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In this paper, we consider a variant of the location-routing problem (LRP), namely, the regional low-carbon LRP with reality
constraint conditions (RLCLRPRCC), which is characterized by clients and depots that located in nested zones with different
speed limits. The RLCLRPRCC aims at reducing the logistics total cost and carbon emission and improving clients satisfactory
by replacing the travel distance/time with fuel consumption and carbon emission costs under considering heterogeneous fleet,
simultaneous pickup and delivery, and hard time windows. Aiming at this project, a novel approach is proposed: hyperheuristic
(HH), which manipulates the space, consisted of a fixed pool of simple operators such as “shift” and “swap” for directly modifying
the space of solutions. In proposed framework of HH, a kind of shared mechanism-based self-adaptive selection strategy and
self-adaptive acceptance criterion are developed to improve its performance, accelerate convergence, and improve algorithm
accuracy.The results show that the proposed HH effectively solves LRP/LRPSPD/RLCLRPRCC within reasonable computing time
and the proposed mathematical model can reduce 2.6% logistics total cost, 27.6% carbon emission/fuel consumption, and 13.6%
travel distance. Additionally, several managerial insights are presented for logistics enterprises to plan and design the distribution
network by extensively analyzing the effects of various problem parameters such as depot cost and location, clients’ distribution,
heterogeneous vehicles, and time windows allowance, on the key performance indicators, including fuel consumption, carbon
emissions, operational costs, travel distance, and time.

1. Introduction

Location-routing problem (LRP) is the most significant and
widely studied combinational optimization problem, with
real-word applications in distribution logistic and transporta-
tions, such as obnoxious waste and disaster relief [1, 2]. Low-
carbon logistics is combination of depots location and routing
vehicle with concerning environment pollution. Recently,
several locating, routing, and distributing of LRP simulations
are of social, economic, and environmental significance [3],
which lead to obtain importance in studying low-carbon
logistics. This inspired us to define a LRP with considering
environmental effect that seeks to reduce total logistics

cost and carbon emission with replacing the part of travel
distance/time by fuel consumption cost.

Low-carbon location-routing problem (LCLRP) was pro-
posed by Zhang et al. [4]. The goal is to determine the
facility location and vehicle routes with low-carbon emission
in order to minimize the total carbon emission consisted
of depots fixed carbon emission and vehicle travel car-
bon emission, which addressed the low-carbon objective of
environment friendly routing and depot location. Regional
LCLRP (RLCLRP) was developed by Koc et al. [5] to assess
the effect of depot, clients, and fleet on the logistic cost, fuel
consumption, and carbon emission by replacing the routing
distance with fuel consumption cost under the established
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speed zones.There are some considerable differences between
RLCLRP and the proposed model in this paper, namely,
RLCLRPRCC.RLCLRP concerns the economic and environ-
mental effect but RLCLRPRCC also takes clients satisfaction
into account, namely, the hard time windows of clients. In
RLCLRP, delivery demand of clients is the only activity, but
in the proposed model, the pickup is also an important
planning.The arcs-specific speed and speed zones inRLCLRP
are fixed but in this paper are stochastic. Moreover, RLCLRP
is solved using pollution-and-location-heterogeneous adap-
tive large neighborhood search and RLCLRPRCC is tackled
by hyperheuristic with shared mechanism-based selection
strategy and self-adaptive acceptance.

The main contributions of this paper are as follows:

(i) Problem modeling. The proposed problem takes sev-
eral real-world conditions into account, such as het-
erogeneous fleet, simultaneous pickup and delivery,
special speed zones, and hard time windows, and
considers the economic, social, and environmental
effect.

(ii) Hyperheuristic framework is presented and a pool of
low-level heuristics (LLH) are established. To the best
of our knowledge, this framework is firstly introduced
to solve RLCLRPRCC.

(iii) Shared mechanism-based choice strategy and self-
adaptive acceptance criterion are developed. Aiming
to refine the performance of hyperheuristic frame-
work, shared mechanism-based choice strategy and
self-adaptive acceptance criterion are designed to
accurately and real-timely evaluate the current per-
formance of the LLHs.

(iv) Extensive experiments on RLCLRPRCCwere carried
out to assess the effects of the key parameters on
the total cost, carbon emission, travel distance/time,
etc. Several suggestions on management were also
provided.

The reminder of this study is organized as follows.
Section 2 provides a brief review on problem and pro-
posed heuristics. Themathematical formulation and problem
description are carried out in Section 3. The proposed
approach is detailed in Section 4. Section 5 evaluated the
proposed model and hyperheuristic and finally conclusions
are drawn in Section 6.

2. Literature Review

2.1. Problem Domain Review. LRP deals with the combina-
tion of two types NP-hard decisions that often emerge in
logistics: the location-allocation problem (LAP) and vehicle
routing problem (VRP) (Ouhader and Kyal) [8] (Sun) [9].
Among the applications of LRP, LRP considering environ-
mental effect such as carbon emission/fuel consumption,
namely, LCLRP, has recently emerged as one of the most
addressed, which also handles two NP-hard problems: LAP
and pollution-routing problem (PRP) (Bektas and Laporte)
[10] or green vehicle routing problem (GVRP) (Liu et al.) [11].

LCLRP is the vehicle routing problem affected by depots
location and magnitude, which concerns fuel consumption
and carbon emission. Reducing the fuel consumption and
improving the transportation efficiency at an operational
level would be the most straightforward course of planning
activities (Lin et al.) [12]. As stated inDemir et al. [13], evalua-
tion and reduction of fuel consumption and carbon emissions
call for excellent estimatemodel to be fed into logistics actions
andmethods.Moreover, inspired fromvarious characteristics
and nature of transportation actions, type and nature of
estimationmodel are also significant for accurately evaluating
fuel consumption and carbon emissions. Meanwhile, fuel
consumption has been stressed the importance as a key
indicator of approximating carbon emission, as the amount
of fuel consumption is directly proportional to the amount
of carbon emission (Poonthalir and Nadarajan) [3]. As time
went on, the mathematical models estimating fuel con-
sumption/carbon emission have encouraged diverse think-
ing. Among various fuel consumption and carbon emission
models, three main categories can be included as follows:

(i) Factor models. Few key factors are concerned as
simple fuel consumption, such as vehicle load, travel
distance, etc. Typical cases are fuel consumption rate
model (Xiao et al.) [14], FCR with speed (Liu et al.)
[11], fuel consumption calculation (FCC) (Poonthalir
and Nadarajan, Kuo et al.) [3, 15], and models pro-
posed by Li et al. [16].

(ii) Macroscopic models. Average aggregate indicators
are applied to estimate fuel consumption and emis-
sion rates, such as methodology for calculating
transportation emissions and energy consumption
(MEET) (Pan et al.) [17], computer programme to cal-
culate emissions from road transportation (COPERT)
(Jovicic et al.) [18], national atmospheric emissions
inventory (NAEI) (NAEI) [19], ecological transport
information tool (ETIT) (Knörr et al.) [20], etc.

(iii) Microscopicmodels. Instantaneous fuel consumption
and emission rates are put at a more detailed level
characterized as time-dependent integral function.
Among this classification, the most frequently used
models are instantaneous fuel consumption model
(IFCM) (Urquhart et al.) [21], four-mode elemen-
tal fuel consumption model (FMEFCM) (Demir et
al.) [13], Comprehensive Modal Emission Model
(CMEM) (Koc et al.) [5, 22], etc.

The relationship of the above three models can be drawn
as follows. The first factor models are considered as the
simple fuel consumption of macroscopic models and the
last two are mutually transformational. For various differ-
ent natures of transportation actions, the rationality and
correctness of corresponding fuel consumption models play
a role in approximating the fuel consumption and carbon
emission. Among the factors of the above three models,
five main categories can be derived: vehicle parameters,
traffic condition, weather condition, driver habit/skill, and
provided facility. For example, Poonthalir and Nadarajan
[3] emphasized that the drivers may travel with some likely
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speed. And the number and location of depots or fleet
size and type are also the key points in affecting the fuel
consumption and carbon emission. For better understanding
of fuel consumption/emissionmodels and factors, the readers
are recommended to the papers of Lin et al. [11] and Demir et
al. [13, 23].

Among various factors affecting fuel consumption and
carbon emission, fleet size and type are of particular signifi-
cance and much practical in most distribution activities (Koc
et al., Hoff et al.) [5, 22, 24, 25]. Koc et al. [24] illustrated
the benefits of mix fleet in reducing carbon emission. Li and
Fu [26] concluded that heterogeneous fleet can efficiently
reduce fuel consumption/carbon emission or number of fleet
and increase the capacity utilization rate of fleet. Koc et al.
[5] also demonstrated that the usage of mix fleet can reduce
logistic total cost and capacity utilization rate. Pitera et al. [27]
explored rules of thumb for vehicle assignment within mix
fleet to obtain an understanding of simple implementation,
such as assigning cleaner vehicles to routes with more clients
and longer travel distances. Xiao et al. [28] emphasized that
mix fleet is concerned with individualized features including
fleet types, carbon emissions rates/models, load capacities,
and so on.

Vehicle speed is another key factor in impacting on the
fuel consumption and conversion rate and carbon emission
(US Department of Energy) [29]. As stated in Barth and
Boriboonsomsin [30], when the vehicle velocity is less than
30mph, carbon emission and fuel consumption will nonlin-
early grow rapidly; that is, when the vehicle speed decreases
from 30mph to 12.5mph or 12.5mph to 5mph, carbon emis-
sion and fuel consumption per one mile will be double.
The different vehicle velocities are assumed with respect
to different times of day to incorporate traffic regulations
(Kazemian and Aref) [31] or traffic congestion. Aiming at
reflection of speed limits, several main manners were applied
and described as follows. The first one for representing traffic
congestion is featured that different speed or travel time is
to formulate it as a step function of time and uses a simple
method to obtain continuous travel times (Kuo [15], Xiao et
al. [28], Kazemian and Aref [31], Mirmohammadi et al. [32],
Figliozzi [33], Soysal et al. [34], Franceschetti et al. [35], etc.)
or only one speed limit is assigned to a specific vehicle which
is traversing a particular arc (Afshar-Bakeshloo et al.) [36].
Then, Poonthalir andNadarajan [3] proposed a novel strategy
to simulate the varying speed environment using triangular
distribution of probability density function. In their method,
expected values within several speed intervals, representing
the likely speed of driver in each interval, were given in
advance to calculate the average expected speed. The third
one is the method proposed by Koc et al. [5], namely, the
arc-specific speeds and speed zones. Three speed zones with
different constant vehicle velocity are established to represent
the speed limits, and the cost of depots differs in each zone.
The authors designed the Cheapest Path Calculation (CPC)
strategy to obtain the nondominated set of paths determined
by the nature of CMEM model and speed zones. This work
is based on the strategy proposed by Koc et al. [5], but
the location and velocity of each nested speed zone are
stochastic, namely, Vzone1 <Vzone2 <Vzone3 and Vzone3 ∼U(60,

80), Vzone2∼U(40, 60), and Vzone1∼U(20, 40). The reason is
that each travel time or distribution duration of each vehicle
in city logistics could keep constant in a few hours, but
they will vary with the traffic conditions even if speed limits
are fixed, aiming at artificial/automatic applying adequate
speed in line with different traffic conditions resulting in
selecting the low-cost path, just like the approach timing
coefficient (Zhang et al.) [37]. Additionally, several real-world
conditions are considered in the proposed mathematical
model: simultaneous pickup and delivery and hard time
windows.

Reverse logistic, namely, simultaneous pickup and deliv-
ery, was proposed by Karaoglan et al. [38] to provide better
service for clients in LRP (LRPSPD). Karaoglan et al. [39] pro-
posed two types of LRPSPDmodels, namely, node-based and
flow-based. Yu et al. [7, 40] developed simulated annealing
(SA) heuristic for LRPSPD, with high quality results. Beyond
enterprise economic and environmental effect, clients’ satis-
faction level is also an extremely important factor in wining
clients’ heart for a long term, that is, clients service time
windows. Zhang et al. [41] applied membership function to
estimate the degree of satisfaction. Afshar-Bakeshloo et al.
[36] developed service-level function of fuzzy time windows.
Wang and Li [42] concerned clients satisfactory by penalizing
the vehicle arrive early or lately outside time windows.

To our best knowledge, the differences between our
paper and Wang and Li [42] are detailed: (1) type of clients’
time windows, (2) model of fuel consumption and carbon
emission, (3) solution algorithms, and so on. Therefore,
there is no published work simultaneously integrating in a
case study of LRP with arc-specific speeds and speed zones,
heterogeneous fleet, simultaneous delivery and pickup, and
hard time windows.

2.2. Approach Review. As in “no free lunch theorems”
(Wolpert and Macready) [43], even though one framework
andmethodmay be the best performingwithin a few research
areas, no one can perform ideally in all situations. Moreover,
it is beyond all doubt that it is hard task for tester without
a deep knowledge in solution domain, as studying existing
search-based approaches is generally domain-dependent.
The ideal of hyperheuristic (HH) was defined by Denzinger
et al. [44] and Crowling et al. [45] as “heuristics to choose
heuristics”. Posteriorly, an extensive version was developed
by Burke et al. [46] as a methodology and classified into two
types: heuristic selection and heuristic generation (heuristics
to generate heuristics). This paper focuses on the former
based on single-point-search method, and brief description
and review are provided hereafter.

In the framework of HH, two levels are concerned: HLH
and LLH.TheHLHmanipulates the space consisted of a fixed
pool of LLHs instead of directly transforming the space of
solutions (Kalender et al.) [47], which is independent with
problem domain. Two main categories can be considered in
HLH: selection mechanism and acceptance criterion (Özcan
et al.) [48]. The role of heuristic selection mechanism is to
intelligently select appropriate heuristics from the pool of
LLHs, whilst acceptance criteria are to decide whether to
accept or reject resultant solution after applying the selected



4 Mathematical Problems in Engineering

LLH (Sabar et al.) [49]. By analyzing the source of feedback
information, three modules can be considered in selection
mechanism: on-line, off-line, and no-learning. Choice func-
tion (Cowling et al.) [45], Fitness Rate Rank based Multi-
Armed Bandit (FRR-MAB) (Li et al.) [50], reinforcement
learning (Nareyek) [51], tabu search (Zamli et al.) [52], etc.
are examples for adaptively selecting the appropriate LLHs
by evaluating the performance of each LLH, and simple
random (SR), random descent (RD), random permutation
(RP), etc. are viewed as no-learning methods. Acceptance
criterion can be classified into two types: deterministic
and nondeterministic methods. The former determinately
accepts the resultant result, such as all moves (AM), only
improving (OI), improving and equal (IE), etc., whilst SA,
great deluge (GD), and Monte Carlo (MC) are instanced as
the nondeterministic methods.

As the time went, HH has been successively applied to
various combinational optimization problems, such as edu-
cational timetabling problems (Kendall and Hussin, Burke et
al.) [53, 54], VRP (Walker et al.) [55], construction levelling
problems (Koulinas and Anagnostopoulos) [56], variability
test of feature models (Strickler et al.) [57], t-ways test suite
generation (Zamli et al.) [51, 58], dial-a-ride problem (Urra et
al.) [59], and other issues. We refer the interested readers to
the papers of Chakhlevitch and Cowling [60] and Burke et al.
[46, 61] for extensive review about hyperheuristic.

To the best of our knowledge, hyperheuristics have not
been used thus far to address proposed problems. Moreover,
in proposed framework of HH, a kind of shared mechanism-
based self-adaptive selection strategy and self-adaptive accep-
tance criterion are developed to improve the performance,
accelerate convergence, and improve accuracy; the details of
proposed approaches will be provided in Section 4.

3. Mathematical Formulation

In this paper, fuel consumption and carbon emission are
instantly estimated using Comprehensive Modal Emission
Model (CMEM), which can be viewed as a state-of-the-
art microscopic fuel consumption/carbon emission model
because of its ease of application (Demir et al.) [23]. The
proposed model of RLCLRPRCC is provided in Section 3.2.

3.1. Model of CMEM. Three modules are concerned in
CMEM: engine power, engine speed, and fuel rate. The first
module for a vehicle of type h∈H is gained by the total tractive
power requirement TPRh:

𝑇𝑃𝑅ℎ = (𝑉𝑊ℎ𝑎 + 𝑉𝑊ℎ𝑔 sin 𝜃 + 0.5𝐶𝑑,ℎ𝜌𝐴ℎV2
+ 𝑉𝑊ℎ𝑔𝐶𝑟 cos 𝜃) V1000

(1)

whereVWh is the total weight (kg) of vehicle of type h∈H; a is
acceleration (m/s2) and 𝑔 is gravitational constant (m/s2); 𝜃 is
road angle (typically 0); Cd,h is the coefficient of aerodynamic
drag; 𝜌 is air density (kg/m3); A is the frontal surface area
(m2); Cr is coefficient of rolling resistance; v is the vehicle
speed (m/s). Additionally, to consider the driving losses of
vehicle engine and usage of vehicle accessories (Pacc), such as

air-condition and other power loads (typically 0), the below
is applied:

𝑇𝑃ℎ = 𝑇𝑃𝑅ℎ𝜂𝑡𝑓 + 𝑃𝑎𝑐𝑐 (2)

where TPh is the second-by second engine power output
(kW) and 𝜂tf is the vehicle drive train efficiency.

Following modules consider the engine speed and fuel
consumption rate and are approximated as follows:

𝑁ℎ = 𝑆 (𝑅 (𝐿))𝑅 (𝐿𝑔) V
𝐹𝐶𝑅ℎ = 𝜍(𝑘ℎ𝑁ℎ𝑉ℎ + 𝑇𝑃ℎ/𝜂)44

(3)

where Nh is the engine speed (rpm); S is the engine/vehicle
speed ratio in top gear L𝑔; R(L) is the gear ratio in gear
L= {1, 2, . . . , Lg}; 𝜍 is fuel-to-air mass ratio, FCRh (g/s) is
the fuel consumption rate; kh is engine friction factor; Vh
is engine displacement (L); 𝜂 is the efficiency parameter for
diesel engines. When a vehicle of type h travels d at a constant
velocity v, calculation of fuel consumption FCh (g) is as
follows:

𝐹𝐶ℎ = 𝐹𝐶𝑅ℎ × 𝑑V (4)

Therefore, FCh (L) can be represented as follows:

𝐹𝐶ℎ = 𝜆((𝑘ℎ𝑁ℎ𝑉ℎ + 𝑃𝑎𝑐𝑐𝜂 ) ⋅ 𝑑
V
+ 𝛾𝜔 ⋅ 𝑉𝑊ℎ𝑑 + 𝛽ℎ𝛾

⋅ 𝑑V2) (5)

where 𝜆 =𝜍/44𝜓, 𝛾=1/1000𝜂tf𝜂, 𝛽h=0.5Cd,h𝜌Ah, and 𝑤=a+𝑔
sin 𝜃+𝑔Cr cos 𝜃. 𝜓 is conversion factor from g to L. In
the above equation, the first is the engine module which
is proportional to travel time; the second part is moment
module and the last is speed module. Moreover, as the
amount of fuel consumption is directly proportional to the
amount of carbon emission, 𝜒 is used to represent the
conversion factor, namely, each liter of oil consumed will
exhaust 2.32 kg of carbon dioxide.

3.2. Proposed Formulation. TheRLCLRPRCC can be defined
on a complete and directed graphG=(V,E) with a vertex setV
and an edge set E. V consists of clients set I={1, 2, . . . , 𝑁} and
depots set J={1, 2, . . . ,𝑀}. Each client i∈I has qi demand for
delivering and pi demand to pick up and is satisfied by a single
vehicle and depot within a specific service time windows
[ei, li]. Each depot j∈J has a fixed opening cost FDj and
capacity CDj. The fleet H={L1, L2,M} consists three types of
vehicles with different specific parameters provided by Koc et
al. [5] and the fixed renting costs per a single travel are FV∈
¥{38, 44, 54}. E is constructed by the parameters concerning
each edge, and E={(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉, 𝑖 ̸= 𝑗}\{(𝑖, 𝑗) : 𝑖 ∈ 𝐽, 𝑗 ∈𝐽}. dijh, Qijh, FCijh, and TTijh are, respectively, the distance,



Mathematical Problems in Engineering 5

dynamic load, fuel consumption, and travel time of an edge
(i, j) travelled by a vehicle of type h∈H;ATih is the arrive time
at client i∈I by vehicle of type h∈H. In additional, Cfc is the
price of 1 L fuel, Ccm is the price of 1 kg carbon emission, and𝐶V𝑤 is the penalty price per minute caused by waiting clients
if vehicle arrives early.

Some assumptions should be described as follows: (1)
each client must be satisfied only once within specific time
window; (2) each vehicle must return to the departure depot;
(3) the load of each edge must be less than the capacity of
this vehicle of type h; (4) the load of each depot must not
exceed its capacity; (5) the number of fleet in each depot is
unlimited; (6) vehicles are assigned to service clients based
on the principle of maximum load rate; (7) penalty cost will
be calculated if vehicle arrives early; (8) vehicle must arrive at
client nodes before closing time windows, etc.

The definition of decision variables is as follows: xijh=1 if
vehicle of type h travels from node i∈V to node j∈V ; yj=1 if
the depot j∈J is opened; zij=1 if client i∈I is serviced by depot
j∈J. The mathematical formulation proposed by Koc et al. [5]
for RLCLRP can be modified to formula the presented model
of RLCLRPRCC, as follows:

min 𝐶
= ∑
ℎ∈𝐻

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝐹𝑉ℎ𝑥𝑖𝑗ℎ +∑
𝑗∈𝐽

𝐹𝐷𝑗𝑦𝑗
+ (𝐶𝑓𝑐 + 𝜒𝐶𝑐𝑚) ∑

ℎ∈𝐻

∑
𝑖∈𝑉

∑
𝑗∈𝑉

𝐹𝐶𝑖𝑗ℎ𝑥𝑖𝑗ℎ
+ 𝐶V𝑤∑

ℎ∈𝐻

∑
𝑖∈𝑉

∑
𝑗∈𝐼

𝑥𝑖𝑗ℎ𝑚𝑎𝑥 {𝑒𝑗 − 𝐴𝑇𝑗ℎ, 0}
(6)

subject to

∑
𝑗∈𝑉

∑
ℎ∈𝐻

𝑥𝑖𝑗ℎ = 1, ∀𝑖 ∈ 𝐼 (7)

∑
𝑖∈𝑉

∑
ℎ∈𝐻

𝑥𝑖𝑗ℎ = ∑
𝑖∈𝑉

∑
ℎ∈𝐻

𝑥𝑗𝑖ℎ, ∀𝑗 ∈ 𝑉 (8)

∑
𝑗∈𝐽

𝑧𝑖𝑗 = 1, ∀𝑖 ∈ 𝐼 (9)

𝑥𝑖𝑗ℎ + ∑
𝑚∈𝐻,𝑚 ̸=ℎ

∑
𝑘∈𝐼

𝑥𝑗𝑘𝑚 ≤ 1, ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝐼, ℎ ∈ 𝐻 (10)

∑
ℎ∈𝐻

𝑥𝑖𝑗ℎ ≤ 𝑧𝑖𝑗, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (11)

∑
ℎ∈𝐻

𝑥𝑗𝑖ℎ ≤ 𝑧𝑖𝑘, ∀𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 (12)

∑
ℎ∈𝐻

𝑥𝑖𝑗ℎ + 𝑧𝑖𝑘 + ∑
𝑚∈𝐽,𝑚 ̸=𝑘

𝑧𝑗𝑚 ≤ 2, ∀𝑖, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐽 (13)

max{∑
𝑖∈𝐼

𝑞𝑖𝑧𝑖𝑘,∑
𝑖∈𝐼

𝑝𝑖𝑧𝑖𝑘} ≤ 𝐶𝐷𝑘𝑦𝑘, ∀𝑘 ∈ 𝐽 (14)

∑
𝑖∈𝐽

∑
𝑗∈𝐼

𝑄𝑖𝑗ℎ = ∑
𝑖∈𝐼

∑
𝑗∈𝑉

𝑞𝑖𝑥𝑖𝑗ℎ, ∀ℎ ∈ 𝐻 (15)

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑄𝑖𝑗ℎ = ∑
𝑖∈𝐼

∑
𝑗∈𝑉

𝑝𝑖𝑥𝑖𝑗ℎ, ∀ℎ ∈ 𝐻 (16)

∑
𝑖∈𝑉

∑
ℎ∈𝐻

𝑥𝑖𝑗ℎ (𝑄𝑖𝑗ℎ − 𝑞𝑗) = ∑
𝑖∈𝑉

∑
ℎ∈𝐻

𝑥𝑗𝑖ℎ (𝑄𝑗𝑖ℎ − 𝑝𝑗) ,
∀𝑗 ∈ 𝐼 (17)

0 ≤ 𝑄𝑖𝑗ℎ ≤ 𝐶𝑉ℎ𝑥𝑖𝑗ℎ, ∀𝑖, 𝑗 ∈ 𝑉, ℎ ∈ 𝐻 (18)

𝑄𝑖𝑗ℎ𝑥𝑖𝑗ℎ ≥ (𝑞𝑗 − 𝑝𝑗) 𝑥𝑖𝑗ℎ, ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝐼, ℎ ∈ 𝐻 (19)

∑
𝑗∈𝐼

∑
ℎ∈𝐻

𝑄𝑖𝑗ℎ𝑥𝑖𝑗ℎ = ∑
𝑗∈𝐽

𝑞𝑗𝑧𝑗𝑖, ∀𝑖 ∈ 𝐽 (20)

∑
𝑖∈𝐼

∑
ℎ∈𝐻

𝑄𝑖𝑗ℎ𝑥𝑖𝑗ℎ = ∑
𝑖∈𝐼

𝑝𝑖𝑧𝑖𝑗, ∀𝑗 ∈ 𝐽 (21)

𝐴𝑇𝑗ℎ = 𝑥𝑖𝑗ℎ (max (𝑒𝑖, 𝐴𝑇𝑖ℎ) + 𝑆𝑇𝑖 + 𝑇𝑇𝑖𝑗ℎ) ,
∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑉, ℎ ∈ 𝐻 (22)

𝐴𝑇𝑖ℎ ≤ 𝑙𝑖, ∀𝑖 ∈ 𝐼, ℎ ∈ 𝐻 (23)

𝑥𝑖𝑗ℎ ∈ {0, 1} , ∀𝑖, 𝑗 ∈ 𝑉, ℎ ∈ 𝐻 (24)

𝑦𝑗 ∈ {0, 1} , ∀𝑗 ∈ 𝐽 (25)

𝑧𝑖𝑗 ∈ {0, 1} , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (26)

The objective function (6) is the total logistic cost includ-
ing vehicle renting cost, depot opening cost, fuel consump-
tion, carbon emission cost and penalty cost. Constraint (7)
makes sure that each client is visited only once by a single
vehicle. Constraint (8) guarantees that the number of edges
entering and leaving each node is the same. Constraints (9)
and (10) demonstrate that each client is serviced only once
by a single depot and vehicle. Constraints (11)-(13) forbid
infeasible routings that do not return to the departure depot.
Constraint (14) ensures that the load of each depot must not
exceed its capacity. Constraints (15) and (16) illustrate that
the load of each vehicle leaving and entering a depot must
equal to all clients’ delivery and pickup demand, respectively.
Constraint (17) is the load dynamic equilibrium constraint.
Constraints (18) and (19) make sure that the load of vehicle
in each edge must be less than its capacity and lager than
0. Constraints (20) and (21) guarantee that the total load
of the vehicles leaving/arriving a depot is equal to the
total delivery/pickup demand of all clients assigned to it.
Constraint (22) is the equitation to calculate arrive time of a
vehicle. Constraint (23) enforces that each vehicle must arrive
at a client before closing windows time. Constraints (24)-(26)
define some integrality constraints for the decision variables.
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Figure 1: Proposed hyperheuristic framework.

4. Proposed Hyperheuristic

Figure 1 shows the framework of a hyperheuristic solver
implemented in this paper, including two levels. At a low-
level, a set of heuristics for scheduling, which has a corre-
sponding expertise, is defined. And at a high level, a shared
mechanism-based choice strategy and self-adaptive accep-
tance criterion are developed to select promising heuristic
and maintain diversity of selection.

The proposed hyperheuristic approach is a single-point
search framework, which is characterized by tending to get
stuck in local optimal solutions. Aiming at overcoming this
rebarbative bug, each run starts with randomly selecting
an individual from initial population which is randomly
generated, and an appropriate LLH is selected from a fixed
set of operators. After implementing the selected operator,
we update heuristic space according to the proposed high-
level strategy and obtain a promising operator via roulette
selection. The stopping criterion is based on the maximum
numbers of iterations.

4.1. Problem Domain

4.1.1. Chromosome Representation. The individual in the
proposed HH consists of a set of routes, given by R={𝑟1, 𝑟2, . . . , 𝑟𝐾}, where ri is a set of clients served by ith vehicle
and the opening depot is inserted at two ends of each route.
Each compete route is stored in subcell array. Aiming at
fast evaluating solution, the properties of each route also are
included in the second rows of route array, such as total cost,
departing/returning load and type of vehicle in each route.
We just need compute fitness of a single solution by simply
add the total costs of all routes and the costs of opening
depots.The computation complexity of correction processing
is O(1) and it does not significantly affect computational
efficiency. Moreover, the adopted representation can avid
restore feasible and obtain feasible children solutions, and so
does the following LLHs in Section 4.1.2.

16159105216

1713117

1671131216

191484619

325870

146580

M456090

386878

r1

r2

r3

r4

，1

，2

，2

Figure 2: A sample solution.

To clarify the solution representation, a simple example
of 15 clients, 4 vehicles and 5 potential location of depots is
illustrated in Figure 2. The length of all arrays represents 4
routings, the left represents the tracing of 4 routes including
serviced clients’ order and opening depots, the right is the
properties of 4 routes with the type of vehicles in the last
position. Finally, the population initialized, called Npop, are
randomly created.

4.1.2. Low-Level Heuristics. As the factors (e.g., solution
representation and approach parameters) of preexisting
methods bring much inconvenience and difficult to develop
hyperheuristics and reduced LLHs are flexible response to
different application, several reduced operators specified to
RLCLRPRCC are developed in this paper. The module of 𝜉
(operators set) is composed of 16 LLHs h1, h2, . . ., h16 across
two pools of heuristics: mutational heuristic (MH) and local
search/hill climber (HC), which are identified by the role
in improving or worsening the solution. The LLH search
strategies are presented in the following list:

(1) h1. Swaps two adjacent clients within a single routing.

(2) h2. Moves two adjacent clients to a different position
within a single routing.

(3) h3. Moves a single client from vehicle to another.
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(4) h4. Swaps two clients from different vehicles.
(5) h5. Diversifies the selected depots by opening a new

one and randomly assigning between 1 and 2/3 of the
routes to it or closes one depots and all routes of this
depots are assigned to another depot.

(6) h6. Collapses each route into a single client, that is,
“Super-Client”, and the concerned distance is the
small insertion cost of the depot in the original route;
similar to Barreto et al. [62], if infeasible route is
obtained, the insertion cost will be set to infinity.

(7) h7. Decomposes a single route into two different
routes.

(8) h8. Merges two routes into a single route with ran-
domly selecting a depot resulting in a feasible route.

(9) h9. Exchanges two edges inside the routes.
(10) h10. Exchanges two edges between different routes.
(11) h11. Shifts a single client to a different place within a

single route.
(12) h12. Shifts a client of a route to others.
(13) h13. Swaps a single client within a single route.
(14) h14. Swaps two clients from different routes.
(15) h15. Shifts 2-3 clients from a route to others.
(16) h16. Swaps 2-3 clients of a route to others.

The first 8 LLHs belong toMH, which have a good global
optimization capability to help search escape from the local
optima. The remainder is conductive as local optimization
to improve the solution quality with ensuring FIR≥0. The
constraints in Section 3.1 must be satisfied in obtained
solutions by the above 16 operators, aiming at avoiding the
feasible restoration method.

4.2. Proposed High-Level Selection Strategy. The HLH of HH
framework is proposed to choose an appropriate operator
to search the solution domain space. The performance of
operators may differ dynamically in different search phase.
Therefore, how to estimate the performance and choose the
most appropriate operators is of importance in developing
the HLH. To acquire it, the strategy that can track the
performance of LLHs in real-time should be developed;
namely, the selected probability of each LLH is updated based
on its real-time or phase performance.

Inspired from the paired performance of Choice Function
(Cowling et al.) [45] and FRR-MAB (Li et al.) [50], a
shared mechanism combined adaptive selection strategy is
developed and characterized as follows: (1) sliding window
organized as a first-in-first-out (FIFO) queue is applied to
store recent application of operators and fitness improvement
rate (FIR) values; (2) it is considered that achieving the fitness
improve values are the joint effort of operators within sliding
window; (3) FIR between parent and child fitness are not
suitable for estimating the performance of Poor/Mutational
Heuristics (PH), a novel strategy is developed; (4) FRR-MAB
is used to calculate the credit values of PH andEliteHeuristics
(EH). In the following, the details of the above are described.

In the shared mechanism, the sliding window is a two-
dimensional list of W rows and 2 columns. The first column
records the operator index number and the second column
records the corresponding FIR. However, only those oper-
ators with FIR>0, instead of all operators, are stored. As it
is believed that the joint effort is achieved by the operators
with FIR>0. Moreover, if the FIR gained by other operators
is less than 0, sliding window will be cleared. Then sliding
window resumes to work. In this paper, the W value is set
to 4, that is only 4 operators can share the performance
of FIR obtained by recent operator. As to the allocation
method, performance value obtained are suggested to be
in direct proportion to FIR obtained by recent operator
with biased ratio method, that is br={𝑏𝑟1, 𝑏𝑟2, . . . , 𝑏𝑟𝑊} and
br1+br2+. . .+brW=1 and br1 ≤br2 ≤ . . . ≤brW. For example,
biased ratio is set at {0.1, 0.15, 0.25, 0.5}, the above two
constraints are satisfied, then the performance value for
recent operator with obtaining incumbent FIR, which have
to be shared to others in sliding window, can get 0.5FIR, the
nearest operator, namely operator of last iteration, can share
0.25FIR, and the third and last can share 0.15FIR and 0.1FIR.
The nearer operators implemented, the lager performance
value can share. In the shared mechanism, the cumulative
performance of each operator is nominated as SFIR.

The sliding window ensures that the stored FIR values
reflect the current situation of the search, and only the
operator with FIR>0 can share FIR of other operators.
However, how to estimate the operators with FIR<0 is also
significant in selecting an appropriate operator. In this paper,
a kind of classification is adapted to partition the operators
into two groups according to their global efficiency, and
the most promising operators are listed in Elite list (EL)
and the low-ranking operators are included in Low Ranking
List (LRL). The operators in EL are called Elite Heuristics
(EH), otherwise Poor Heuristics (PH). The global efficiency
of operators adopts the Global FIR (GFIR) to classify the
operators, as follows:

𝐺𝐹𝐼𝑅𝑡+1𝑖 = 𝐺𝐹𝐼𝑅𝑡𝑖 + 𝐹𝐼𝑅𝑡𝑖 (27)

where i is the ith operators, t is the incumbent iteration.
Those operators with GFIR>0 can be viewed as EH, and
others are PH, and if GFIR of all operators are less than
0, then GFIR is sorted in descending order and the first
half are EH, others are PH. In this paper, operators are
designed as local search heuristics; therefore the first strategy
is adopted. For EH, the performance is estimated using
the above shared mechanism; otherwise a novel method
is developed to track the performance of PH by achieving
FIR using the improvement rate between best solution of
incumbent iteration and the last iteration implementing PH,
that is, cumulative improvement rate of best fitness, called
PFIR.

𝑃𝐹𝐼𝑅𝑡𝑖 = 𝑃𝐹𝐼𝑅𝑡0𝑖 + ( 𝑡𝑇max
)2 ⋅ 𝑏𝑓𝑡0 − 𝑏𝑓𝑡𝑏𝑓𝑡0 (28)

where bf t0, bf t are, respectively, the best fitness of last iteration
and current iteration. To our best knowledge, the most widely
approach is to treat all operators as awhole and utilize a single
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FIR is the fitness improvement rate of recently applied operator;
FRR is the normalization of SFIR.
input: FIR, SFIR
output: FRR
if FIR>0 then

for i=0 to Size of the Sliding Window do
op=SlidingSindow. getOperatorPos(i)
Reward=bf i×FIR.
SFIRop=SFIRop+Reward.

end for
TotalReward=∑ SFIR.
for op=0 to NTdo

FRRop=SFIRop/TotalReward
end for
save FIR into Sidling Window

else
clear Sidling Window

end if

Algorithm 1: Pseudocode of credit assignment in shared mechanism.

criterion, but this may result in selecting the inappropriate
operators in Iterated Local Search (ILS). For example, the
credit assignment in FRR-MAB may lead to negative total
reward, as the FIR of PH always are negative.

Moreover, how to select an appropriate type (PH or EH)
is of significance according to situation of the search; as stated
in Ozcan et al. [48], it might be desirable to apply a HC/EH
whenever a MH/PH is implemented and vice versa. In this
paper, the probability of selecting PHdepends on the number
of iteration without improving the best solution, nominated
as TQ; NH is the number of operators; 𝜑 is control factors.
The lager TQ value, the lager probability of selecting PH.

𝑝𝑃𝐻 = (2 ⋅ 𝑇𝑄𝑁𝐻 )𝜑 (29)

𝐶𝑉𝑡𝑖 = 𝐹𝑅𝑅𝑡𝑖 + 𝐶 ⋅ √ 2 ⋅ ln∑𝑗∈|𝜉|𝑁𝑡𝑗𝑁𝑡𝑖 (30)

Equitation (30) is the function to calculate the credit
value (CV), FRR is credit assignment value after normalizing,𝜉 is the set of operators, N is the set of usage count of
all operators, C is a scaling factor to control the tradeoff
between exploitation and exploration, the former favors the
arms with best empirical rewards, and the latter focuses
on the infrequently tried arms. The FRR represents two
performance indicators, namely, normalization value of SFIR
of EH and PFIR of PH. According the description of the
above definition, the pseudocode of the share mechanism
procedure and high-level selection strategy are showed at
Algorithms 1-2.

In each iteration, a heuristic of the pool of operators is
chosen by roulette selection with the selection probability of
the ith operator, as follows:

ℎ𝑝𝑡𝑖 = 𝐶𝑉𝑡𝑖∑𝑗∈𝜉 𝐶𝑉𝑡𝑖 (31)

4.3. Proposed High-Level Acceptance Criterion. Each appli-
cation of a low-level heuristic takes an incumbent solution
and modifies it to construct a new child solution. The child
solution is then considered for accepting as the solution in
the coming iteration. If the new solution is not accepted,
then it is discarded. If the new solution is at least as good as
the solution, then it is automatically accepted as incumbent
solution regardless of the acceptance criterion specified by
HH. In this paper, the nonimproving solutions are accepted
with a probability pac as follows:

𝑝𝑎𝑐 = (2 × 𝑇𝑄𝑁𝐻 )𝜓 (32)

where TQ is the number of iteration without improving the
best solution and NH is the number of operators. The above
equitation demonstrates that the probability of accepting the
nonimproving solution depends on the TQ instead of the
quality of child solution.

5. Computational Evaluation

Implementation aspects and evaluations of the proposed
mathematical model and approach are presented and dis-
cussed in the following sections.

5.1. Implementation Aspects and Configuration of Parameters.
The algorithm was parallel programmed in Matlab 2018a
and results are achieved by using a 4.0 GHz Intel Core i7-
6700K CPU with 8 GB of RAM and running Windows
10; concerning to the component of the algorithm, the
parameters in the proposed HH play a significant role in
the quality of solutions. Therefore, an initial experiment with
various parameters was carried out and the following were
found to be the most suitable.

The maximum number of iteration (Tmax) depends
directly of the number of clients, depots, and the maximum
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op is operator of the last iteration; nop is current selected operator;
FIRop is the fitness improvement rate obtained by op; Tmax and t
is the maximum/current iteration, et al.
input: op, FIRop, TQ, bf, bf 0
output: nop
// Classification
GFIRop=GFIRop+FIRop
i=0
while i≤TN do

if GFIRi <0 then
Partition.Operator (i) into PH

else
Partition.Operator (i) into EH

end if
end while
// Type of Selction(PH/EH)
FRR=Algorithm. Implement (1)
pph=Probability.Calculation (TQ, TN)
if pph >rand then

Rewardop=Reward. Calculation(op, t, 𝑇𝑚𝑎𝑥, bf, bf 0)
PFIRop=PFIRop+Rewardop
TotalReward=∑ PFIR.
for op=0 to NT do

FRRop=PFIRop/TotalReward
end for

end if
// Credit Value Calculation
for i=0 to Size of the EH or PH do

op=EH/PH. getOperator(i)
CVop=CreditValue.Calculation (FRRop, N) % Equitation (30)

end
// Roulette Selection
nop=Roulette. Selection (CV, EH/PH)

Algorithm 2: Pseudocode of high-level selection strategy.

number of vehicles; the reasoning is that the higher the value
is, the more intensified of the search for good solutions is,
and more time-consuming it becomes (especially in large
instances), so the upper limit is set at 105.

𝑇max = min (10 (𝑀 +𝑁 + 𝐾)2 , 105) (33)

The configuration parameters used in shred mechanism
were suggested as follows: br4∼U(0.4, 0.6), br3=0.5(1- br4),
br2=0.3(1-br4) and br1=0.2(1-br4). The selection of PH/EH
uses the control factor 𝜑=1.6. Acceptance factor in adaptive
acceptance criterion is 𝜓∼U(2, 2.4). The parameter related
into FRR-MAB follows the default values suggested in Li et al.
[50], scaling factor (C=0.5), if needed, and the slidingwindow
size (W=50), which are also used by Srickler et al. [57].

The potential threat to validity of the above parameter
configure can be identified by the virtue of instances and
empirical experiments; namely, parameter configure differs
with the characteristics of instances.

5.2. Test Instances. As the instances for RLCLRP is lack and
RLCLRPRCC is firstly studied in this paper, the test instances
in this paper are randomly generated. The speed of three

zones are set as follows: Vzone3∼U(60, 80), Vzone2∼U(40, 60),
and Vzone1 ∼U(20, 40) (km/h), and the location and size of
three zones are stochastic with keeping nested nature. We
generated four sets of instances, namely, LCLIENT, LDEPOT,
LTW, and LVEHICLE, which are used to evaluate the impact
of distribution of clients/depots, clients’ time windows and
fleet on the total cost (TT), carbon emission (CE), travel dis-
tance (TD), travel time (TT), etc. In the first set, four subsets
are generated: (1) all clients clustered zone 1, denoted by CC1;
(2) all clients clustered zone 2, denoted by CC2; (3) all clients
clustered zone 3, denoted by CC3; and (4) clients located
randomly, denoted by CR. LDEPOT is similar to LCLIENT.
The third set also includes four subsets by the different li and
ei, namely, li-ei=𝜂×STi, and 𝜂∈ {1, 1.5, 2,∞}.The last one also
contains four subsets characterized by different fleet: (1) only
L1 vehicle, denoted by L1; (2) only L2, denoted by L2; (3) only
M, denoted by M; and (4) heterogeneous fleet, denoted by
(HF). In each set, only corresponding parameters are changed
and other parameters are kept the same, and the clients’ time
windows are randomly selected in the instanceC101 proposed
by Solomon et al. [63] and modified by dividing 10. The
service time of each client depends on its total demand and
the maximum ST is set at 540 (s); the delivery and pickup
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Table 1: Quality of results by proposed approach for LRP.

Instance BKS [6]
HH-SMAA HH-FRR-MAB

BS Gap1 Gap2 SD MT BS Gap1 Gap2 SD MT
G67-21×5 424.9 424.9 0.00 0.00 0.00 0.54 424.9 0.00 0.00 0.00 0.80
G67-22×5 585.1 585.1 0.00 0.00 0.00 0.43 585.1 0.00 0.01 0.31 0.62
G67-29×5 512.1 512.1 0.00 0.00 0.00 0.75 512.1 0.00 1.40 10.37 0.91
G67-32×5-1 562.2 562.2 0.00 0.00 0.00 0.60 562.2 0.00 0.11 2.04 0.98
G67-32×5-2 504.3 504.3 0.00 0.00 0.00 0.49 504.3 0.00 0.01 0.21 0.97
G67-36×5 460.4 460.4 0.00 0.00 0.00 0.72 460.4 0.00 0.05 1.55 0.98
C69-50×5 565.6 565.6 0.00 0.00 0.00 2.35 565.6 0.00 1.50 8.74 2.63
C69-75×5 844.4 844.4 0.00 0.00 0.00 8.58 844.6 0.02 2.02 9.52 10.14
C69-100×5 833.4 833.4 0.00 0.04 1.03 12.19 836.7 0.39 2.24 8.56 8.32
P83-12×2 204.0 204.0 0.00 0.00 0.00 0.12 204.0 0.00 0.00 0.00 0.13
P83-55×15 1112.1 1112.1 0.00 0.00 0.00 4.09 1112.8 0.06 0.20 3.03 5.46
P83-85×7 1622.5 1622.5 0.00 0.01 0.16 13.94 1625.8 0.21 0.44 4.25 10.62
P83-318×4 557249.3 555974.2 -0.23 -0.11 467.08 30.22 560732.4 0.63 2.72 6812.70 17.79
P83-318×4-2 663070.0 661065.0 -0.30 -0.05 1157.83 46.50 666867.9 0.57 2.78 17089.75 50.02
M92-27×5 3062.0 3062.0 0.00 0.00 0.00 0.85 3062.0 0.00 0.00 0.00 0.78
M92-134×8 5709.0 5709.0 0.00 0.11 4.92 20.29 5719.3 0.18 1.60 59.26 12.35
D95-88×8 355.8 355.8 0.00 0.00 0.00 10.41 355.8 0.00 0.50 3.95 11.10
D95-150×10 43919.9 43919.9 0.00 0.03 21.66 21.67 44207.5 0.65 1.49 325.46 16.16
O76-117×14 12290.3 12290.3 0.00 0.01 2.80 11.60 12296.9 0.05 2.08 115.98 4.94
Average 68099.33 67926.70 -0.03 0.00 87.13 9.81 68498.97 0.15 1.01 1287.14 8.20
Median 0.00 0.00 0.00 4.09 0.01 0.50 4.25 4.94

demands are distributed in [100, 2000]. A single renting cost
of vehicles is FV∈ {38, 44, 54}RMB, and the cost of depot
is equal to 500 in zone 1, 350 in zone 2, and 200 in zone
3. The capacity of each depot is in the range [20000, 25000]
(kg). The price of 1L fuel is set at Cfc= 7.65 in CNY and
the price of carbon emission depends on the carbon trading
market and we set it at ¥39.3 per ton, namely,Ccm= ¥3.93×10−2
per kg, according the price of Shanghai in 6/27/2018 in
http://www.tanpaifang.com/.

5.3. Efficiency of High-Level Selection Strategy. We have
conducted a preliminary on the LRP/LRPSPD benchmark
instances, for assessing the high efficiency of the proposed
high-level strategy. To this end, we have compared the
solutions of proposed algorithm with the optimal results
obtained by the hyperheuristic with FRR-MAB and the best-
known solution (BKS) in the literature.The used set instances
are one of three benchmark sets, namely set by Barreto et al.
[62]. The results for this set can be seen in Tables 1 and 2.
The first column displays the name of each instance, followed
by BKS, then results concerning two HH approaches with
proposed selection strategy and FRR-MABare demonstrated:
best solution (BS). Gap1/Gap2 are the gaps to BKS and
BS/mean results over 20 runs; SD is the standard deviation
of the minimum results over 20 runs. Finally, MT is the mean
computing time in second over 20 runs.

From the BS in Table 1, HH-SMAA can obtain 17 BKS and
two new BKS, one of them reaching an improvement of 0.3%
to the previous BKS. Only 10 BKS are achieved by HH-FRR-
MAB with median SD value at 4.25, which is much larger

than the values of HH-SMAA. For the results of LRPSPD, 13
BKS are obtained and 5 new BKS are found with one reaching
an improvement of over 1.6% to pervious solution. HH-
FRR-MAB can 11 BKS and four BS are better than previous
results. Moreover, aiming at demonstrating the efficiency of
the proposed HH, Friedman statistical experiment is carried
out between the results of the two approaches, and the results
are provided in Table 3.The obtained 𝜒2 values are larger than
critical values, indicating that there is a significant difference
between the above two approaches and the performance of
the proposed HH is statistically superior to HH-FRR-MAB.

5.4. Evaluation of Effect of Domain Problem

5.4.1. Effect of Clients’ Distribution. Table 4 presents the key
performance indicators obtained by the proposed approach
for solving LCLIENT set, aiming at analyzing the effect of
clients’ distribution on the total cost (TC) in CNY, vehicle
cost (VC) in CNY, fuel and carbon emission cost (FEC)
in CNY, penalty cost (PC) in CNY, travel distance (TD)
in km, travel time (TT) in minutes, and carbon emission
(CE) in kg. The first column displays the name of the
instance. From the results in Table 4, all clients in zone 1
can reduce all performance indicators but not MT among the
results compared with other clients’ distribution, as shown
in Figure 3. Compared with the results of CC2, CC1 seems
to averagely reduce 5.56%TC, 2.96% VC, 20.82%FEC/CE,
37.77%PC, 19.25%TD, and 7.87%TT.The results of CC3 reveal
that it is time-consuming, expensive, and long-distance for
servicing this zone’s clients even if the speed limits of vehicle

http://www.tanpaifang.com/
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Table 2: Quality of results by proposed approach for LRPSPD.

Instance BKS [7]
HH-SMAA HH-FRR-MAB

BF Gap1 Gap2 SD MT BF Gap1 Gap2 SD MT
G67-21×5 528.42 528.42 0.00 0.27 1.26 0.58 528.42 0.00 0.91 2.06 0.98
G67-22×5 653.80 653.80 0.00 0.00 0.00 0.58 653.80 0.00 0.00 0.00 0.65
G67-29×5 592.10 592.10 0.00 0.00 0.00 0.81 592.10 0.00 1.89 22.56 1.25
G67-32×5-1 696.38 696.38 0.00 0.08 0.16 1.20 696.38 0.00 0.47 4.41 1.27
G67-32×5-2 595.27 595.27 0.00 0.00 0.00 1.19 595.27 0.00 0.01 0.21 1.03
G67-36×5 540.37 540.37 0.00 0.00 0.00 1.05 540.37 0.00 0.82 7.89 1.02
C69-50×5 708.37 708.37 0.00 0.00 0.00 3.99 708.37 0.00 0.76 4.44 5.19
C69-75×5 1132.80 1132.80 0.00 0.37 2.77 9.53 1135.88 0.27 2.16 11.36 12.02
C69-100×5 1011.53 1011.53 0.00 1.11 4.33 8.90 1035.19 2.34 4.90 12.08 10.43
P83-12×2 243.98 243.98 0.00 0.00 0.00 0.13 243.98 0.00 0.00 0.00 0.13
P83-55×15 1327.06 1327.06 0.00 0.01 0.07 5.92 1327.06 0.00 0.72 5.32 9.46
P83-85×7 1855.55 1855.55 0.00 0.03 0.96 11.88 1855.55 0.00 1.46 12.47 15.61
P83-318×4 573335.00 566107.39 -1.26 -0.95 738.69 25.83 572517.08 -0.14 2.32 7560.65 22.75
P83-318×4-2 724561.00 712528.47 -1.66 -1.07 1900.42 52.99 722348.67 -0.31 2.48 22050.45 49.56
M92-27×5 3142.02 3142.02 0.00 0.00 0.00 1.20 3142.02 0.00 0.00 0.44 0.87
M92-134×8 5953.68 5913.51 -0.67 -0.53 2.45 15.90 5935.24 -0.31 1.15 51.65 12.68
D95-88×8 497.60 497.98 0.08 0.32 1.43 7.24 498.05 0.09 2.61 9.58 7.82
D95-150×10 45152.90 44964.68 -0.42 -0.08 61.17 16.61 45110.45 -0.09 1.56 422.26 15.66
O76-117×14 12360.70 12350.20 -0.08 0.01 14.37 9.22 12383.89 0.19 2.43 206.37 7.88
Average 72362.55 71336.31 -0.21 -0.02 143.58 9.20 72202.51 0.11 1.40 1599.17 9.28
Median 0.00 0.00 0.96 5.92 0.00 1.15 9.58 7.82

Table 3: Results of Friedman test.

Set Algorithm Test statistics Conclusion
HH-SMAA HH-FRR-MAB N 𝜒2 df p

LRP 1.26 1.74 19 9.000 1 0.003 𝜒2 >critical value, Reject H0
LRPSPD 1.29 1.71 19 8.000 1 0.005 𝜒2 >critical value, Reject H0

Table 4: The effect of variations in client distribution.

Instance TC VC FEC PC TD TT CE MT
25CC1 968.40 214 160.37 44.04 63.25 379.26 48.06 14.45
25CC2 989.54 214 176.12 49.42 69.29 375.19 52.78 13.93
25CC3 1102.22 224 277.66 50.57 96.19 388.97 83.21 13.69
25CR 1119.49 252 258.06 59.43 104.23 440.12 77.34 13.53
50CC1 1511.03 294 287.49 29.53 95.56 525.24 86.16 99.13
50CC2 1609.45 304 364.57 40.88 116.85 563.76 109.26 91.61
50CC3 1819.25 362 472.31 84.94 162.55 731.86 141.55 90.68
50CR 1748.20 338 449.01 61.18 144.94 638.15 134.57 99.47
75CC1 1768.03 402 365.98 50.05 113.47 675.48 109.68 430.56
75CC2 1884.29 412 456.49 65.80 131.62 707.90 136.81 392.80
75CC3 2117.60 532 482.19 153.41 164.23 1010.34 144.51 349.89
75CR 2166.86 538 539.14 139.72 192.18 1012.16 161.58 416.82
100CC1 2787.31 606 515.13 66.19 159.43 973.26 154.38 414.69
100CC2 2981.92 642 628.08 111.84 205.93 1171.83 188.23 423.75
100CC3 3427.17 748 934.88 144.28 308.55 1337.28 280.18 430.09
100CR 3301.48 686 899.81 115.67 288.23 1239.87 269.67 418.17
Average 1956.39 423 454.21 79.18 151.03 760.67 136.12 232.08
Median 1793.64 382 452.75 63.49 138.28 691.69 135.69 224.68



12 Mathematical Problems in Engineering

Table 5: Efficiency of the proposed mathematical model.

Instance RLRPRCC-TT RLRPRCC-TD△TC △VC △FEC/CE △PC △TD △TT △TC △VC △FEC/CE △PC △TD △TT
25CC1 1.43 -0.93 6.39 12.63 -0.23 0.79 0.60 1.87 4.87 -13.69 -6.05 -4.09
25CC2 0.49 0.00 1.95 2.79 0.17 -0.32 0.00 0.00 0.00 0.00 0.00 0.00
25CC3 0.73 0.00 2.29 3.39 -1.41 -0.62 0.33 0.00 0.90 2.26 -1.41 -0.31
25CR 1.22 -12.70 24.47 -29.41 11.15 -13.46 3.26 1.59 14.60 -8.63 -1.65 -5.04
50CC1 -0.32 1.36 -0.33 -26.86 -7.79 -8.88 1.23 1.36 8.77 -35.87 -0.33 -6.68
50CC2 2.00 0.00 10.72 -16.85 6.24 -4.38 1.21 0.00 7.11 -15.63 6.05 -2.42
50CC3 3.16 -6.63 22.13 -27.12 1.58 -13.25 0.88 -6.63 13.69 -29.08 1.88 -11.48
50CR 4.18 -1.78 21.39 -27.68 15.82 -8.36 3.17 -1.78 17.24 -26.27 12.14 -5.51
75CC1 1.94 0.00 11.88 -18.28 8.84 -3.42 1.38 0.00 10.60 -28.89 8.69 -4.78
75CC2 -1.09 -2.43 -1.00 -9.18 1.77 -3.89 1.40 -2.43 11.79 -26.55 12.50 -5.79
75CC3 3.74 -17.29 52.66 -53.94 25.70 -23.71 4.10 -17.29 54.94 -56.18 29.11 -23.98
75CR 6.78 -23.42 69.49 -72.75 30.41 -29.56 2.83 -17.10 43.56 -58.39 20.18 -22.44
100CC1 0.43 0.99 0.70 3.63 -1.07 -0.71 0.60 0.00 5.73 -19.23 2.77 -3.56
100CC2 1.32 0.62 10.34 -26.41 5.07 -8.27 1.46 -0.93 12.16 -24.11 9.14 -5.46
100CC3 1.53 -5.88 13.63 -21.46 4.73 -9.00 2.18 -5.88 15.17 -16.09 10.43 -3.80
100CR 3.64 -0.29 16.66 -23.85 8.37 -7.91 0.43 -1.46 4.08 -10.75 3.36 -2.76
Average 1.95 -4.27 16.46 -20.71 6.83 -8.44 1.57 -3.04 14.08 -22.94 6.68 -6.76
Median 1.48 -0.61 11.30 -22.66 4.90 -8.09 1.30 -0.47 11.19 -21.67 4.70 -4.91

in this area is the fastest, resulting in increasing 19.24%TC,
20.89% VC, 62.67%FEC/CE, 131.74%PC, 65.11%TD, and
32.22%TT. The randomly distributed clients, namely, CR,
lead to increase by 18.08%TC, 19.94%VC, 59.77%FEC/CE,
99.02%PC, 66.65%TD, and 28.69%TT, verging on the CC3.
The ratio of each part in objective function seems to have
nothing with the distribution of clients, as shown in Figure 4,
among four ratios, the largest is the depots cost with ranging
from 44% to 60% and average value at 51.68%, followed by
vehicle or fuel consumption and carbon emission cost around
22%, and the ratio of penalty cost is the least, reaching a ratio
of 4.12% on average.

The efficiency of the proposed model is reported in
Table 5. The values in Table 5 indicate the increment of
the results of RLRPRCC-TT/RLRPRCC-TD, referring to the
travel time/distance as the third part in the objective function
instead of fuel consumption and carbon emission cost.
Figure 5 reveals the change among the above three models,
compared to RLRPRCC-TT, the proposed model can reduce
1.95% TC, 16.46%FEC, and 6.83% TD sacrificed by increas-
ing 4.27%VC, 20.71%PC/VW, and 8.44%TT. Meanwhile,
the proposed mathematical model also can reduce 1.57%
TC, 14.08%FEC, and 6.68%TD with increasing 3.04%VC,
22.94%PC/VW, and 6.76%TT.

The above results demonstrate that the distribution of
clients significantly affects the key performance indicators,
and the type of CC1 always achieves the minimum values.
Moreover, the proposed model in this paper can reduce
around 2% logistics total cost, 15% fuel consumption and
carbon emission cost and carbon emission, and 7% vehicle
travel distance on average, which illustrates the efficiency of
the presented mathematical model.
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Figure 3: Relative increment to CC1.

5.4.2. Effect of Depots’ Distribution. In this paper, the depot
costs are strongly correlated with daily rental of depots
(depending on their location), cargo management cost, and
shipment charge. The distribution of depots in one city
determines cost and location of each depot, which jointly
influences the key performance indicators. The results of
LDEPOTS instances are carried out in Table 6. From the
observation of values in Table 6, the distribution of depots
in zone 3 can significantly decrease 59%TC, 1.62%FEC/CE
and 3.83%TD when compared with DC1, 29%TC for DC2
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Figure 5: Boxplot of variation of performance indicators.

Table 6: The effect of variations in depot distribution.

Instance TC DC VC FEC PC TD TT CE MT
25DC1 1490.66 1000 220 216.58 54.08 84.49 427.03 64.91 10.25
25DC2 1183.05 700 220 207.07 55.98 80.97 416.89 62.06 11.77
25DC3 884.94 400 218 209.60 57.34 78.90 420.18 62.82 11.10
25DR 1052.80 550 220 223.75 59.05 87.57 438.74 67.06 8.66
50DC1 2469.23 1500 396 465.98 107.25 171.08 837.94 139.65 132.56
50DC2 2019.93 1050 396 471.45 102.47 173.10 816.63 141.29 146.30
50DC3 1600.06 600 396 503.46 100.60 183.40 816.29 150.89 123.46
50DR 1707.12 750 396 456.86 104.25 165.49 804.00 136.92 110.94
75DC1 3227.22 2000 514 580.08 133.14 190.95 1002.75 173.85 344.60
75DC2 2613.33 1400 514 567.51 131.81 184.68 978.86 170.08 390.19
75DC3 2043.26 800 542 547.39 153.86 183.35 1050.73 164.05 375.33
75DR 2174.48 950 480 630.69 113.79 192.34 923.62 189.01 415.12
100DC1 4260.01 2500 728 866.13 165.88 292.57 1392.25 259.58 446.51
100DC2 3506.57 1750 766 797.15 193.42 266.41 1432.90 238.90 553.12
100DC3 2744.17 1000 734 827.89 182.28 264.06 1389.38 248.11 548.96
100DR 3382.44 1750 642 870.85 119.59 250.80 1172.91 260.99 480.78
Average 2272.45 1168.75 461.38 527.65 114.68 178.13 895.07 158.14 256.85
Median 2108.87 1000.00 438.00 525.43 110.52 183.38 880.78 157.47 245.45
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Table 7: Efficiency of the proposed mathematical model.

Instance RLRPRCC-TT RLRPRCC-TD△TC △VC △FEC/CE △PC △TD △TT △TC △VC △FEC/CE △PC △TD △TT
25DC1 1.66 -15.45 37.89 -43.21 26.03 -15.28 1.56 -20.00 44.64 -54.31 38.43 -14.61
25DC2 2.62 -20.00 48.49 -45.32 39.54 -13.31 2.12 -20.00 47.53 -52.46 39.89 -13.46
25DC3 3.84 -14.68 42.70 -41.02 29.70 -14.44 2.39 -19.27 43.29 -48.19 42.10 -13.93
25DR 1.80 -15.45 36.12 -47.22 22.26 -18.75 1.72 -15.45 38.16 -56.38 28.02 -18.90
50DC1 3.31 -14.65 42.87 -55.92 16.01 -23.80 1.71 -7.58 24.71 -39.90 9.68 -15.67
50DC2 3.19 -14.65 36.25 -47.41 9.69 -21.30 1.46 -6.06 18.07 -31.00 2.31 -13.35
50DC3 6.00 -14.65 40.38 -48.94 10.58 -22.28 4.18 -7.58 28.37 -45.64 13.32 -15.00
50DR 5.72 -16.16 46.79 -49.96 17.76 -20.81 5.91 -14.65 46.51 -51.34 23.87 -17.50
75DC1 2.99 -17.90 46.74 -62.16 16.83 -26.99 2.77 -17.90 46.17 -64.85 19.53 -25.56
75DC2 4.75 -17.90 52.44 -61.70 22.34 -25.17 2.53 -19.84 42.50 -55.41 21.70 -20.07
75DC3 4.85 -22.14 58.43 -65.55 21.85 -30.25 3.44 -22.14 53.00 -64.90 22.75 -27.99
75DR 5.58 -12.08 36.35 -43.79 16.23 -16.32 9.31 -12.08 51.88 -58.65 33.20 -16.56
100DC1 2.31 -16.48 35.70 -54.71 8.04 -23.17 1.34 -15.93 31.37 -59.39 4.19 -23.10
100DC2 0.43 -16.97 28.96 -44.40 6.49 -20.75 0.30 -16.19 28.36 -47.42 10.75 -19.34
100DC3 3.58 -16.62 37.37 -48.89 11.35 -21.16 1.21 -17.17 30.65 -51.81 13.24 -20.60
100DR 7.57 -5.30 37.58 -31.25 26.13 -7.69 7.21 -5.30 37.75 -42.62 30.92 -7.90
Average 3.76 -15.69 41.57 -49.47 18.80 -20.09 3.07 -14.82 38.31 -51.52 22.12 -17.72
Median 3.45 -15.81 39.14 -48.15 17.30 -20.99 2.25 -16.06 40.33 -52.13 22.23 -17.03
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Figure 6: Relative increment to DC3.

and 14% TC, and 4.48%FEC/CE for DR. The type of DC2
achieves the minimum FEC, CE, and TT on average among
four types. Concerning the PC/WT (vehicle waiting time in
minutes) and TT, the type of DR obtains the minimum values
on averagewith 13.46%PC/WTand 6.19%TT.Corresponding
tendency affected by depots distribution is shown in Figure 6.

In Figure 7, the ratio of each part in objective function
is displayed in boxplot, the ratio of depots’ cost in DC3 is
minimum with 53.66% ratio on average, and the minimum
ratio of others can be found in the type of DC1. Each ratio
of parts in objective function differs in different type of
depots’ distribution. Therefore, the logistics company should
preferentially optimize the maximum ratio among four parts

for selecting the most favorable depots in obtaining the mini-
mum total costs, as the depots’ cost average accounts formore
than 50%. Table 7 displays the increment of results obtained
by RLRPRCC-TT and RLRPRCC-TD. Figure 8 shows the
increment of each performance indicator in RLRPRCC-
TT and RLRPRCC-TD, which indicates that our proposed
model can reduce 3.76%/3.07TC, 41.57%/38.31%FEC/CE, and
18.80%/22.12%TD on average. Therefore, our model also has
high efficiency in solving these instances.

5.4.3. Effect of Clients’ Time Windows. In this section, we
analyze the effect of variations of clients time windows; as
stated in Section 5.1, there exist 4 settings for indicating
allowance of time windows, that is, li=𝜂×STi+ei, and 𝜂∈{1, 1.5, 2,∞}, and the ei values and other parameters are
kept the same across all variations. The comparison of four
variations is provided in Tables 8 and 9. Table 8 provides
the results of the instances with 𝜂=1. Table 9 presents the
decrement values of key performance indicators, that is TC,
PC, FEC/EC, TD, and TT. From the observation in Table 9,
the average decrement of the above 5 indicators increase
as the 𝜂 value increases, but the penalty cost of 𝜂=1 is
less than it of 𝜂=1.5. For each performance indicator, the
increment of TC, VC, FEC/EC, PC/WT, TD, and TT ranges
from 3.93% to 19.45%, from -0.36% to 23.94, from 16.54% to
33.60%, from 5.43% to 42.96%, and from 8.84% to 25.36%,
respectively. Figure 9 reveals the tendency of 6 performance
indicators affected by the 𝜂 value, including TC, VC, FEC/EC,
PC/WT, TD, and TT.Our results demonstrate that the clients’
time windows have significantly impact on most of key
performance indicators, and the logistics company should
take appropriate prejudice way to select appropriate clients
to service.



Mathematical Problems in Engineering 15

DC1 DC2 DC3 DR

70

60

50

40

30

Ra
ng

e

(a) Ratio of depots’ cost
DC1 DC2 DC3 DR

30

25

20

15

Ra
ng

e

(b) Ratio of vehicles’ cost

DC1 DC2 DC3 DR

40

30

20

10

Ra
ng

e

(c) Ratio of fuel consumption and carbon emission cost
DC1 DC2 DC3 DR

8

6

4

2

Ra
ng

e

(d) Ratio of penalty cost

Figure 7: Boxplot of relative ratio of costs.

80

60

40

20

0

−20

−40

−60

−80

−100

Ra
ng

e

TC VC FEC/CE PC TD TT
(a) RLRPRCC-TT versus RLCLRPPRCC

80

60

40

20

0

−20

−40

−60

−80

−100

Ra
ng

e

TC VC FEC/CE PC TD TT
(b) RLRPRCC-TD versus RLCLRPRCC

Figure 8: Boxplot of variation of performance indicators.



16 Mathematical Problems in Engineering

Table 8: The effect of variations in clients’ time windows (𝜂=1).
Instance TC DC VC FEC PC TD TT CE MT
L25-1 1286.34 700 252 276.75 57.59 114.55 467.06 82.94 7.85
L25-2 957.35 400 246 254.95 56.40 107.22 460.02 76.41 12.61
L25-3 981.38 400 220 289.74 71.65 113.18 501.76 86.83 13.16
L50-1 1738.69 750 396 484.48 108.22 172.59 802.37 145.20 74.08
L50-2 2109.88 1200 362 460.86 87.02 164.55 744.64 138.12 98.63
L50-3 1816.81 900 406 423.62 87.19 154.81 721.23 126.96 65.22
L75-1 2211.91 950 592 538.70 131.21 184.90 1036.40 161.45 388.60
L75-2 2344.82 1100 576 545.84 122.98 208.88 1032.67 163.59 303.45
L75-3 2561.74 1250 532 637.82 141.92 223.06 1084.45 191.15 377.80
L100-1 3441.15 1750 728 801.71 161.43 276.57 1331.37 240.27 433.61
L100-2 3269.60 1300 842 915.17 212.42 316.53 1542.28 274.27 419.11
L100-3 2987.50 1150 806 835.06 196.44 282.89 1436.71 250.26 490.86
Average 2142.26 987.50 496.50 538.73 119.54 193.31 930.08 161.45 223.75
Median 2160.89 1025.00 469.00 511.59 115.60 178.74 917.52 153.32 201.04

Table 9: The effect of variations in clients’ time windows.

Instance 𝜂=1.5 𝜂=2 𝜂=∞△TC △PC △CE △TD △TT △TC △PC △CE △TD △TT △TC △PC △CE △TD △TT
L25-1 3.09 -1.37 20.02 5.41 10.41 3.74 0.00 17.61 6.65 9.87 13.56 18.34 41.22 41.57 30.03
L25-2 4.98 -1.35 33.86 5.94 16.20 6.92 -11.92 65.00 7.92 29.89 18.37 18.99 41.67 38.22 29.84
L25-3 3.74 -8.53 38.32 4.24 19.40 3.93 -8.07 39.02 3.03 19.40 16.00 21.73 36.41 43.11 29.67
L50-1 2.54 1.31 12.75 7.20 7.78 4.06 3.39 27.81 11.30 15.01 16.98 25.38 42.74 44.98 29.95
L50-2 16.89 13.78 -8.33 14.21 1.49 18.29 19.84 -6.39 20.55 3.64 40.56 29.54 31.75 47.15 27.32
L50-3 2.50 -2.10 23.33 2.16 10.17 3.76 7.30 3.86 13.02 5.08 13.94 21.47 30.22 42.09 22.64
L75-1 1.69 -8.96 21.15 -0.17 8.89 3.25 5.53 13.73 11.69 8.70 14.65 23.40 28.91 40.09 20.34
L75-2 3.57 1.53 10.77 8.79 7.46 4.06 3.13 13.16 9.77 8.69 27.96 18.52 37.74 39.03 24.75
L75-3 2.33 1.64 14.94 6.51 7.59 3.82 8.30 11.96 11.18 7.02 19.48 25.88 21.06 43.81 18.82
L100-1 2.06 -2.39 17.31 5.66 8.84 3.38 2.59 14.52 8.71 8.79 13.93 28.52 26.35 44.29 22.03
L100-2 2.81 2.36 12.41 3.59 6.71 5.27 0.66 22.78 3.92 11.36 20.10 30.80 34.48 47.97 26.37
L100-3 1.01 -0.22 1.99 1.66 1.18 2.04 3.99 -0.16 6.29 1.31 17.82 24.71 30.62 43.25 22.61
Average 3.93 -0.36 16.54 5.43 8.84 5.21 2.89 18.58 9.50 10.73 19.45 23.94 33.60 42.96 25.36
Median 2.68 -0.78 16.13 5.54 8.31 3.88 3.26 14.12 9.24 8.74 17.40 24.05 33.11 43.18 25.56

5.4.4. Effect of Fleet Composition. Aiming at estimating the
benefit of utilizing heterogeneous fleet of vehicles, LVE-
HICLE set was experimented to achieve the results for
comparing with homogenous one, that is, L1, L2, and M.
Table 10 presents the computational results, which provides
eleven performance indicators including TC, DC, VC, FEC,
PC, vehiclewaiting time (VWT inmin.), TD, TT,CE, capacity
utilization rate (CUR in percentage), and MT. Table 11
provides results compared the results in Table 10 with ones
using homogenous one, which provides △TC, △FE, △VC,△PC, △CUR, △TD, and △TT. Tables 10 and 11 suggest the
following: (1) Total costs increase 24.91%, 3.05%, and 4.28%
on average when L1, L2, and M, respectively, are used. (2)
The average increase in CV is 70.73%, 10.21%, and 7.87%,
respectively. (3) Total fuel consumption and carbon emission
increase 10.21% for L1 vehicle and 14.99% for M vehicle and

decrease 1.73% when L2 vehicles are used. (4) For clients
satisfactory, the vehicle waiting time/penalty cost averagely
decreases 126.07% for L1 and 22.04% for L2 and 12.18% when
M vehicles are utilized. (5) TD and TT, respectively, increase
43.31% and 61.77% for L1 vehicles and 5.75% and 10.66% for
L2 vehicle and decrease 0.47% and 5.75%whenMvehicles are
used. (6) The CUR increase 1.09% when L1 vehicles are used
and decrease 2.26% and 25.92% when L2 and M vehicles are
used.

The above results suggest that the instances used hetero-
geneous fleet of vehicles can effectively reduce total logistics
cost, fuel consumption, carbon emission, vehicle waiting
time, and travel distance/time and increase the capacity
utilization rate and number of vehicles, even though the
usage of vehicle type depends directly on the demand and
time windows of clients. Therefore, the logistics company
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Figure 9: Boxplot of variation of performance indicators.

Table 10: Results of instances with heterogeneous fleet.

Instance TC DC VC FEC PC VWT TD TT CE CUR MT
L75-1 2124.17 950 514 548.46 111.71 372.35 185.56 961.13 164.37 87.92 314.96
L75-2 2493.19 1250 546 579.61 117.58 391.95 203.19 997.82 173.71 87.62 270.20
L75-3 2300.09 1100 538 532.08 130.01 433.36 193.12 1014.45 159.46 92.72 349.07
L75-4 2836.41 1550 582 557.70 146.72 489.05 208.10 1104.31 167.14 91.53 401.68
L75-5 2321.80 1100 514 602.61 105.19 350.63 200.97 972.82 180.60 92.79 323.40
L75-6 2409.24 1100 542 641.01 126.23 420.76 215.20 1017.31 192.11 93.87 316.12
L100-1 3027.41 1300 718 823.50 185.91 619.70 267.40 1399.14 246.80 91.28 567.03
L100-2 2923.39 1300 724 725.44 173.95 579.82 237.76 1284.36 217.41 93.15 579.02
L100-3 3331.14 1750 680 739.08 162.06 540.20 252.53 1309.80 221.50 92.02 475.07
L100-4 3092.60 1450 666 799.53 177.07 590.22 250.41 1331.20 239.62 90.25 500.40
L100-5 3098.64 1450 772 681.31 195.34 651.13 240.10 1439.02 204.18 91.16 451.74
L100-6 2999.12 1300 728 796.53 174.58 581.95 267.47 1373.00 238.72 88.04 459.19
Average 2746.43 1300 627 668.90 150.53 501.76 226.82 1183.70 200.47 91.03 417.32
Median 2879.90 1300 624 661.16 154.39 514.63 226.48 1194.34 198.15 91.41 426.71
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Figure 10: Boxplot of computing time.

should rent various type of fleet composition based on nature
of demand and time windows of clients for deducing cost,
environmental effect and increasing clients satisfactory.

Figure 10 illustrates the computing performance of the
proposed method; it goes without saying that the average
computing time has relationship with the size of instances,
such as the computing time of {50-5} goes up to 10 times
of that of {25-5}, and the computing time of {75-7} is
three times of that {50-5}. Moreover, the running time on
average of {100-10} is 1.2 times of that of {75-7}. The above
phenomenon indicates that the computing time also subjects
to the parameters in hyperheuristic, such as the maximum
iteration and the implemental environment.

6. Conclusion

This paper proposed a new model for regional low-carbon
location-routing problem with simultaneous pick-ups and
deliveries, hard time windows, and heterogeneous fleet. For
solving the understood NP-hard problem, a novel approach
was developed, that is, sharedmechanism-based self-adaptive
hyperheuristic (HH-SMAA). A three-index exponential-size
MIP mathematical model was first introduced to minimize
the logistics total cost which consists of total depot, vehicle,
fuel consumption, and carbon emission cost and penalty cost,
where the penult is regarded as routing cost for considering
environmental effect and the latter is vehicle waiting cost (if
arrive early) with respect to client satisfaction and maintain
client loyalty for a long term.

To validate our proposed HH-SMSA, the LRP/LRPSPD
benchmark instances, namely, Barreto sets, were carried out
to evaluate its performance and reliability by comparing with
the improved hyperheuristic with Fitness Rate Rank based
Multi-Armed Bandit (FRR-MAB). Furthermore, four sets of
new benchmark instances were purposefully constructed to
assess the effects of various problem parameters, such as
depot and client distribution, client time windows allowance,
fleet, etc., on key performance indicators, including total cost,

depot cost, vehicle cost, fuel consumption and carbon emis-
sion cost, penalty cost, vehicle travel distance and time, etc.
From the above analysis and conclusions, several managerial
insights for logistics company for a short/long term were
provided.

Future works may define multiobjective function model
for RLCLRPRCC with respect to economic effectiveness,
environmental effect, and client satisfactory; corresponding
multiobjective hyperheuristics will be developed. Moreover,
the future studies may also consider temporal dimension in
RLCLRPRCCwith respect to time-dependent speeds account
for traffic conditions.
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transport information tool for worldwide transports, Berlin,
Germany, International Union of Railways, 2011.

[21] N. Urquhart, C. Scott, and E. Hart, “Using an evolutionary algo-
rithm to discover low CO2 tours within a travelling salesman
problem,” Applications of Evolutionary Computation, vol. 6025,
no. 2, pp. 421–430, 2010.
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