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Characterizing heterogeneous elastic property distribution of soft tissues is of great importance in disease detection. In this paper,
we investigate an inverse approach to map the heterogeneous material property distribution of soft solids using harmonic motion
data. To examine the feasibility of this approach, a number of numerical examples are presented.We observe that the shearmodulus
distribution is recovered well using harmonic motion measurements. Compared to the static inverse approach, the proposed
dynamic inversemethod improves the quality of the recovered shearmodulus distribution significantly.We also study the influence
of the uncertainty in the driving frequency on the reconstruction results and observe that the influence is not very significant in
recovering the shape of the inclusion. The proposed inverse algorithm has potential to be a promising tool to diagnose diseases in
clinical medicine.

1. Introduction

Mechanical signal or response has a long history of being used
for health assessment and disease detection. For instance,
more than 2000 years ago, Chinese developed a pulse
diagnosis where physicians assessed patients’ health con-
ditions based on their wrist-pulse [1, 2] since alteration
of the frequency, amplitude, etc. of the wrist-pulse was
highly correlated to the pathologic changes. With the fast
development of mechanical techniques, a large number of
mechanical basedmedical devices including ultrasonography
have been invented andwidely used in healthcare institutions.
In particular, the development of imaging modalities [3, 4]
provides us with the availability to measure the deformation
and motion of tissues and organs inside our body. With
the full-field measured data of the region of interest, we are
capable of mapping the heterogeneous mechanical property
distribution of soft tissues. Since many diseases such as
cancerous diseases [5, 6] and cardiovascular diseases [7, 8]
induce the alteration of mechanical properties of associated

tissues, mapping heterogeneous mechanical behavior might
be useful for the disease detection.

With the accurate imaging data, identifying nonhomo-
geneous material property distribution requires solving an
inverse problem. Due to its ill-posed nature, it is very difficult
to solve the inverse problem. There are many methods to
solve the inverse problem such as direct approaches [9–12]
and statistical approaches [13]. A prevalent approach is to
regularize the problem and pose the inverse problem to be
a constrained minimization problem [11, 14–16]. To improve
the computational efficiency of solving the inverse problem
using an iterative inverse algorithm, the adjoint method has
been proposed.This approach has beenwidely applied tomap
both linear [17, 18] and nonlinear [19, 20] elastic property
distributions of soft tissues utilizing measured displacement
fields in the quasi-static case.

In this paper, we will generalize the regularized inverse
approach into dynamic cases.We assume the tissue or biolog-
ical organ is subjected to harmonic motion, solve the inverse
problem in the frequency domain, and map the linear elastic
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property distribution using harmonic motion data. This
paper is organized as follows: In Methods, we will discuss
the mathematical details of the proposed approach and a
number of numerical examples will be presented in Results.
We will discuss the proposed method and associated results
in Discussion and paper closure will be in Conclusions.

2. Methods

The wave equation for harmonic motion in the frequency
domain is written as

∇𝜎 + 𝜌𝜔2u = 0 on Ω
u = u∘ on Γ𝑢
𝜎 ⋅ n = t∘ on Γ𝑡,

(1)

where u and 𝜎 denote the displacement vector and stress
tensor, respectively. 𝜌 and 𝜔 represent the mass density and
angular frequency, respectively. In addition, the vectors u∘
and t∘ are the boundary conditions at Γ𝑢∪Γ𝑡. In this paper, the
solid is assumed to be an incompressible, linear elastic and in
the state of plane stress; thus the stress-strain relation is

𝜎𝑖𝑗 = 2𝜇𝜀𝑖𝑗 + 2𝜇𝜀𝑘𝑘𝛿𝑖𝑗, (2)

where 𝜇 is shear modulus and 𝜀𝑖𝑗 is the strain. For a known
shear modulus distribution, the displacement field can be
acquired by solving a forward problem using the finite
element method (FEM), leading to the following discretized
equations:

K (𝜇) u +Mu = f , (3)

where K and M are the stiffness matrix and mass matrix,
respectively. Meanwhile, u and f are the displacement and
force vectors, respectively. Since FEM has been widely used
for solving equations of motion, for brevity, we do not intend
to discuss here.

The inverse problem is solved by an optimization
approach where an objective function 𝜋 is minimized in the
L2 norm:

𝜋 = 12 󵄩󵄩󵄩󵄩W (u (𝜇) − u𝑚𝑒𝑎𝑠)󵄩󵄩󵄩󵄩20 + 12𝛼Reg (𝜇) , (4)

where u𝑚𝑒𝑎𝑠 and u(𝜇) are the nodal measured and computed
displacements, respectively.The computed displacement field
is obtained by solving the forward problem at the current
estimated shear modulus distribution.The shape functionW
represents the approximation from the continuous displace-
ment field to the associated discretized field.The second term
in (4) is the regularization term. In this paper, we employ
the total variation diminishing (TVD) regularization term
(Reg(𝜇) = ∫

Ω
√(∇𝜇)2 + c2dΩ, where c is a small constant

and is set to 10−2 in order to avoid the singularity when
computing the derivative of the regularization term with
respect to shear moduli). 𝛼 is the regularization factor to
control the contribution of the regularization term to the

objective function. A smaller 𝛼 leads to strong distortion
of reconstruction, while a larger value will oversmooth the
final results. In this paper, the optimal regularization factor
is visually determined. To be specific, we start with a very
large regularization, keep solving the inverse problem with
a decreasing regularization factor, and then observe the
shear modulus reconstructions. This optimal regularization
factor will be determined when the reconstruction of the
background starts oscillation.The same strategy has also been
utilized in [17–21].

The inverse problem is solved by a quasi-Newton
approach, the L-BFGS (limited-Broyden–Fletcher–Gold-
farb–Shanno) method, which requires the objective function
value and its spatial gradient with respect to shear moduli.
The gradient of the objective function can be calculated as
follows:

𝜕𝜋
𝜕𝜇𝑗 = ⟨W (u − u𝑚𝑒𝑎𝑠) ,W 𝜕u

𝜕𝜇𝑗⟩ +
1
2𝛼
𝜕Reg (𝜇𝑗)
𝜕𝜇𝑗 , (5)

where j represents the global node number. ⟨, ⟩ denotes the
inner product. Differentiating (3) with respect to the nodal
shear modulus 𝜇𝑗 yields

𝜕u
𝜕𝜇𝑗 = − (K +M)

−1 𝜕K𝜕𝜇𝑗 u. (6)

Substituting (6) into (5) leads to

𝜕𝜋
𝜕𝜇𝑗 = ⟨W (u − u𝑚𝑒𝑎𝑠) , −W (K +M)−1 𝜕K𝜕𝜇𝑗 u⟩

+ 12𝛼
𝜕Reg (𝜇𝑗)
𝜕𝜇𝑗 .

(7)

This straightforward approach to evaluate the gradient
is computationally intensive; thus the adjoint method is
adopted to calculate the gradient in a highly efficient way
[21]. More specifically, if we rewrite (7) by taking advantage
of the definition of a transpose, the following equation can be
obtained:

𝜕𝜋
𝜕𝜇𝑗 = ⟨− (K +M)

−𝑇W𝑇W (u − u𝑚𝑒𝑎𝑠) , 𝜕K𝜕𝜇𝑗 u⟩

+ 12𝛼
𝜕Reg (𝜇𝑗)
𝜕𝜇𝑗 .

(8)

Accordingly, the adjoint equation can be acquired:

− (K +M)𝑇D =W𝑇W (u − u𝑚𝑒𝑎𝑠) . (9)

If we solve the adjoint equation for the vectorD, the gradient
can be expressed as

𝜕𝜋
𝜕𝜇𝑗 = ⟨D, 𝜕K𝜕𝜇𝑗 u⟩ +

1
2𝛼
𝜕Reg (𝜇𝑗)
𝜕𝜇𝑗 . (10)
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Figure 1: (a) The target shear modulus distribution; ((b)–(d)) the reconstructed shear modulus distributions in the presence of 3%, 5%, and
10% noise, respectively. In this case, the driving frequency is 0Hz (the static case).

Thus, we merely need to solve two forward problems at
every minimization iteration using the adjoint method. The
inverse solver will terminate when one of the two following
stop criteria is satisfied: (1) the difference between the
objective function values at the current and lastminimization
iterations is smaller than themachine precision; (2) the norm
of the gradient of the objective function with respect to shear
moduli is smaller than the machine precision.

The in-house inverse algorithm is implemented by For-
tran and parallelized by openMP. For the L-BFGS algorithm,
we adopt an open source L-BFGS subroutine developed by
[22, 23]. In this work, we will primarily test the inverse
algorithms; thus measured data obtained by simulation will
be employed in numerical examples, assuming the material
property distribution is known. We then use the simulated
data to solve the inverse problem and compare the recon-
structed shearmodulus distributionwith the target values. To
mimic real data, we add up to 10% white Gaussian noise into
the simulated data, and the noise level is defined as

𝑛𝑜𝑖𝑠𝑒 = √∑
𝑛
𝑖=1 (𝑢𝑚𝑒𝑎𝑠𝑖 − 𝑢𝑒𝑥𝑎𝑐𝑡𝑖 )2
√∑𝑛𝑖=1 (𝑢𝑒𝑥𝑎𝑐𝑡𝑖 )2 × 100%, (11)

where 𝑛 is the total number of displacement data. 𝑢𝑚𝑒𝑎𝑠𝑖
and 𝑢𝑒𝑥𝑎𝑐𝑡𝑖 are the measured displacement and noise-free
displacement, respectively.

3. Results

In this section, we will present numerical examples where the
geometric model is shown in Figure 1(a). More specifically,
a circular inclusion with a shear modulus value of 500Pa is
embedded in the 1×1cm2 square background with a shear
modulus value of 100Pa. The radius of the inclusion is 0.1cm.
The square model is discretized by 3600 bilinear elements.
In respect of the boundary conditions, we fully fix the
bottom edge and apply 1% shear deformation on the top
edge. When solving the inverse problem, the initial guess
of shear modulus distribution is homogeneous throughout
the problem domain and the initial shear modulus value is
10Pa. In addition, we restrict the search domain of the shear
modulus of every node to interval [10,3000]Pa.

As seen in Figure 1, when the noise level is low (3%),
the shear modulus distribution is recovered with very good
quality, since both the value and shape of the shear modulus
of the inclusion are close to the target. With the increase of
noise level, the reconstruction becomes worse (see Figures
1(b)–1(d)). In particular, when the noise level reaches 10%, the
mapped inclusion is distorted and a strong artifact is observed
on the background in Figure 1(d). We also investigate the
sensitivity of the regularization factors to the reconstructed
shear modulus distribution (see Figure 2). We observe that,
for a very small regularization factor (𝛼 = 10−10 in Figure
2(b)), the reconstructed shearmodulus distribution oscillates
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Figure 2: (a)The target shear modulus distribution; ((b)–(d)) the reconstructed shear modulus distributions in the presence of 5% noise with
regularization factors of 10−10, 10−9, and 5 × 10−9, respectively. In this case, the driving frequency is 0Hz (the static case).

significantly. For a very large regularization factor (𝛼 =5 × 10−9 in Figure 2(d)), the shear modulus distribution of
the background is very smooth. Meanwhile, the inclusion
can be recovered successfully but becomes much larger than
the target. Thus, the optimal regularization factor should be
selected between them as shown in Figure 2(c).

For a relative low driving frequency (Figure 3), we find
that the inclusion is also recovered well in the case of low
noise level (3% noise). However, compared to the static case
(see Figure 1(b)), both the shape and value of the inclusion are
slightly worsemapped. Besides, though increasing noise level
will deteriorate the mapped shear modulus distribution, the
quality of reconstructed results in this dynamic case is slightly
better than the static case (compare Figures 1(c) and 1(d)
and Figures 3(c) and 3(d)). For higher driving frequencies
of 20Hz and 40Hz (Figures 4 and 5), we observe that the
inclusion is well recovered for noise levels up to 5%. Even
with 10% noise level, the inclusion is recovered well without
too many artifacts. Comparing the reconstructed results for
varying driving frequencies, we also observe that the driving
frequency of 40Hz yields the best reconstruction results.

We also study the effect of the uncertainty in the driving
frequency on the reconstructed results. In Figures 6 and 7,
we also add noise to the driving frequency in solving the
inverse problem. We discover that the decrease of driving
frequency reduces the value of the mapped inclusion (see
Figure 6) but also reduces the artifact of the background

simultaneously. The shape of the mapped inclusion seems to
remain the same level for different driving frequencies.When
we raise the driving frequency (Figure 7), it is clear that the
value of the shear modulus of the mapped inclusion rises but
the background experiences a stronger oscillation than that
using the exact driving frequency.

4. Discussion

This paper presents the regularized inverse approach to
map the heterogeneous elastic property distribution of the
soft solids using harmonic motion data. It took 5000-10000
iterations for convergence to solve the inverse problem in
this paper. We compared the reconstructed results when
the driving frequencies are 0Hz (static case), 2Hz, 20Hz,
and 40Hz, respectively. We also varied the initial guess
of the shear modulus from 10Pa to 1000Pa and acquired
very similar reconstructed shear modulus distribution. We
notice that using static data is capable of mapping the
elastic property distribution well with a low noise level.
However, for higher noise level, the dynamic data yields better
reconstruction results. Thereby, this is one of the advantages
of utilizing dynamic measurement. Another merit of using
harmonicmotion data is that we can quantitatively determine
the shear modulus distribution merely using displacement
measurements. This is impossible for the static case owing
to the homogeneity of the equilibrium equations. Thereby,
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Figure 3: (a) The target shear modulus distribution; ((b)–(d)) the reconstructed shear modulus distributions in the presence of 3%, 5%, and
10% noise, respectively. In this case, the driving frequency is 2Hz.
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Figure 4: (a) The target shear modulus distribution; ((b)–(d)) the reconstructed shear modulus distributions in the presence of 3%, 5%, and
10% noise, respectively. In this case, the driving frequency is 20Hz.
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Figure 5: (a) The target shear modulus distribution; ((b)–(d)) the reconstructed shear modulus distributions when the driving frequency
increases by 3%, 5%, and 10%, respectively. In this case, the exact driving frequency is 40Hz.
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Figure 6: (a) The target shear modulus distribution; ((b)–(d)) the reconstructed shear modulus distributions when the driving frequency
decreases by 3%, 5%, and 10% in the inverse problem, respectively. In this case, the exact driving frequency is 20Hz and noise level is 3%.
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Figure 7: (a) The target shear modulus distribution; ((b)–(d)) the reconstructed shear modulus distributions when the driving frequency
increases by 3%, 5%, and 10% in the inverse problem, respectively. In this case, the exact driving frequency is 20Hz and noise level is 3%.

we must know nonzero force or traction information, or
shear modulus values in a certain subregion for the static
case. Otherwise, the shear modulus distribution can only be
determined relatively up to a multiplicative factor. This has
been well studied in [18]. We also learn that the uncertainty
in the driving frequency might not necessarily reduce the
quality of reconstructed results. However, the reason behind
this remains an open question. Though we merely test the
plane stress case in this paper, the proposed approach can
be easily generalized to 2D plane strain and 3D cases.
Besides, the experimental data should be utilized to test the
feasibility of the proposed method. In this paper, we reveal
that using harmonic data is capable of yielding higher quality
of reconstruction even with very high noise level. Further, the
error in driving frequency does not decrease the reconstruc-
tion quality significantly. Therefore, this analysis is of great
significance in applying the approach to the practical cases.

5. Conclusions

In this paper, we study the feasibility of characterizing the
nonhomogeneous elastic modulus distribution utilizing full-
field harmonic motion data. We test several numerical cases
and observe that this approach is capable ofmapping the elas-
tic property distribution well even with high noise levels. We
also investigate how the uncertainty in the driving frequency
affects the reconstruction of the shear modulus distribution.

We realize that the uncertainty in the driving frequencymight
not reduce the quality of reconstruction results.
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