝑋−1𝑘 ) . (9)

An inversion-free version of (9), called Newton-Schultz
iteration [6], is defined by

𝑋𝑘+1 = 12𝑋𝑘 (3𝐼 − 𝑋2𝑘) , (10)

by applying the well-known Schulz inverse-finder in order to
remove the computation of the inverse matrix per computing
step.

TheNewton-Schulz scheme is a second-order convergent,
inversion-free method in calculating the sign matrix, but it
suffers from the drawback that its convergence unlike the
Newton’s method (9) is local.

Analogously, the third-order convergent Halley’s method
(HM) [13] for calculating the sign matrix is defined by

𝑋𝑘+1 = [𝐼 + 3𝑋2𝑘] [𝑋𝑘 (3𝐼 + 𝑋2𝑘)]−1 . (11)

It is noted that all the above-mentioned schemes are particu-
lar cases of the Padé family presented and discussed in [13, 14].
The Padé approximation belongs to a broader category of
rational approximations. Coincidentally, the best uniform
approximation of the sign function on a pair of symmetric
but disjoint intervals can be expressed as a rational function.

Recently a fourth-order iterative method was furnished
in [15] as follows:𝑋𝑘+1= [𝐼 + 18𝑋2𝑘 + 13𝑋4𝑘] [𝑋𝑘 (7𝐼 + 22𝑋2𝑘 + 3𝑋4𝑘)]−1 . (12)

3. Construction of a New Matrix Method

Assume the following nonlinear equation:𝑔 (𝑥) = 0, (13)

wherein 𝑔 : 𝐷 ⊆ C → C is a scalar function. In what follows,
let us first present a new scheme in nonlinear equation
solving. The idea of increasing the order (see, e.g., [16, 17]) is
to consider several substeps, while the newly appearing first
derivatives are approximated via a secant-like approximation.
Thus, we may write𝑦𝑘 = 𝑥𝑘 − 𝑠𝑘,

𝑧𝑘 = 𝑥𝑘 − (1 + 𝑔 (𝑦𝑘)𝑔 (𝑥𝑘) − (5/3) 𝑔 (𝑦𝑘)) 𝑔 (𝑥𝑘)𝑔󸀠 (𝑥𝑘) ,
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Figure 1: Basins of attractions for (9) in left and (10) in right (shading is done based on the number of cycles to achieve the convergence).

𝑤𝑘 = 𝑧𝑘 − 𝑔 (𝑧𝑘)𝑔 [𝑦𝑘, 𝑧𝑘] ,
𝑥𝑘+1 = 𝑤𝑘 − 𝑔 (𝑤𝑘)𝑔 [𝑤𝑘, 𝑧𝑘] ,

(14)

whereas the first-order divided difference operator is defined
by

𝑔 [ℓ, ℏ] fl 𝑔 (ℏ) − 𝑔 (ℓ)ℏ − ℓ . (15)

Here the point is that the new method should not aim
at having the optimal convergence order (in the sense of
Kung-Traub, see, e.g., [16]) since such schemes lose the
global convergence behavior when applied to (13). Since the
final objective is to propose a method for matrix sign, we
should take two things into account, which are having global
convergence behavior and the novelty. In fact, the optimality
conjecture of Kung-Traub is not useful once we extend
iterativemethods for calculating the sign of amatrix. Because,
the optimality conjecture here ruins the final structure of the
matrix method.

One may also ask that why method (14) has been selected
andwhat are the other ways for improving it. To answer these,
we recall that the best way to improve the performance of
(14) is to add one Newton’s substep at the end of its fourth
step, which is costly since it includes the computation of
the first derivative per cycle. In a similar way as in (14), we
can add a secant-like substep and increase the convergence
order. Generally speaking, a family of iterations can now
be constructed in this way. On the other hand, since very
higher order methods may not be useful in double precision
arithmetic, namely, the practical environment that most
researchers work in, we here only provide (14) and discuss
its application and extension for matrix sign.

Theorem 1. Assume that 𝛼 ∈ 𝐷 is a simple root of a function𝑔 : 𝐷 ⊆ C → C, which is sufficiently differentiable and con-
tains 𝑥0 as an initial value. Accordingly, the iterative expression
(14) reads

𝑒𝑘+1 = 19 (𝑐2)7 𝑒8𝑘 + O (𝑒9𝑘) , (16)

where 𝑐𝑗 = 𝑔(𝑗)(𝛼)/𝑗!𝑔󸀠(𝛼), and 𝑒𝑘 = 𝑥𝑘 − 𝛼.
Proof. The steps of proving the convergence order for this
iterative method are via Taylor expansion, which is straight-
forward.

Applying (14) on the matrix equation (8) will yield a
novel matrix scheme to calculate (4) in its reciprocal form as
follows:𝑋𝑘+1= 𝑋𝑘 (12𝐼 + 200𝑋2𝑘 + 560𝑋4𝑘 + 344𝑋6𝑘 + 36𝑋8𝑘) Ξ−1𝑘 , (17)

whereinΞ𝑘 = [𝐼 + 64𝑋2𝑘 + 406𝑋4𝑘 + 532𝑋6𝑘 + 145𝑋8𝑘 + 4𝑋10𝑘 ] , (18)

and the initial approximation is𝑋0 = 𝐴. (19)

Applying (14) on the nonlinear equation 𝑔(𝑥) = 𝑥2 −1 contributes a global convergence in the complex plane
(excluding the values locating on the axis of imaginary).
The basins of attraction for (10) (locally convergent) and (9)
(globally convergent) are portrayed in Figure 1. This global
behavior of the proposed scheme, that is kept for matrix case,
has been shown in Figures 2-3

To draw the basins of attractions, we consider a squareΓ = [−2, 2] × [−2, 2] ∈ C and allocate a color to any point
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Figure 2: Basins of attractions for (17) in left and its density plot on the same domain in right (shading is done based on the number of cycles
to achieve the convergence).

Figure 3:The density plot of the basins of attractions for (17) on [−50, 50]×[−50, 50] in left and on [−100, 100]×[−100, 100] in right (shading
is done based on the number of cycles to achieve the convergence).

𝑥0 ∈ Γ according to the simple zero, at which the new
methods (or the existingmethods for comparisons) converge.
Subsequently, we highlight the point as black once the scheme
diverge. Herein, we consider the stopping termination for
convergence as |𝑔(𝑥𝑘)| ≤ 10−2. Using a different stopping
criterion |𝑥𝑘+1 − 𝑥𝑘| ≤ 10−2, the density plot of the basins of
attraction only for the new high order of convergencemethod
(17) are brought forward in Figures 2-3 on different do-
mains.

3.1. Convergence Study. Now, it is shown that the proposed
schemes are convergent, under standard conditions, namely,
when there are no pure imaginary eigenvalues in the absence
of rounding errors.

Theorem 2. Assume that 𝐴 ∈ C𝑛×𝑛 possess no eigenvalues
on the axis of imaginary. Accordingly, the iterations {𝑋𝑘}𝑘=∞𝑘=0
expressed by (17) is convergent to 𝑆, using (19).
Proof. Assume that 𝑅 is a rational operator in accordance
with (17). Since 𝑋 ∈ C𝑛×𝑛 has a form of Jordan canonical,
there exists a matrix 𝑍, so that𝑋 = 𝑍𝐽𝑍−1. (20)

It is recalled that diagonalizable andnondiagonalizablematri-
ces have a Jordan normal form𝐴 = 𝑇𝐽𝑇−1, whereas 𝐽 includes
the Jordan blocks. So,𝑅 (𝑋) = 𝑍𝑅 (𝐽) 𝑍−1. (21)
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An eigenvalue 𝜆 of 𝑋𝑘 is transferred into an eigenvalue of𝑅(𝜆) of 𝑋𝑘+1 via the iterative expression (17). This relevance
and relation among the eigenvalues show that it is required to
search how 𝑅(𝜆) transforms the complex plane into itself. It
is recalled that 𝑅 has the feature of sign preservation, namely,

sign (𝑅 (𝑥)) = sign (𝑥) 𝑥 ∈ C. (22)

Moreover, it should have the global convergence, that is, the
sequence defined by 𝑥𝑘+1 = 𝑅 (𝑥𝑘) , (23)

with 𝑥0 = 𝑥 converges to sign(𝑥) while 𝑥 is not located on
the axis of imaginary. At this moment, assume that the square
matrix𝐴 have a form of canonical Jordan considered just like
[6, p. 107]:

𝑍−1𝐴𝑍 = Λ = [𝐶 00 𝑁] , (24)

wherein 𝑍 is a not singular and 𝐶,𝑁 are square Jordan
blocks in association with eigenvalues locating inC− andC+,
respectively. We show by 𝜆1, . . . , 𝜆𝑝 and 𝜆𝑝+1, . . . , 𝜆𝑛 locating
on the main diagonals of blocks 𝐶 and 𝑁, respectively.
Applying (24), it is possible to write

sign (𝐴) = 𝑍[−𝐼𝑝 00 𝐼𝑛−𝑝]𝑍−1. (25)

Taking (25) into account, it is easy to deduce

sign (Λ) = sign (𝑍−1𝐴𝑍) = 𝑍−1sign (𝐴)𝑍

= (((((
(

sign (𝜆1) 0
d

sign (𝜆𝑝)
sign (𝜆𝑝+1)

d0 sign (𝜆𝑛)
)))))
)

. (26)

From𝐷0 = 𝑍−1𝐴𝑍, we define𝐷𝑘 = 𝑍−1𝑋𝑘𝑍, (27)

in order to obtain a convergent sequence to sign(Λ). Thence,
from the scheme (17), we simply could obtain𝐷𝑘+1 = 𝐷𝑘 (12𝐼 + 200𝐷2𝑘 + 560𝐷4𝑘 + 344𝐷6𝑘 + 36𝐷8𝑘)× [𝐼 + 64𝐷2𝑘 + 406𝐷4𝑘 + 532𝐷6𝑘 + 145𝐷8𝑘+ 4𝐷10𝑘 ]−1 .

(28)

When 𝐷0 is a diagonal matrix, it is possible to show that
all successive 𝐷𝑘 are diagonal matrices, via mathematical
induction. The other case when 𝐷0 is not diagonal and will
be handled in the remaining part of the proof.

By rearranging (28) as 𝑛 uncoupled scalar iterations as
comes next:𝑑𝑖𝑘+1

= 12𝑑𝑖𝑘 + 200𝑑𝑖𝑘3 + 560𝑑𝑖𝑘5 + 344𝑑𝑖𝑘7 + 36𝑑𝑖𝑘91 + 64𝑑𝑖
𝑘

2 + 406𝑑𝑖
𝑘

4 + 532𝑑𝑖
𝑘

6 + 145𝑑𝑖
𝑘

8 + 4𝑑𝑖
𝑘

10
, (29)

where 𝑑𝑖𝑘 = (𝐷𝑘)𝑖,𝑖 , 1 ≤ 𝑖 ≤ 𝑛. (30)

Using (28) and (29), we should investigate the convergence of{𝑑𝑖𝑘} to sign(𝜆𝑖), for all 1 ≤ 𝑖 ≤ 𝑛. From (29) and because the
eigenvalues of𝐴 are not pure imaginary, it is possible to write

sign (𝜆𝑖) = 𝑠𝑖 = ±1. (31)

Thus, we attain𝑑𝑖𝑘+1 − 𝑠𝑖𝑑𝑖
𝑘+1

+ 𝑠𝑖 = −(−𝑠𝑖 + 𝑑𝑖𝑘𝑠𝑖 + 𝑑𝑖
𝑘

)8 (𝑠𝑖 − 2𝑑𝑖𝑘𝑠𝑖 + 2𝑑𝑖
𝑘

)2 . (32)

Noting that the factor (𝑠𝑖 − 2𝑑𝑖𝑘)/(𝑠𝑖 + 2𝑑𝑖𝑘), is bounded due to
choosing an appropriate initial matrix (19). Since󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑𝑖0 − 𝑠𝑖𝑑𝑖0 + 𝑠𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 1, (33)

we attain

lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑘+1 − 𝑠𝑖𝑑𝑖
𝑘+1

+ 𝑠𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0, (34)

and, therefore,

lim
𝑘→∞

(𝑑𝑖𝑘) = 𝑠𝑖 = sign (𝜆𝑖) . (35)

At this point, it possible to derive that

lim
𝑘→∞

𝐷𝑘 = sign (Λ) . (36)

Noting that if𝐷0 is not diagonal, the relation among the iter-
ates’ eigenvalues must be dealt with for (17). The eigenvalues
of𝑋𝑘 are transformed from the iteration 𝑘 to the iteration 𝑘+1
via𝜆𝑖𝑘+1 = (12𝜆𝑖𝑘 + 200𝜆𝑖𝑘3 + 560𝜆𝑖𝑘5 + 344𝜆𝑖𝑘7 + 36𝜆𝑖𝑘9)× [1 + 64𝜆𝑖𝑘2 + 406𝜆𝑖𝑘4 + 532𝜆𝑖𝑘6 + 145𝜆𝑖𝑘8

+ 4𝜆𝑖𝑘10]−1 , 1 ≤ 𝑖 ≤ 𝑛.
(37)

The relation (37) manifests that the eigenvalues generally are
convergent to 𝑠𝑖 = ±1, namely,

lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝑖𝑘+1 − 𝑠𝑖𝜆𝑖
𝑘+1

+ 𝑠𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0. (38)
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Ultimately, it would be easy to write that

lim
𝑘→∞

𝑋𝑘 = 𝑍( lim
𝑘→∞

𝐷𝑘)𝑍−1 = 𝑍sign (Λ)𝑍−1= sign (𝐴) . (39)

This ends the convergence proof for (17) to calculate 𝑆.
Now by considering (18) and the facts that𝑋𝑘 are rational

functions of 𝐴, so, similar to 𝐴, commute with 𝑆, and 𝑆2 = 𝐼,𝑆−1 = 𝑆, 𝑆2𝑗 = 𝐼, and 𝑆2𝑗+1 = 𝑆, 𝑗 ≥ 1. It can be shown that the
new scheme reads the following error inequality:󵄩󵄩󵄩󵄩𝑋𝑘+1 − 𝑆󵄩󵄩󵄩󵄩 ≤ (󵄩󵄩󵄩󵄩󵄩Ξ−1𝑘 󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐼 − 2𝑋𝑘󵄩󵄩󵄩󵄩2) 󵄩󵄩󵄩󵄩𝑋𝑘 − 𝑆󵄩󵄩󵄩󵄩8 . (40)

Inequality (40) shows the eighth order of convergence.
A scaling technique to accelerate the initial phase of

convergence is normally requisite since the convergence
rate cannot be seen in the initial iterates. Such an idea
was discussed fully in [18] for Newton’s method. A robust
procedure to improve the initial convergence speed is to scale
the iterations before each iteration; i.e., 𝑋𝑘 should be moved
to 𝜇𝑘𝑋𝑘.

If the scaling parameter (for the Newton’s method) is
defined by [18],

𝜁𝑘 =
{{{{{{{{{{{{{{{{{{{{{

√ 󵄩󵄩󵄩󵄩󵄩𝑋−1𝑘 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋𝑘󵄩󵄩󵄩󵄩 , (norm scaling) ,
√ 𝜌 (𝑋−1𝑘 )𝜌 (𝑋𝑘) , (spectral scaling) ,󵄨󵄨󵄨󵄨det (𝑋𝑘)󵄨󵄨󵄨󵄨−1/𝑛 , (determinantal scaling) ,

(41)

then the accelerated forms of the proposed matrix iteration
for 𝑆 is defined as follows:𝑋0 = 𝐴,𝜁𝑘 = is the scaling parameter computed by (41) ,𝑋𝑘+1 = 𝜁𝑘𝑋𝑘 (12𝐼 + 200𝜁2𝑘𝑋2𝑘 + 560𝜁4𝑘𝑋4𝑘 + 344𝜁6𝑘𝑋6𝑘+ 36𝜁8𝑘𝑋8𝑘) × [𝐼 + 64𝜁2𝑘𝑋2𝑘 + 406𝜁4𝑘𝑋4𝑘 + 532𝜁6𝑘𝑋6𝑘+ 145𝜁8𝑘𝑋8𝑘 + 4𝜁10𝑘 𝑋10𝑘 ]−1 ,

(42)

where

lim
𝑘→∞

𝜁𝑘 = 1, (43)

lim
𝑘→∞

𝑋𝑘 = 𝑆. (44)

4. Experiments

Herein, several experiments are discussed for the calculation
of the sign matrix.The direct application of the new formulas
for finding 𝑆 is given below, though the application for
computing the polar decomposition, finding the Yang-Baxter
matrix equation can be given similarly. The simulations are
run on an office laptop with Windows 7 Ultimate equipped
Intel(R) Core(TM) i5-2430M CPU 315 2.40GHz processor
and 16.00 GB of RAM on a 64-bit operating system. In
addition, the simulations are done in Mathematica 11.0 [19].

Various schemes are compared in respect to the iteration
numbers and the elapsed CPU time. Globally convergent
schemes are only included for comparison. The compared
matrix methods are NM, HM, ANM, and PM1 (i.e., (17)).
We do not include comparisons with methods having local
convergence behavior such as the Newton-Schulz method
(10) or (computationally expensive) methods from different
categories such as the ones based on the computation of the
Cauchy integral

sign (𝐴) = 𝑆 = 2𝜋 ∫∞
0

(𝑡2𝐼 + 𝐴2)−1 𝑑𝑡. (45)

The stopping criterion for our simulations is defined by󵄩󵄩󵄩󵄩󵄩𝑋2𝑘 − 𝐼󵄩󵄩󵄩󵄩󵄩2 ≤ 10−4. (46)

The reason of choosing (46) lies in the fact that, at each iterate,
the obtained approximation should satisfy the main matrix
equation. Thus, this criterion is much more trustful than
other Cauchy-like terminations when calculating the sign of
a matrix.

Experiment 1. Here, we calculate the sign matrix of 20
generated randomly complex matrices (with uniform distri-
butions via the following piece of codes in the Mathematica
environment) as comes next

SeedRandom[123]; number = 20;

Table[A[l] = RandomComplex[{ -5 - 5 I, 5 + 5 I },{ 50 l, 50 l }];, { l,number }];
Noting that here 𝐼 = √−1.

The numerical reports are provided in Tables 1-2 for
various sizes of the input matrices based on the required
number of steps and the elapsed CPU times. The results

uphold the analytical parts and discussions of Sections 2-
3. They manifest that there is a clear improvement in the
iterations’ numbers and the total elapsed CPU time by
applying (17). As a matter of fact, the mean of number of
iterations and the CPU times listed in the last rows of each
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Table 1: Comparison of iterations’ numbers for Experiment 1.

Matrix No. NM ANM HM PM1𝐴50×50 12 11 8 4𝐴100×100 15 14 10 5𝐴150×150 18 17 12 6𝐴200×200 15 14 10 5𝐴250×250 18 18 12 6𝐴300×300 23 21 14 6𝐴350×350 19 17 12 8𝐴400×400 17 16 11 6𝐴450×450 16 16 10 6𝐴500×500 20 20 13 7𝐴550×550 17 18 11 6𝐴600×600 20 19 13 6𝐴650×650 21 21 13 7𝐴700×700 17 18 11 6𝐴750×750 20 21 13 6𝐴800×800 20 22 13 6𝐴850×850 20 21 13 9𝐴900×900 20 21 13 8𝐴950×950 20 20 13 6𝐴1000×1000 21 24 14 8
Mean 18.45 18.45 11.95 6.35

k
5 10 15 20 25

10
−11

10
−6

Er
ro
r

10
−1

10
4

10
9

NM
ANM

HM
PM1

Figure 4: The convergence history of different methods in
Experiment 2.

table indicate that the scheme (17) has the best performance
in general.

It is pointed out that the calculation of𝑋2𝑘 per iteration for
computing the stopping termination introduces one matrix
product for NM, while the HM and the presented scheme
calculate this matrix in the middle of each cycle.

Experiment 2. Theaim of this test is to check the convergence
history of different methods for a randomly 1000 × 1000
generated complex matrix as follows:

SeedRandom[1];

A= RandomComplex[{ -100 - 100 I, 100 + 100 I }, { 1000, 1000 }];
using the stopping criterion

Error = 󵄩󵄩󵄩󵄩󵄩𝑋2𝑘 − 𝐼󵄩󵄩󵄩󵄩󵄩𝐹 . (47)

The results for Experiment 2 are given in Figure 4 show-
ing a stable and consistent behavior of the proposed scheme
for finding matrix sign function.

The numerical reports and evidences in Section 4
improve themean of the CPU time, clearly.This was themain
target of this paper in order to propose an efficient method.

5. Discussion

In various fields of numerical linear algebra and scientific
computing, the theory and computation of matrix functions
are verymuchuseful. In themodern numerical linear algebra,
it underlies an effective way introducing one to resolve the
topical problems of the control theory. The function of a
matrix can be defined in several ways, of which the following
three are generally the most useful: Jordan canonical form,
polynomial interpolation, and finally Cauchy integral.

In this research work, we have focused on iterative
methods for this purpose. Hence, a high-order nonlinear
equation solver has been employed for constructing a novel
scheme in calculating the sign matrix, which does not have
pure imaginary eigenvalues.

It was shown that the convergence is global via attraction
basins in the complex plane and the rate of convergence
is eight. Finally, some numerical experiments in double
precision arithmetic were performed to manifest the supe-
riority and applicability of (17). Outlines for future works
can be forced to extend the discussed matrix iterations for
calculating polar decompositions in future studies based on
the application of the new schemes.

Data Availability

All the data used for comparison of different methods in
this article have been generated using random generators,
via the programming package Mathematica. The data can
be generated in this way. Moreover, interested readers may
contact the corresponding authors if they need any of such
programming codes for further studies.
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Table 2: Comparison of the elapsed (CPU) times for Experiment 1.

Matrix No. NM ANM HM PM1𝐴50×50 0.148498 0.0230943 0.00861964 0.0102797𝐴100×100 0.0943384 0.109786 0.0727258 0.0392688𝐴150×150 0.232303 0.506882 0.189903 0.137378𝐴200×200 0.330597 0.709762 0.280812 0.21293𝐴250×250 0.657373 1.44232 0.555998 0.458002𝐴300×300 1.29408 2.56028 1.13594 0.801164𝐴350×350 1.60244 2.90168 1.36108 1.53705𝐴400×400 2.06766 3.83108 1.84136 1.8719𝐴450×450 2.6057 5.23433 2.41827 2.14952𝐴500×500 4.38739 9.09064 4.03174 3.20028𝐴550×550 4.89925 10.7225 4.83132 3.62766𝐴600×600 7.07534 14.5142 7.22801 4.66437𝐴650×650 9.72633 19.8393 8.51814 6.87333𝐴700×700 9.34249 21.6787 8.03064 7.05715𝐴750×750 13.9398 31.1319 11.5503 8.65203𝐴800×800 16.7687 39.0702 14.9441 10.4224𝐴850×850 19.9251 45.4667 18.0246 18.9427𝐴900×900 24.1888 52.8144 20.6969 19.2772𝐴950×950 28.187 58.5243 24.4635 17.3038𝐴1000×1000 34.3487 82.3412 29.5465 26.1742
Mean 9.09109 20.1257 7.98652 6.67063
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