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Aiming at the problem that various types of uncertainties, such as randomness, fuzziness, and interval, coexist in structure reliability
analysis, a discretization analysis method of hybrid reliability for uncertain structures is proposed based on evidence theory (ET) in
this article. Firstly, in order to establish a hybrid reliability model based on ET, a generalized density method (GDM) is developed
to transform the fuzzy variables into equivalent random variables on the basis of the entropy equivalent method (EEM). Based
on the discrete property of the basic probability assignment (BPA) in evidence theory, the random variables and fuzzy variables
(equivalent randomvariables) are both discretized into subintervals according to six-sigma rule.Then, theBPAof each subinterval is
solved and all focal elements are assigned BPA, so the evidence structure characterization of random and fuzzy variables is realized.
Secondly, using Fmincon function based on the sequential quadratic programming (SQP) algorithm in MATLAB, the minimum
and maximum values of performance function over each focal element can be acquired directly. Meanwhile, the production rules
are used to judge the belonging of focal elements and classify them, so the numerical calculation of belief measure and plausibility
measure is also realized. Finally, combined with the Monte Carlo Simulation (MCS) method, an engineering example is provided
to demonstrate the feasibility and accuracy of the proposed method.

1. Introduction

There are many inevitable uncertainties in practical structure
engineering problems [1]. At the same time,with the intensive
requirement of high product quality and reliability and
therefore quantifying, controlling and managing the effects
of uncertainty are important, sometimes even imperative [2].
Uncertainty can be considered as the difference between the
present state of knowledge and the complete knowledge. It
can be classified into two general types: aleatory uncertainty
and epistemic uncertainty [3]. Aleatory uncertainty, also
called objective uncertainty, derives from the randomness of
environment, the inhomogeneity of materials, and the inher-
ent variation associated with a physical system. Epistemic
uncertainty, also termed as subjective uncertainty, stems from
lack of knowledge or data information. So, the collection of
more information or an increase of knowledge would help
decrease the level of uncertainty.

The probability theory has been considered as the most
suitable choice for aleatory uncertainty quantification when

sufficient data information is available to construct accu-
rate probability distributions or probability density function
(PDF) [4, 5]. However, as for the real engineering problems,
data information about the uncertain variables is usually so
scanty that the probabilistic characteristics (or PDFs) are
difficult to obtain. Therefore, the application of reliability
analysis method based on probability theory is limited. In
order to address this problem, the nonprobabilistic model
is used to handle the epistemic uncertainty. Ben-Haim [6]
proposed the nonprobabilistic reliability method. Since then,
this method is widely applied to deal with uncertainty prob-
lem. Currently, different uncertainty measure and analysis
methods, such as fuzzy sets [7], convexmodels [8], possibility
theory [9], and evidence theory [10, 11], have been developed
to handle the epistemic uncertainty. Among these methods,
fuzzy sets are suited to the situations where enough data
information is not available for defining an accurate probabil-
ity distribution. Purba [12] proposed a fuzzy-based reliability
method to evaluate basic events of system fault trees when
precise probability distributions are not available. Sometimes,

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 9046708, 16 pages
https://doi.org/10.1155/2018/9046708

http://orcid.org/0000-0002-6763-6244
http://orcid.org/0000-0002-6674-2483
https://doi.org/10.1155/2018/9046708


2 Mathematical Problems in Engineering

formany complex problems only the lower and upper bounds
of uncertain variables can be obtained, and then convex
models have been applied to compute the interval of the
uncertain output. Ben-Haim [6, 13] uses convex sets model
or Info-gap model to describe the uncertainty and quantify
the reliability with the maximum uncertainty fluctuation that
the system can sustain. Guo et al. [14] proposed a measure
system and analysis method of “nonprobabilistic reliability”
by quantifying the uncertain structural parameters as interval
variables. Chen et al. [1] proposed a nonprobabilistic response
surface limit method to perform nonprobabilistic reliability
analysis for the structures based on the interval model. The
possibility theory is suitable for dealing with epistemic uncer-
tainty of conflict-free information, because the evidence from
different experts is always consistent in possibility theory.

Based on the previous studies, it is obvious that the
nonprobabilistic reliability analysis approach requires only
a small amount of uncertainty information, with signif-
icantly lower dependence on the data information than
the probabilistic reliability analysis method. Therefore, the
nonprobabilistic reliability analysis method overcomes the
limitations of probabilistic reliability analysis method and
it provides the basis for the reliability analysis when data
samples are not sufficient. Compared with nonprobabilistic
reliability methods, evidence theory (ET) seems to be more
general for the modeling of epistemic uncertainty [15], which
can be viewed as an extension of classical probability theory.
Based on the basic probability assignment function, the
uncertainty of the proposition is described by the probability
bounds between the belief and plausibility function. As a
reasoning method of uncertainty, ET can analyze epistemic
uncertainty using human thought process, and hence it
can describe and deal with incomplete and even conflicting
information in a reasonable manner. Recently, domestic and
foreign scholars have conducted a great deal of research
on reliability analysis of epistemic uncertainty based on ET.
Jiang et al. [16] proposed a new reliability analysis method
based on ET that can efficiently reduce the computational
cost for uncertain structures. Zhang et al. [17] proposed an
efficient response surface method to evaluate the reliability
for structures using ET. Bae et al. [18] used the ET to quantify
the epistemic uncertainty for large-scale structures. Tao et
al. [19] developed a novel evidence-based fuzzy model and
the corresponding combining method, which can reduce
the computational cost and effectively combine uncertainty
information which is coming from multiple sources. Helton
et al. [20] introduced the sampling-based computational
strategy to represent epistemic uncertainty in model predic-
tions with ET. Xie et al. [21] presented an implementation
framework of the quantification of margins and uncertainties
(QMU) under mixed uncertainty based on the evidence
theory.

In fact, uncertain variables can be described as random
variables when data samples are adequate, and a precise
probability distribution can be obtained. Additionally, if the
data samples are insufficient, then the uncertainty modeling
can be carried out using evidence theory. Consequently, a
kind of important random-interval hybrid reliability analysis
problems is easily to obtain, and the efficient solution of

this problem is of great significance for the reliability design
of many complex products. Aiming at this problem, some
numerical methods, including the function approximation
method [22], the iterative rescaling method [23], and the
probability bounds (p-box) approach [24], have been pro-
posed for the lower and upper bounds estimation of the
structural reliability in the presence of both random and
interval variables. In addition, Luo et al. [25] presented a
combined probabilistic and set-valued description based on
the multiellipsoid convex model description for grouped
uncertain-but-bounded variables. Yang et al. [26] developed
an efficient and accuratemethod for hybrid reliability analysis
with both random and interval variables based on active
learning Kriging model. Xie et al. [27] proposed an effi-
cient hybrid reliability analysis method with random and
interval variables, by decomposing the nested probability
analysis loop and interval analysis loop into two separate
loops. Gao et al. [28] presented a hybrid probabilistic and
interval method for engineering problems described by a
mixture of random and interval variables. Du et al. [29]
presented optimization design and the solution algorithm
based on a hybrid reliability model with random and interval
variables. Qiu et al. [30] investigated the reliability analysis
problems of random-interval structural system based on
the combination of the classical reliability theory and the
interval analysis. Wang et al. [31] evaluated the reliability of
a probabilistic and interval hybrid structural system based
on the interval reliability model and probabilistic operation.
Mourelatos et al. [32] proposed an efficient reliability-based
design optimization (RBDO) method based on ET to handle
a mixture of aleatory and epistemic uncertainties. However,
in addition to the existence of random and interval variables
in a practical engineering problem, some fuzzy information
exists which is characterized by ambiguity in concept due
to the subjective cognizance of human being. Then, it is
appropriate to use a fuzzy variable to describe these uncertain
variables. Therefore, two kinds of important hybrid reliabil-
ity analysis problems, namely, random-fuzzy and random-
fuzzy-interval, should be further studied. Li et al. [33]
presented a new algorithm for uncertainties propagation in
fuzzy and random reliability analysis. Balu et al. [34] studied
the reliability analysis problem with both random and fuzzy
variables based on Fourier transform. An et al. [35] presented
a new hybrid reliability index and its solving method based
on random-fuzzy-interval model. Ni et al. [36] established
a new hybrid reliability model which contains randomness,
fuzziness, and nonprobabilistic uncertainties based on the
structural fuzzy random reliability and nonprobabilistic set-
based models. Wang et al. [37] proposed a new reliability
analysis method based on convex models for uncertain
structures which may contain randomness, fuzziness, and
nonprobabilistic uncertainties.

As the literature survey reveals, the hybrid reliability
analysis of structures, where various uncertainties variables
coexist, has increasingly attracted the attention in recent
years. It is becoming more obvious that many theories are
combined together for uncertainty quantification due to
the simultaneous presence of both aleatory and epistemic
uncertainties in a structure; that is, uncertainty is usually
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the result of the combined action of two or more uncertain
variables. Therefore, the reliability analysis method consid-
ering a single uncertain variable cannot make full use of
the existing uncertainty information to analyze the problem
effectively. It is of great practical significance to investigate
the hybrid reliability analysis method withmultiple uncertain
variables. In this paper, aiming at the problem that three kinds
of uncertain variables, such as random variables, fuzzy vari-
ables, and interval variables, are contained in the uncertain
structures simultaneously, a discretization analysis method of
hybrid reliability for uncertain structures is proposed based
on evidence theory.

2. Fundamentals of Evidence Theory

Currently, corresponding mathematical methods have been
adopted to deal with various uncertainties. For instance, the
method of studying randomness (random variables) is prob-
abilistic theory and mathematical statistics, and the method
of studying fuzziness (fuzzy variables) is fuzzy set theory
and fuzzy mathematics. Themost representative of stochastic
methods is theMonte Carlo Simulation (MCS)method based
on probability theory; it is one of the statistical methods to
deal with nonlinear problems effectively. The MCS has high
accuracy, but the computational costs are extremely huge,
especially for small failure probability levels [38]. Because
it requires large data samples and many repeated function
evaluations to guarantee the convergence of the simulation
results, the MCS is difficult to be applied in engineering
applications. However, the MCS is often used as a standard
solution to test the accuracy for other new methods [26].

Evidence theory is an uncertainty modeling theory based
on frame of discernment; ET was first proposed and devel-
oped by Dempster and Shafer, also called D-S theory [10, 11].
ET has an intrinsic capability to cope with both aleatory and
epistemic uncertainties in its framework without any unnec-
essary assumptions, due to the flexibility of the basic axioms
[18]. The most important feature is the “interval estimation”
method used to describe the uncertainty information rather
than the “point estimation” method, which means the results
usually are bounded rather than single value. ET contains the
following important concepts.

2.1. Frame of Discernment. In evidence theory, a frame of
discernment (FD) needs to be predefined as a set of mutually
exclusive elementary propositions, and hence it can be viewed
as a finite sample space in probability theory [32]. For
instance, if FD is given as Θ = {𝑥1, 𝑥2}, then 𝑥1 and 𝑥2
are elementary propositions and mutually exclusive to each
other. All the possible subset propositions of Θ will form a
power set 2Θ = {⌀, {𝑥1}, {𝑥2}, {𝑥1, 𝑥2}}, and every possible
outcome of arbitrary concern proposition corresponds to one
of the subsets.

2.2. Basic Probability Assignment. As an important concept
in ET, the basic probability assignment (BPA) represents the
degree of belief for a proposition. Let Θ be an FD, A is
arbitrary subset of Θ, and the BPA is assigned through a
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Figure 1: The relationship of Bel(A) and Pl(A).

mapping function m: 2Θ → [0, 1] and must satisfy the
following three axioms:

𝑚 (𝐴) ≥ 0, ∀𝐴 ⊆ 2Θ
𝑚(⌀) = 0

∑
𝐴⊆2Θ

𝑚 (𝐴) = 1
(1)

Here 𝑚 is expressed as the basic probability assignment
function, and ∀𝐴 ⊆ 2Θ, 𝑚(𝐴) denotes the BPA for the event𝐴. It represents the degree of belief for the event A, which
is similar to the probability density function in probability
theory [32]. Any set 𝐴 with𝑚(𝐴) >0 is called a focal element
(FE).

2.3. Belief and Plausibility Functions. Probability theory does
not allow any impreciseness on the given information, so it
gives a single valued result [18]. However, due to the lack of
information in practical engineering, it is more reasonable
to present a bound of the total degree of belief in evidence
theory, as opposed to a single value of probability given as a
final result in probability theory. Specially, if 𝐴 is arbitrary
subset of the FD, the probability of the event 𝐴 can be
represented by an interval [𝐵𝑒𝑙(𝐴), 𝑃𝑙(𝐴)]. Bel and Pl are
called belief function and plausibility function; 𝐵𝑒𝑙(∙) and𝑃𝑙(∙) are called belief measure and plausibility measure,
respectively. These measures can be viewed as lower and
upper bounds of a probability measure. Then, the degree of
belief𝐵𝑒𝑙(𝐴) and degree of plausibilityPl(A) can be calculated
using the following formulas:

𝐵𝑒𝑙 (𝐴) = ∑
𝐵⊆𝐴

𝑚(𝐵) (2)

𝑃𝑙 (𝐴) = ∑
𝐵∩𝐴 ̸=⌀

𝑚 (𝐵) (3)

As shown in Figure 1, Bel(A) and Pl(A) ranged from
0 to 1, and the plausibility interval [0, 𝑃𝑙(𝐴)] contains
the belief interval [0, 𝐵𝑒𝑙(𝐴)] and the uncertainty interval[𝐵𝑒𝑙(𝐴), 𝑃𝑙(𝐴)]. As a lower bound tomeasure the probability,
Bel(A) can be interpreted as the degree of belief if the event𝐴 would occur, and Pl(A) is the measure of the upper bound
probability. Thus, the true probability P(R) is bounded in the
interval between Bel(A) and Pl(A) (shown in (4)), and its
approximate value can be taken as P(R)=0.5[𝐵𝑒𝑙(𝑅) + 𝑃𝑙(𝑅)].

𝐵𝑒𝑙 (𝐴) ⩽ 𝑃 (𝐴) ⩽ 𝑃𝑙 (𝐴) (4)

The uncertainty interval [𝐵𝑒𝑙(𝐴), 𝑃𝑙(𝐴)] represents the
numericalmagnitude of the uncertainty information; namely,
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Pl(A)-Bel(A) represents the degree of uncertainty about 𝐴.
Thus, ET can distinguish “unknown” and “uncertainty”, as
shown in Figure 1.

2.4. Combination Rules. Assuming 𝐵𝑒𝑙1, 𝐵𝑒𝑙2, ⋅ ⋅ ⋅ , 𝐵𝑒𝑙𝑛 are
belief functions defined on FD Θ, n is the number of belief
functions. 𝑚1, 𝑚2, ⋅ ⋅ ⋅ , 𝑚𝑛 refer to the BPA corresponding to
the event 𝐴. If 𝐵𝑒𝑙1 ⊕ 𝐵𝑒𝑙2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝐵𝑒𝑙𝑛 is present and the joint
BPA is denoted asm(A), then the joint BPA is calculated by

𝑚 (𝐴)

=
{{{{{{{

∑ 𝐴1 ,⋅⋅⋅ ,𝐴𝑛⊆2
Θ

𝐴1∩⋅⋅⋅∩𝐴𝑛=𝐴

𝑚1 (𝐴1) ⋅ ⋅ ⋅ 𝑚𝑛 (𝐴𝑛)
1 − 𝐾 𝐴 ̸= ⌀

0 𝐴 = ⌀
(5)

Here 𝐾 = ∑ 𝐴1 ,⋅⋅⋅ ,𝐴𝑛⊆2
Θ

𝐴1∩⋅⋅⋅∩𝐴𝑛=𝐴

𝑚1(𝐴1) ⋅ ⋅ ⋅ 𝑚𝑛(𝐴𝑛) is the conflict
coefficient; the bigger 𝐾 the more intense the conflict.

3. Hybrid Reliability Model Based on
Evidence Theory

Generally speaking, uncertain variables are divided into
random variables, fuzzy variables, and interval variables [28],
as shown in Figure 2(a). Firstly, when the data information
of uncertain variables are sufficient, namely, the probability
distribution function (PDF) is known, then the variables
are considered as random variables. Secondly, if no further
information about this distribution is available, namely, the
probability distribution information is inaccurate, then the
membership function (MF) can be employed to describe
its distribution information, so the variables are regarded
as fuzzy variables. Thirdly, when only the lower and upper
bounds of uncertain variables are known, but the PDFs and
theMFs cannot be determined, then, it is appropriate to use a
nonprobabilistic interval variable to describe these uncertain
variables. It is found that the probability density functions can
be considered as a special case of membership functions, and
the interval variables can be treated as uniformly distributed
random variables.

It can be seen from Figure 2 that the uncertain variables
cannot be regarded as random variables or fuzzy variables
when their statistical data information is not enough to
obtain accurate PDFs or MFs, because either the PDFs or
MFs need to be known in reliability analysis. However,
the lower and upper bounds of uncertain variables may be
easy to be determined; for example, structure dimensions
are easily obtained from the designer. Therefore, interval
variable is suited to the situations where sufficient data
information is not available, and only the lower and upper
bounds of uncertain variables are known. In this study, the
interval reliability model is used as the base; various types
of uncertain variables are characterized and processed under
the unified framework of ET. As shown in Figure 2(b),
the hybrid reliability model of proposed can be described
by a triangular structure with a “center of gravity”. The
flow chart of hybrid reliability model analysis is given in
Figure 3.

3.1. Discretization of Random Variables. Random variables
are uncertain forms based on detailed statistical data infor-
mation and explicit statistical laws; the PDF is usually used
to describe its concrete distribution. Due to the discrete
property of the BPA of evidence variables, each continu-
ous variable must be truncated and discretized in order
to establish a hybrid reliability model based on evidence
theory. Meanwhile, the evidence structure (or BPA structure)
characterization of uncertain variables is realized. In practical
situations, the normal distribution is a more important
probability distribution, and it is also the basis of many
statistical analysis methods. Additionally, if the variable is a
correlation or nonnormal distribution, it can be transformed
into an independent standard normal variable by means of
Rosenblatt transformation [39]. Thus, this article takes the
normal distribution of random variables as an example to
analyze how to achieve the evidence structure characteriza-
tion.

Let𝑋 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛]T be a vector of random variables,
the random variables 𝑥𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) are mutually
independent and obey normal distribution 𝑁(𝜇, 𝜎2), and
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Figure 3: Flow chart of the hybrid reliability model analysis.

𝑓𝑖(𝑥𝑖) is the PDF of i-th continuous random variable 𝑥𝑖. As
shown in Figure 4(a), within the distribution range of 𝑥𝑖,
select the mean value 𝑥𝑖 = 𝜇 as the center, truncated radius
is 𝜉𝜎, and then the six-sigma rule is applied to truncate the
continuous random variables [40]; hence the identification
interval [𝑎𝑖, 𝑏𝑖] = [𝜇 − 𝜉𝜎, 𝜇 + 𝜉𝜎] is obtained. It is clear
that the larger the truncated parameter 𝜉, the higher the
calculation accuracy. Although the distribution range of
random variable is (−∞,+∞), its distribution probability
in the identification interval [𝜇 − 6𝜎, 𝜇 + 6𝜎] reaches to
99.9999998%according to the six-sigma rule. In other words,
when 𝜉 = 6, the uncertainty information of random variables
in the identification interval is considered to be complete.

To achieve evidence structure (or BPA structure) char-
acterization of random variables, the random variable 𝑥𝑖 is
uniformly discretized into 𝑘 subintervals within identifica-
tion interval [𝑎𝑖, 𝑏𝑖] = [𝜇 − 6𝜎, 𝜇 + 6𝜎], which are denoted
as Ω𝑖 = {Δ𝑗𝑖 = [𝑎𝑗𝑖 , 𝑏𝑗𝑖 ], 𝑗 ∈ [1, 2, ⋅ ⋅ ⋅ , 𝑘]}. Each subinterval of
equal length Δ𝑗𝑖 = (𝑏𝑖 − 𝑎𝑖)/𝑘 (see Figure 4(a)) is treated as a
focal element 𝐴𝑗

𝑖 , and those focal elements are continuously
distributed; also their number is 𝑘. Then, calculate the basic
probability assignment 𝑚(𝐴𝑗

𝑖) for focal element 𝐴𝑗
𝑖 as

𝑚(𝐴𝑗
𝑖) = ∫𝑏

𝑗

𝑖

𝑎
𝑗
𝑖

𝑓𝑖 (𝑥𝑖) d𝑥𝑖 (6)
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Figure 4: Evidence structure characterization of uncertain variables: (a) interval truncation and discretization of random variables and (b)
discretization of fuzzy variables.

It is obvious that, according to the geometric meaning
of (6), the BPA of focal element is equal to the area of
PDF curve in the corresponding subinterval. So, based
on adaptive Lobatto algorithm [41], the quadl function is
applied to compute the BPA for focal elements in MATLAB.
Theoretically, when 𝑘 → +∞, there are𝑃𝑙(𝐴)−𝐵𝑒𝑙(𝐴) → 0.
Actually, the true reliability P(A) will be bracketed by the
approximation theorem (see inequation (4)). However, the
computational cost will increase drastically if 𝑘 is too big,
especially for multidimensional problems. This is because if
the number of discrete subintervals (or focal elements)𝑥𝑖 in𝑋
is denoted as 𝑘𝑥𝑖 , consequently the number of focal elements
is ∏𝑛

𝑖=1𝑘𝑥𝑖 . To alleviate the computational cost, k is usually
selected as 4, 8, 16, 32, etc.

It is noteworthy that in order to ensure the sum of all BPA
is equal to 1, the normalization should be performed. Thus,
the proportional compensation method is used tomodify the
BPA in this paper; namely,

𝑚∗ (𝐴𝑗
𝑖) = 𝑚(𝐴𝑗

𝑖) + 𝑚(𝐴𝑗
𝑖) [1 − ∑𝑘

𝑗=1𝑚(𝐴𝑗
𝑖)]

∑𝑘
𝑗=1𝑚(𝐴𝑗

𝑖)

= 𝑚(𝐴𝑗
𝑖)

∑𝑘
𝑗=1𝑚(𝐴𝑗

𝑖)
(7)

3.2. Equivalent Randomization of Fuzzy Variables. The pur-
pose of equivalent randomization for fuzzy variables is as
follows: once the equivalent random variables are obtained,
the discretization method can be also employed to cope with
continuous fuzzy variables so that the evidence structure
characterization of fuzzy variables is realized. It is well
known, however, that the PDF used to describe random
variables must satisfy the requirements of “regularity” and
“normalization”. Thus, the main idea behind this equivalent
randomization of fuzzy variables is to find the relationship
between MF and PDF.

At present, the transformation method between the
fuzzy variables and random variables is mainly based on
the entropy equivalent method (EEM). The core of the
transformation is that by making the fuzzy entropy [42] of
the fuzzy variable equal to the probability entropy [43] of
the random variable, then the fuzzy variables are converted

into the desired distribution type. However, there are three
major drawbacks of this approach, and the main reasons are
listed as follows. (1) From the principle of EEM it can be
seen that the distribution type of equivalent random variable
(or the distribution type of the PDF) should be given during
the transform. Thus, the distribution type of equivalent
random variables is not unique and affects the correctness of
the results. (2) The EEM is an approximate transformation
method, so the calculation accuracy is not high. (3)The fuzzy
entropy and probability entropy are just a scalar, which only
quantify the magnitude of the overall uncertainty for their
own information. However, the MF and the PDF express the
mapping relationship between the independent variable and
the corresponding function, respectively. If the fuzzy vari-
ables are transformed into the equivalent random variables
by EEM, the original distribution information of the fuzzy
variable is lost. In this work, a generalized density method
(GDM) is developed in order to reflect the distribution
information of the original fuzzy variable more reasonably
and accurately.Thismethod canmake the equivalent random
variables maintain the same distribution type as the original
fuzzy variables.

Assuming that 𝜇(𝑦) is membership function of contin-
uous fuzzy variable y, it is clear that the value domain of𝜇(𝑦) has been defined in [0, 1], which has regularity but not
necessarily normalization. Then, 𝜇(𝑦) should be normalized
to obtain the equivalent random variable with the property
of PDF. The normalization principle is the integral of MF in
interval (−∞,+∞) equal to 1. In this study, (8) is adopted
to transform the MF into PDF. The normalization principle
is a simple processing method, because (8) is divided by a
positive constant on the basis of the original MF. Obviously,
the denominator of (8) is the integral of MF over the whole
range, and the integral value is equal to the area of the
geometric shape surrounded by MF and x-axis.

𝜇∗ (𝑦) = 𝜇 (𝑦)
∫+∞
−∞

𝜇 (𝑦) d𝑦 (8)

It should be noted that the essence of (8) is to standardize
themembership functions. It not only reflects the distribution
information of the original membership functions, but also
satisfies the regularity and normalization required. Because
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the transformation from fuzzy variable to equivalent ran-
dom variable is the equivalent mathematic transition, the
probability distribution of the fuzzy variable has not been
changed. In other words, the function 𝜇∗(𝑦) corresponds
to the density of the original MF at a certain value and
still contains the fuzzy degree of the original fuzzy variable
value, as shown in Figure 4(b). In this work, (8) is defined as
the generalized density function (GDF), its maximum value
𝜇∗max = 1/ ∫+∞

−∞
𝜇(𝑦)d𝑦, and the denominator ∫+∞

−∞
𝜇(𝑦)d𝑦 is

called normalization factor.
It is obvious that the GDM can realize the same type

transformation between the MFs and the PDFs, and it can be
considered that the probability density function is a special
case of membership function. It can be seen that in the
process of the conversion from fuzzy variable into equivalent
random variable the GDM does not need to consider the
distribution form of fuzzy variables. Also, it does not need
any additional special treatment on the distribution of fuzzy
variables, so it is more accurate and reasonable in principle.

It is worth noting that (6) is used to calculate the
BPA of random variables, but it is not limited to only
the random variables of the normal distribution. Therefore,
once the generalized density function 𝜇∗(𝑦) is obtained, the
processing method for the PDF of random variable can be
applied for continuous fuzzy variable (or MF). Consequently,
the evidence structure (or BAP structure) characterization
of the fuzzy variables is realized. The evidence structure of
triangular fuzzy variables is shown in Figure 4(b). Certainly,
any other PDFs or evenMFs can be assigned to BAP structure
using the same method. Overall, the BPA structure in ET
can be employed to model both aleatory and epistemic
uncertainties due to its flexible framework. That is to say,
different types of uncertainty information (random, fuzzy,
and interval variables) can be incorporated in one framework
to quantify uncertainty in this study.

3.3. Analysis Method of Hybrid Reliability Model. Consid-
ering that random variables, fuzzy variables, and interval
variables are contained in the uncertain structures simulta-
neously, the performance function can be expressed as

𝐺 = 𝑔 (𝑋,𝑌,𝑍) (9)

where𝑋 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛]T represents the n-dimension-
al random variable vector and is described by the probability
model. 𝑌 = [𝑦1, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑝]T represents the p-dimensional
fuzzy variable vector and is described by the fuzzymodel.𝑍 =
[𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑙]T represents the l-dimensional interval variable
vector and is described by the interval model.

The computational strategy for (9) can be expressed
as follows: the fuzzy variable 𝑌 is firstly transformed into
equivalent random variable �̃� = [𝑦𝑛+1, 𝑦𝑛+2, ⋅ ⋅ ⋅ , 𝑦𝑛+𝑝]T
through GDM. Under this situation, the performance func-
tion (see (9)) can be rewritten as (10); there are only
random and interval variables in (10). Subsequently, both the
random variables and the equivalent random variables (fuzzy
variables) are uniformly discretized into finite subintervals
(or focal elements); hence the hybrid reliability problem is
turned into a nonprobabilistic reliability problem with only
interval variables. Then, both types of uncertain variables are
transformed into uncertain-but-bounded interval variables
(or evidence variables), so the BPA of each subinterval is
solved and all focal element are assigned BPA. At last, the
evidence structure characterization of the random variables
and fuzzy variables is realized.

𝐺 = 𝑔 (�̃�,𝑍)
�̃� = (𝑋, �̃�) = [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛, 𝑦𝑛+1, ⋅ ⋅ ⋅ , 𝑦𝑛+𝑝]T

(10)

If the number of subintervals by each random variable𝑥𝑖 in 𝑋 is denoted as 𝑁𝑥𝑖
(𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛), interval [𝑎𝑥𝑖 , 𝑏𝑥𝑖]

is arbitrary subinterval, the corresponding focal element is
denoted as𝐴𝑥𝑖

, and theBPA is assigned as𝑚1 (𝐴𝑥𝑖
).Thenum-

ber of subintervals by each equivalent random variable 𝑦𝑛+𝑗
in �̃� is denoted as𝑁𝑦𝑛+𝑗

(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑝), interval [𝑎𝑦𝑛+𝑗 , 𝑏𝑦𝑛+𝑗 ]
is arbitrary subinterval, the corresponding focal element is
denoted as 𝐵𝑦𝑛+𝑗 , and the BPA is assigned as 𝑚2(𝐵𝑦𝑛+𝑗). The
number of subintervals by each interval variable 𝑧𝑘 in 𝑍 is
denoted as𝑁𝑧𝑘

(𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑙), interval [𝑎𝑧𝑘 , 𝑏𝑧𝑘] is arbitrary
subinterval, the corresponding focal element is denoted as𝐶𝑧𝑘 , and the BPA is assigned as 𝑚3(𝐶𝑧𝑘). So, the number of
focal elements is finally obtained:

𝑁 = 𝑛∏
𝑖=1

𝑁𝑥𝑖
∙ 𝑝∏
𝑗=1

𝑁𝑦𝑛+𝑗
∙ 𝑙∏
𝑘=1

𝑁𝑧𝑘 (11)

Meanwhile, the q-th (𝑞 ⩽ 𝑁) focal element can be
obtained which is a joint interval composed of𝑋 : {[𝑎𝑥𝑖 , 𝑏𝑥𝑖]},
�̃� : {[𝑎𝑦𝑛+𝑗 , 𝑏𝑦𝑛+𝑗 ]} and 𝑍 : {[𝑎𝑧𝑘 , 𝑏𝑧𝑘]}. Similar to the joint
probability density function in probability theory, the joint
BPA can be used to handle the case that the FD contains
multiple evidence variables in evidence theory. If the evidence
variables are mutually independent, then when the evidence
combination is carried out by utilizing (5), K=0. So, the
joint basic probability assignment 𝑚

𝑋,�̃�,𝑍(𝑞) of the q-th focal
element is calculated by

𝑚
𝑋,�̃�,𝑍 (𝑞) =

{{{{{{{{{

𝑛∏
𝑖=1

𝑚1 (𝐴𝑥𝑖
) ∙ 𝑝∏

𝑗=1

𝑚2 (𝐵𝑦𝑛+𝑗) ∙
𝑙∏

𝑘=1

𝑚3 (𝐶𝑧𝑘) when 𝐴𝑥𝑖
∈ 2𝑥𝑖 , 𝐵𝑦𝑛+𝑗 ∈ 2𝑦𝑛+𝑗 , 𝐶𝑧𝑘 ∈ 2𝑧𝑘

0 otherwise

(12)
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Figure 5: Frame of discernment of two-dimensional variables and its joint BPA: (a) frame of discernment of two-dimensional variables and
(b) joint BPA of two-dimensional variables.
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Figure 6: The relative position relation between the focal elements and limit-state equation: (a) the focal element belongs to the reliability
region, (b) the focal element belongs to the intersecting region, and (c) the focal element belongs to the failure region.

where 2𝑥𝑖 , 2𝑦𝑛+𝑗 , and 2𝑧𝑘 are the power sets of 𝑥𝑖, 𝑦𝑛+𝑗, and𝑧𝑘, respectively. After transforming a fuzzy variable into an
equivalent randomvariable, the reliability region of uncertain
structures can be defined by an equation containing only
random and interval variables; namely,

𝐺 = {𝑔 : 𝑔 (�̃�,𝑍) ≥ 0} (13)

As Figure 5(a) shows,𝑢𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 16) represents the i-
th focal element of theCartesian product𝑥1×𝑧1.The variables𝑥1 and 𝑧1 are uniformly discretized into 4 subintervals; hence
there are 16 (4×4=16) focal elements in the FD. 𝑚(𝑢12) is
the product of the basic probability distributions 𝑚(𝑥14) and𝑚(𝑧13) constituting the corresponding subintervals 𝑥14 and𝑧13. In the Cartesian product 𝑥1 × 𝑧1, there is no overlap
between the focal elements, which means that the focal
elements constructed by independent variables 𝑥1 and 𝑧1
are mutually exclusive. Typically, the two-dimensional focal
elements are geometrically rectangular, while the height of
the rectangle reflects the magnitude of joint BPA, and the
sum of all joint BPA is 1, as shown in Figure 5(b). Obviously,
for an n-dimensional problem the focal elements are some
multidimensional boxes in the FD.

3.4. Belonging Judgement and Classification Algorithm for
Focal Elements. According to the relative position relation
between the focal elements and the limit-state equation

𝑔(�̃�,𝑍) = 0, the focal elements can be divided into three
categories: the focal element belonging to the reliability
region, intersecting region, and failure region, as shown
in Figure 6. Then, Bel(R) is the sum of the joint BPA
entirely within the reliability region according to formula
(2). Similarly, Pl(R) is the sum of the joint BPA entirely or
partiallywithin the reliability region according to formula (3).
As shown in Figure 5(a), Bel(R) and Pl(R) are represented in
(14) and (15), respectively.

𝐵𝑒𝑙 (𝑅) = 𝑚 (𝑢8) + 𝑚 (𝑢11) + 𝑚 (𝑢12) + 𝑚 (𝑢15)
+ 𝑚 (𝑢16) (14)

𝑃𝑙 (𝑅) = [𝑚 (𝑢8) + 𝑚 (𝑢11) + 𝑚 (𝑢12) + 𝑚 (𝑢15)
+ 𝑚 (𝑢16)] + [𝑚 (𝑢3) + 𝑚 (𝑢4) + 𝑚 (𝑢6) + 𝑚 (𝑢7)
+ 𝑚 (𝑢10) + 𝑚 (𝑢14)]

(15)

In order to judge the belonging of focal elements and
classify them, the relative location relation between the focal
elements and the limit-state equation would be determined.
That is to say, the minimum and maximum values of perfor-
mance function over each focal element need to be calculated,
as shown in (16). For a focal element, if 𝑔min ≥ 0 it means
that the focal element belongs to the reliability region (shown
in Figure 6(a)), and hence the focal element will contribute
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to the calculation of both Bel(R) and Pl(R); if 𝑔min < 0 and𝑔max ≥ 0 it means that the focal element belongs to the
intersecting region (shown in Figure 6(b)), and hence the
focal element will only contribute to Pl(R); if 𝑔max < 0 it
means that the focal element belongs to the failure region
(shown in Figure 6(c)), and hence the focal element will
contribute to neither Bel(R) nor Pl(R).

[𝑔min, 𝑔max] = [min
�̃�,𝑍∈𝐴

𝑔 (�̃�,𝑍) , max
�̃�,𝑍∈𝐴

𝑔 (�̃�,𝑍)] (16)

where min
�̃�,𝑍∈𝐴𝑔(�̃�,𝑍) and max

�̃�,𝑍∈𝐴𝑔(�̃�,𝑍) represent
the minimum andmaximum values of performance function
over each focal element, respectively.

The methods used to solve the minimum and maximum
values of performance function include sampling method,
vertex method [44], and numerical optimization method.
Among all these methods, the sampling method (such as
MCS) can deal with any kind of function type without

considering the dimensions. But its computational cost is
very huge, and the calculation accuracy strongly depends
on the number of sampling points. The vertex method may
be applied to reduce the computational cost by calculating
only vertices of each focal element to find the minimum and
maximum values. However, this method works under the
assumption that the performance function is monotonic.

In this paper, computing the minimum and maximum
values of performance function over each focal element
is firstly expressed as a constrained optimization problem,
which can be solved using Fmincon function based on
the sequential quadratic programming (SQP) algorithm in
MATLAB [45], and then the minimum and maximum
values of performance function over each focal element can
be gotten directly and easily. The Fmincon function is an
efficient method for solving nonlinear constrained extremum
optimization problems using the optimization toolbox in
MATLAB. The optimization model and commonly used call
formats are listed as follows:

minimize 𝑔 (�̃�,𝑍) ,
minimize − 𝑔 (�̃�,𝑍)
subject to: 𝑎𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑥𝑖 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛

𝑎𝑦𝑛+𝑗 ≤ 𝑦𝑛+𝑗 ≤ 𝑏𝑦𝑛+𝑗 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑝
𝑎𝑧𝑘 ≤ 𝑧𝑘 ≤ 𝑏𝑧𝑘 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑙

[𝑥, fval] = fmincon (𝑓𝑢𝑛, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏, 𝑛𝑜𝑛𝑙𝑐𝑜𝑛)

(17)

where the constraint conditions are linear constraints
in each interval, and the Fval is the minimum value of
performance function, and 𝑥0 is the initial point (or initial
vector) for a given search; here it is set as the midpoint
of each interval. More details about the Fmincon function
can be referred to in [46]. It is worth noting that the
optimization value obtained by the Fmincon function is
minimum value; the method to compute the maximum of
performance function is as follows: the performance function
is firstly reversed, and then the minimum value of the Fval
is inverted to obtain the maximum value of performance
function.

In addition, since the Fmincon function is used to
optimize solution equation (16) in MATLAB, it is easier
to judge the belonging of focal elements and classify them
(Figure 6) by the production rules. The production rules
conform to the human way of thinking, generally expressed
as the form of If 𝑃Then𝑄 and simplified as 𝑃 → 𝑄. Namely,
if 𝑃 is established, then 𝑄 is established. Thus, the belonging
judgement for focal elements (Figure 6) can be simplified into
two categories: 𝑔min ≥ 0 and 𝑔max ≥ 0; the detailed flowchart
is shown in Figure 3. The core of this classification algorithm
is illustrated in the pseudocode, which is given by

for 𝑞 = 1 : 𝑁

if 𝑔min ≥ 0 then
𝐼𝐵𝑒𝑙 = 𝑚

𝑋,�̃�,𝑍(𝑞)
𝐵𝑒𝑙(𝑅) = 𝐵𝑒𝑙(𝑅) + 𝐼𝐵𝑒𝑙

end

if 𝑔max ≥ 0 then
𝐼𝑃𝑙 = 𝑚

𝑋,�̃�,𝑍(𝑞)
𝑃𝑙(𝑅) = 𝑃𝑙(𝑅) + 𝐼𝑃𝑙

end

end

To sum up, the numerical calculation of the Bel(R) and
Pl(R) in the hybrid reliability model is shown in (18). That is,
Bel(R) is the sum of the joint BPA of performance function
in the combined intervals (or focal elements) when the
minimum value is greater than or equal to 0. Pl(R) is the sum
of the joint BPA of performance function in the combined
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Table 1: Distribution parameters and types of uncertain variables.

Variable Parameter 1 Parameter 2 Distribution
a (mm) 100 0.01 Normal
b (mm) 400 0.01

e (mm)
[100, 120] 0.2

Interval[120, 140] 0.4
[140, 150] 0.4

𝜇𝑓
[0.15, 0.18] 0.3

Interval[0.18, 0.23] 0.3
[0.23, 0.25] 0.4
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Figure 7: A crank-slider mechanism.

intervals (or focal elements) when the maximum value is
greater than or equal to 0.

𝐵𝑒𝑙 (𝑅) = ∑
𝑔min≥0

𝑚
𝑋,�̃�,𝑍 (𝑞)

𝑃𝑙 (𝑅) = ∑
𝑔max≥0

𝑚
𝑋,�̃�,𝑍 (𝑞)

(18)

4. Example

A crank-slider mechanism as shown in Figure 7 is inves-
tigated, which is modified from [15]. The external force 𝐹
is 280KN; the inner diameter 𝑑1 and outer diameter 𝑑2 of
the coupler are 28mm and 56mm, respectively. The yield
strength of the coupler 𝑠 is a triangular fuzzy variable, and its
membership function𝜇(𝑠) is expressed as formula (19). In this
example, random variables include the length of the crank𝑎 and the length of the coupler 𝑏. Furthermore, the precise
distributions of the coefficient 𝜇𝑓 of friction between the
slider and the groundNN and the offset 𝑒 are unavailable, but
the intervals andBPAof𝜇𝑓 and 𝑒 can be available based on the
expert opinions and limited historical data. The distributions
of uncertain variables are listed in Table 1.

𝜇 (𝑠) =
{{{{{{{{{{{{{{{{{

0 s ≤ 180
s − 180
40 180 ≤ s < 220

300 − s
80 220 ≤ s < 300

0 s ≥ 300

(19)

In Table 1, parameters 1 and 2 represent the mean value
and standard deviation for the randomvariables, respectively.
Parameters 1 and 2 represent the focal elements and the cor-
responding BPA for the interval variables, respectively. The

performance function is defined as the difference between the
material strength and the maximum stress of the coupler:

𝐺 = 𝑠 − 4𝐹 (𝑏 − 𝑎)
𝜋 (√(𝑏 − 𝑎)2 − 𝑒2 − 𝜇𝑓𝑒) (𝑑22 − 𝑑21) (20)

4.1. Computation of 𝐵𝑒𝑙(𝑅) and 𝑃𝑙(𝑅). In this study, in order
to demonstrate the feasibility and accuracy of the proposed
approach, the EEM and the GDM are used to convert
the fuzzy variable into the equivalent random variable,
respectively. On the one hand, it is considered that the
normal distribution is the most common distribution type
in reliability analysis, and other distribution types can be
transformed into normal distribution by means of EEM.
Thus, the fuzzy variable is transformed into an equivalent
random variable with normal distribution in this article. The
equivalent standard deviation𝜎𝑠 = 23.937, and the equivalent
mean value 𝜇𝑠 = 233.333MPa. On the other hand, since the
area surrounded by MF and x-axis is 60, thus the generalized
density function 𝜇∗(𝑠) = 𝜇(𝑠)/60, and its maximum value𝜇∗max = 1/60. The membership function of fuzzy variable and
its equivalent random variable are plotted in Figure 8.

In this article, in order to avoid the systematic errors
caused by human factors, the orthogonal experimental design
(OED) is utilized to arrange and analyze the number of
discrete subintervals scientifically. OED method is a discrete
optimization method which can effectively solve the mul-
tifactors (or variables) problems, which is characterized by
the balancing property. Namely, for every pair of columns,
all combinations of factor levels occur once. Because a, b,
and 𝑠 need to be discretized into subintervals, the 𝐿9(34)
orthogonal table is used to arrange the number of subinter-
vals. Bel(R) and Pl(R) are response index (RI), and level 1,
level 2, and level 3 represent the number of subintervals 4, 8,
and 16, respectively. Results of this orthogonal experimental
design are provided in Table 2, where each column represents
a factor (variable) and each row represents a combination of
factor levels.

It is worth mentioning that the equivalent random vari-
able 𝑠 cannot be truncated directly according to the six-
sigma rule. This is because the identification interval [𝜇 −6𝜎, 𝜇 + 6𝜎] = [89.711, 376.955] according to the six-sigma
rule, but the true fuzzy interval is [180, 300]. Obviously, there
is no actual physical meaning in the part that is beyond
the fuzzy interval, so the probability distribution of the two
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Figure 8: Membership function and its equivalent random variable.

Table 2: Design layout and experimental results.

Test number Variable Response index [Bel(R), Pl(R)]
a (mm) b (mm) s (MPa) EEM GDM

1 1 (4) 1 (4) 1 (4) [0.854956, 0.999999] [0.823750, 0.999999]
2 2 (8) 2 (8) 2 (8) [0.884060, 0.993222] [0.860313, 0.992500]
3 3 (16) 3 (16) 3 (16) [0.922736, 0.991415] [0.907891, 0.991094]
4 1 2 3 [0.922736, 0.991415] [0.907891, 0.991094]
5 2 3 1 [0.854956, 1.000000] [0.823750, 1.000000]
6 3 1 2 [0.884060, 0.993222] [0.860312, 0.992500]
7 1 3 2 [0.884060, 0.993222] [0.860313, 0.992500]
8 2 1 3 [0.922736, 0.991415] [0.907891, 0.991094]
9 3 2 1 [0.854956, 0.999999] [0.823750, 0.999999]

Table 3: Reliability estimates and their comparison.

Method Subintervals
k=4 k=8 k=16 k=32

EEM 0.927478 0.938641 0.957076 0.965036
GDM 0.911875 0.926407 0.949493 0.960273
MCS 0.986897 0.986897 0.986897 0.986897

ends of the random variable 𝑠 needs to be truncated, as
shown in Figure 8(b). In addition, it is also necessary to
assign the truncated distribution of two ends to the original
focal elements sequence after discrete subintervals in the
fuzzy interval (shown in equation (7)), to avoid excessive
truncation error.

Because the random variables and equivalent random
variables are both discretized into subintervals according
to six-sigma rule, the uncertain variables can eventually be
treated as “interval variables”. Therefore, when the Fmincon
function is used to optimize the minimum and maximum
values of performance function over each focal element,
the constraints of each interval variable are “latitude and
longitude” format matrix (see Figure 5(a)). Also, the cor-
responding optimization results form the grid data point
distribution, as shown in Figure 9.

The reliability can be approximated as P(R)=0.5[𝐵𝑒𝑙(𝑅) +𝑃𝑙(𝑅)] according to the principle of approximation theorem

(see inequation (4)). Therefore, the reliability estimates at
k= 4, 8, and 16 are obtained (shown in Table 3) through
the results of the orthogonal experimental design (Table 2),
and the number of samples in the MCS is 1,000,000 (shown
in Figure 10). When k⩽16, the reliability value of EEM and
GDM is conservative compared with MCSmethod, while the
reliability value of EEM is safer compared with GDM.

The reasons are as follows: (1) the six-sigma rule is applied
to truncate the continuous equivalent random variables,
which leads to the fact that part of the uncertain information
represented by the original membership function is lost. (2)
EEM tries to transform the membership function with a
normal distribution function and does not take into account
its distribution form, which results in a more obvious focus
effect of the focal element sequence (namely, the BPAmainly
distributed around the mean value); thus the reliability value
of EEM is greater than that of GDM, which leads to the fact
that the structures will tend to safety. (3) GDM completely
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(b) The maximum distribution of PF at 𝑘=4
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(c) The minimum distribution of PF at 𝑘=8
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(e) The minimum distribution of PF at 𝑘=16
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Figure 9: The scatter plots of optimization results distribution.
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Figure 10: Scatter plot of MCS result.

maintains the distribution information of the original mem-
bership function; namely, the equivalent random variable
maintains the one-to-one mapping relationship between
the original MF and the independent variable (shown in
Figure 8).This is due to the fact that, in GDM, this focus effect
of the focal element sequence is improved to some extent,
which leads to the fact that the structures will tend to be
conservative. From above reasons analysis indicates that the
GDM is superior to EEM in the process of transformation
for membership function, although the reliability value of
EEM may be larger than the GDM. Therefore, this GDM is
reasonable for reliability analysis of engineering structure,
and the feasibility of developing a generalized densitymethod
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Figure 11: The curves of relative error with the number of subinter-
vals.

to transform the fuzzy variables into equivalent random
variables is demonstrated in this paper.

Figure 11 shows the relative error between the three
methods with the number of subintervals. As can be seen
through a comparison of these curves, the relative error
will decrease with the increase of the number of discrete
subintervals. That is to say, in order to obtain a more accurate
estimate of reliability, the number of discrete subintervals 𝑘
must be increased. For instance, the relative error between
GDMandMCS is equal to 7.60% at k=4, while it is only 2.70%

which occurs at k=32. Moreover, the results of the proposed
method (GDM) are very close to those of the conventional
method (EEM), which indicates a fine accuracy of the GDM.
For instance, the largest relative error between GDM and
EEM is 1.68% in the 4-subinterval case, while it is only 0.49%
in the 4-subinterval case. This indicates that the proposed
method has the same accuracy as the conventional method. It
is apparent that the more the number of discrete subintervals
is, the higher the computational accuracy is. But if 𝑘 is too
big, it will undoubtedly cause a huge amount of calculation.

4.2.The Effects Analysis of the Number of Discrete Subintervals
on Reliability. For the OED method, the range analysis was
performed after the collection of experimental data. The
range analysis is used to analyze the effects of each factor level
(the number of discrete subintervals) on the RI. The larger
the range is, the greater the effect of level change on the RI is,
and vice versa. According to Table 2, the range analysis results
are summarized in Table 4 and the calculation processes (or
principles) are described as follows.

In Table 4, there are six orthogonal indices in this range
analysis: 𝐾𝑙

1, 𝐾𝑙
2, 𝐾𝑙

3, 𝑆𝑙1, 𝑆𝑙2, and 𝑆𝑙3, and 𝑙 stands for 𝑎, 𝑏, and
𝑠. 𝐾𝑙

𝑖 (𝑖 stands for levels 1-3) is defined as the mean value of
the response index for EEM at same level of each variable.
𝑆𝑙𝑖 (i stands for levels 1-3) is defined as the mean value of
the response index for GDM at same level of each variable.
They can be described as formulas (21) and (22), and t is the
number of times at the same level of each column (variable).
In this case, t is equal to 3.

𝐾𝑙
𝑖 = ∑ V𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑎𝑡 𝑠𝑎𝑚𝑒 𝑙𝑒V𝑒𝑙 𝑜𝑓 𝑒𝑎𝑐ℎ V𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑡 (21)

𝑆𝑙𝑖 = ∑ V𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑎𝑡 𝑠𝑎𝑚𝑒 𝑙𝑒V𝑒𝑙 𝑜𝑓 𝑒𝑎𝑐ℎ V𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝑡 (22)

The ranges 𝑅𝐸𝑙 and 𝑅𝐺𝑙 are the main indexes that can be
analyzed by orthogonal experiment.𝑅𝐸𝑙 is defined as the range
between the maximum 𝐾𝑙

𝑖 value and the minimum 𝐾𝑙
𝑖 value

in the column of the corresponding variable. 𝑅𝐺𝑙 is defined as
the range between the maximum 𝑆𝑙𝑖 value and the minimum
𝑆𝑙𝑖 value in the column of the corresponding variable. They
can be expressed as formulas (23) and (24) while 𝐸 and 𝐺
represent the EEM and GDM, respectively.

𝑅𝐸𝑙 = max {𝐾𝑙
𝑖} −min {𝐾𝑙

𝑖} (23)

𝑅𝐺𝑙 = max {𝑆𝑙𝑖} −min {𝑆𝑙𝑖} (24)

From the range analysis in Table 4, there is a significant
order between the a, b, and 𝑠. Namely, whether EEM or GDM
is used to convert the fuzzy variable to the equivalent random
variable, the order is always s> a=b; this means that 𝑠 has the
greatest effect on the Bel(R) and Pl(R), followed by 𝑎 and 𝑏.
It is shown that the number change of discrete subintervals

of 𝑠 has the greatest effect on the reliability of crank-slider
mechanism.

In order to visually illustrate the changing trend (or effect
direction) of the RI with the number of discrete subintervals,
a response index trend diagram is plotted in Figure 12 through
the results of the orthogonal experimental design (Table 2).
We can see from Figure 12 that, either adopting the EEM or
the GDM, the change in the number of subintervals of 𝑎 and𝑏 has very little effect on the Bel(R) and Pl(R) (these curves
tend to be horizontal), which remains almost unchanged as
the number of discrete subintervals increases. However, the
change in the number of subintervals of 𝑠 has a great effect
on the Bel(R) (these curves are strictly monotone increasing),
but it has little effect on the Pl(R). Meanwhile, the gap
between Bel(R) and Pl(R) tends to decrease with the increases
as the number of discrete subintervals increases.Therefore, in
the case of a certain number of discrete subintervals of 𝑎 and
b, we can reduce the computational cost by only increasing
the number of discrete subintervals of s.
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Table 4: Range analysis of orthogonal experimental design.

Orthogonal indices Variable
a (mm) b (mm) s (MPa)

𝐾𝑙
1 [0.887251, 0.994878] [0.887251, 0.994878] [0.854956, 0.999999]

𝐾𝑙
2 [0.887251, 0.994879] [0.887251, 0.994878] [0.884060, 0.993222]

𝐾𝑙
3 [0.887251, 0.994878] [0.887251, 0.994879] [0.922736, 0.991415]

𝑆𝑙1 [0.863985, 0.994531] [0.863984, 0.994531] [0.823750, 0.999999]
𝑆𝑙2 [0.863985, 0.994531] [0.863985, 0.994531] [0.860313, 0.992500]
𝑆𝑙3 [0.863984, 0.994531] [0.863985, 0.994531] [0.907891, 0.991094]
Range 𝑅𝐸𝑙 [0.000000, 3.33E-07] [0.000000, 3.33E-07] [0.067780, 0.008584]
Range 𝑅𝐺𝑙 [3.33E-07, 3.33E-07] [3.33E-07, 3.33E-07] [0.084141, 0.008905]
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Figure 12: A comparison of response index trends between GDM and EEM.
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Figure 13: Reliability analysis results.

4.3. The Effects Analysis of Uncertain Variables on Reliability.
Taking the results of first, second, and third rows in Table 2,
then the cumulative belief function (CBF) and cumulative
plausibility function (CPF) graphs are plotted, respectively.
Figure 13 shows the CBF and CPF curves under cases with
different subintervals of a, b, and 𝑠. It can be observed
that the CBF and CPF results are all staircase curves which
resulted from the discrete property of BPA in evidence theory.
Most importantly, the values of both Bel(R) and Pl(R) of the
proposed method (GDM) correspond well to those of the
conventional method (EEM). Once again, it is illustrated that

the GDM can achieve the accuracy of EEM on reliability
analysis using evidence theory.

Besides, these CBF and CPF can, respectively, represent
the lower bounds Bel(R) and the upper bounds Pl(R) of the
reliability under different values of performance function
G, so the true probability distribution is between the CBF
and CPF; it is obtained using the MCS method as shown
in Figure 14. In other words, the CBF and CPF contain
all the possibilities of the probability distribution for the
performance function 𝐺. Furthermore, when comparing the
results under 4-subinterval, 8-subinterval, and 16-subinterval
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Figure 14: Cumulative distribution results.

cases, it can be observed that with the increase of the
subintervals for each uncertain variable the gap between CBF
and CPF is gradually decreased. The smaller gap between
the CBF and CPF means the reduced epistemic uncertainty
associated with the performance functionG, that is to say, the
increasing information will lead to a lower level of epistemic
uncertainty for the crank-slider mechanism. Therefore, if
more information about epistemic uncertainty can be avail-
able and the number of subintervals approaches infinity, the
CBF and CPF will become the probability distribution; then
only aleatory uncertainty remains.

Obviously, the hybrid reliability model proposed in this
paper is not only limited to the reliability analysis of crank-
slider mechanism. It can be applied to all hybrid reliability
analyses of uncertain structure, only if three types of uncer-
tain variables (random, fuzzy, and interval variables) coexist
in the engineering structure reliability analysis. Certainly, the
model can also be used when there are only one or two types
of variables out of the above-mentioned three variables in the
reliability analysis of uncertain structures.

5. Conclusions

This article aims at developing a new hybrid reliability model
and its solving method for uncertain structures based on evi-
dence theory. This model turns the hybrid reliability problem
into a nonprobabilistic reliability problem with only interval
variables, which can accurately solve uncertain problemswith
random, fuzzy, and interval variables at the same time. In our
proposed method, the evidence structure characterization
of uncertain variables and the numerical calculation of
belief measure and plausibility measure are realized, and
the feasibility of developing a generalized density method
to transform the fuzzy variables into equivalent random
variables is demonstrated. The hybrid reliability analysis of
crank-slider mechanism was performed, and the effects of
the number of discrete subintervals and uncertain variables
on the reliability are analyzed. The results demonstrated that
the proposed method (GDM) can achieve the calculation
accuracy of the conventional method (EEM) on reliability

analysis using evidence theory, while ensuring the high
accuracy of obtained results compared with theMCSmethod
if the number of subintervals is large enough.
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