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Convolutional Neural Network- (CNN-) based land cover classification algorithms have recently been applied in hyperspectral
images (HSI) field. However, the large-scale training parameters bring huge computation burden to CNN and the spatial variability
of spectral signatures leads to relative low classification accuracy. In this paper, we propose a CNN-based classification framework
that extracts square matrix representation-based spectral-spatial features and performs land cover classification. Numerical results
on popular datasets show that our framework outperforms sparsity-based approaches like basic thresholding classifier-weighted
least squares (BTC-WLS) and other deep learning-based methods in terms of both classification accuracy and computational cost.

1. Introduction

Different from traditional images (e.g., RGB image), hyper-
spectral image (HSI) with hundreds of spectral channels has
been widely applied in remote sensing [1]. Land cover clas-
sification is an important way to extract useful information
from the HSI [2–4] where the task is to predict the type of
land cover presented at the location of each pixel. There are
several challenges associated with the predictive analysis of
HSI classification: (1) huge computation resulting from large-
scale training parameters and (2) large spatial variability of
spectral signature.

Recently, supervised classification is probably the most
active research area in hyperspectral data analysis. There is
a vast literature on this topic using supervised machine-
learning models, such as decision trees [5], random forests
[6], and support vector machines (SVM) [7–9]. A random
forest [10] is an ensemble learning approach that operates
by constructing several decision trees in the training course
and outputting the classes of the input hyperspectral pixels
via integration of predictions of the individual trees. The
SVM-based methods [8, 11], in general, follow a two-step
approach. Firstly, complex handcrafted features are computed

from the raw data input, and secondly, the obtained features
are used to learn classifiers. However, these approaches are
treated as “shallow” models, and invariance and abstractness
of the extracted features are limited compared to the “deep”
ones. It is believed that, compared to the “shallow” models,
deep learning architectures are able to extract high-level,
hierarchical, and abstract features, which are generally more
robust to the nonlinear processing.

Convolutional Neural Network (CNN) is regarded as an
important branch of the deep learning family and especially
good at image classification [12]. If designed properly, a
CNN provides a hierarchical description of the input data
in terms of relevant and easily interpreted features at every
layer in image categorization tasks. For example, W. Hu
et al. [13] trained a simple one-dimensional (1D) five-layer
CNN that directly classifies hyperspectral images in spectral
domain. D. Guidici et al. [14] attempted to carry out 1D CNN
for classifying land cover from multi-seasonal hyperspectral
imagery, followed by the features extracted from the spectral
domain through the training of the network. To avoid over-
fitting, S. Mei et al. [15] suggested a spectral-spatial-feature-
based classification framework, which jointly makes use of
batch normalization, dropout, and parametric rectified linear

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 9218092, 11 pages
https://doi.org/10.1155/2018/9218092

http://orcid.org/0000-0002-3916-0533
https://doi.org/10.1155/2018/9218092


2 Mathematical Problems in Engineering

unit activation function and a 1D CNN. However, above-
mentioned algorithms are all based on inputting 1D vector
column corresponding to every pixel into CNN framework,
followed by huge parameters when one needs to deal with
hyperspectral data, which faces the difficulties of complex
computation burden and much information redundancies to
training framework.

To address the issue of imbalance between classification
accuracy and computation, this paper establishes the frame-
work of Fast Matrix Representation-Based Spectral-Spatial
CNN (FMRSS Net), which uses a matrix representation
of every pixel as input feature fed to the proposed deep
model using format conversion.This approach reduces large-
scale training parameters compared to that of vector column
to decrease the computation burden. In addition, we also
explore the spatial context in spectral domain to reduce the
disturbance of interclass spectral variation. Furthermore, the
learned feature can be transferred to different data or tasks
[16].

The rest of this paper is organized as follows. An introduc-
tion to the existing methods is briefly given in Section 2. The
details of the proposed FMRSSNet are described in Section 3.
The datasets description, network analysis, experimental
results, and a comparisonwith state-of-the-art algorithms are
provided in Section 4. Finally, Section 5 concludes this paper.

2. Existing Methods

In this section, two kinds of state-of-the-art HSI classification
methods were described in this work: one is the deep
learning-based method and the other is the sparsity-based
method.

2.1. HSI Classification via Simple CNN. At a broad level, a
CNN is a deep-network topology that typically combines
convolutional filter layers in conjunction with a classification
network, which for this work is a fully connected neural net-
work (NN).Through the standard back-propagation training
process, convolutional filters are trained to capture salient
structural features from the sequential input data. W. Hu et
al. [13] mention these structural features as the “intraclass
appearance and shape variation” within spectra and apply
to HSI classification in the first time. The architecture of
their proposed classifier contains five layers with weights,
including the input layer, the convolutional layer, the max
pooling layer, the full connection layer, and the output layer.
They utilized single-season hyperspectral data and simple 1D
CNN across the full spectral dimension to classify land cover
with 90 to 93% overall accuracy, and CNN outperformed
SVM by 1 to 3%. There are some drawbacks of this strategy.
First, the proposed CNN is employed to classify HSI only
in spectral domain which ignores the spatial information
and leads to low accuracy. Second, the number of training
parameters is large resulting in huge computation burden.

2.2. HSI Classification via BTC-WLS. The basic thresholding
classifier (BTC) is a lightweight sparsity-based algorithm for
HSI classification proposed by M. A. Toksöz et al. [17]. BTC
is derived from the basic thresholding algorithmwhich could

be considered as one of the simplest techniques in com-
pressed sensing theory [18, 19]. BTC is a pixelwise classifier
which uses only the spectral features of a given test pixel. It
performs the classification using a predetermined dictionary
consisting of labeled training pixels. It then produces the
class label and residual vector of the test pixel. In addition,
their proposal is extended to a three-step spectral-spatial
framework to improve classification accuracy. First, every
pixel of a given HSI is classified using BTC. The resulting
residual vectors form a cube which could be interpreted as
a stack of images representing residual maps. Second, each
residual map is filtered using an averaging filter. Finally, the
class label of each test pixel is determined based on minimal
residual. For the spectral-spatial proposal, BTC is also applied
to the same filtering techniques in order to smooth the
resulting residual maps and the version of it is called BTC-
WLS (based on weighted least squares filtering [20]). The
reason that this proposal includes the WLS filter is that it
does not cause halo artifacts at the edges of an image as
the degree of smoothing increases.The proposal outperforms
well-known SVM-based methods and sparsity-based greedy
approaches like simultaneous orthogonal matching pursuit
in terms of both classification accuracy and computational
cost. In the spectral-spatial case, although the BTC-WLS
algorithm achieves the best results in terms of all metrics,
it cannot distinguish between small targets in hyperspectral
image scene for generally lacking training samples of desired
class.

2.3. HSI Classification via SAE-LR. Chen et al. [21] employed
deep learning method to handle HSI classification for the
first time, where a stacked autoencoder (SAE) followed by
logistic regression (LR) was adopted to extract the deep
features in HSI. This paper optimizes using the mini-batch
stochastic gradient descent method to derive the partial
differentials of cost function. Then, the weight updating rule
can be redefined. Both a representative spectral pixel vector
and the corresponding spatial vector obtained from applying
principle component analysis (PCA) to hyperspectral data
over the spectral dimension are acquired separately from a
local region and then jointly used as an input to the SAE.
While SAE can extract deep features hierarchically in a layer-
wise training fashion, the training samples composed of
image patches have to be flattened to one dimension in order
tomeet the input requirement of suchmodels. Unfortunately,
SAE are unsupervised and do not directly make use of the
label information when learning the features.

3. HSI Classification via Proposed FMRSS Net

As compared with the simple CNN and BTC-WLS algo-
rithms, we can expect our algorithm to exhibit the following
advantages:

(1) It provides high classification accuracy.
(2) It reduces the large number of training parameters

and decreases computational cost.
(3) It enables us to incorporate spatial information.



Mathematical Problems in Engineering 3

OutputInput

m

1 2 N

12

M

Spectrum 1

Spectrum T

Spectrum 2

N

M

P

Filtering

Format 
conversion

1

Q
Q1

N

1

M

1

Convolution 1

Max pooling

Convolution 2

Full 
connection

Four-layer CNNs classifier

Classification

Train

1 2 N

12

M

Spectrum 1

Spectrum P

Spectrum 2

Band selection

Preprocessing

1 1 1

1 11
r1

1

r

Filter template
Q∗ Q

1

r2

Spatial filtered data(M× N× P) Format converted data(MQ× NQ)

Raw hyperspectral data (M× N× T) Revised hyperspectral data (M× N× P)

· · ·

· · ·

· · ·

d
...

...

Figure 1: Flow chart of the proposed framework.

In this context, we propose the FMRSS Net framework for
HSI classificationwhich satisfies these properties and consists
of four steps, as described briefly below.

(1) HSI preprocessing: this step carries out band screen-
ing, normalization band sorting. and extraction.

(2) Joint spatial-spectral information processing: mean
filter is applied to each band data and the spectral
information per individual pixel is correlated with
that of adjacent pixels.

(3) Format conversion: in this step, a one-dimensional
(1D) vector column is converted to a square matrix
representation, which reduces the number of training
parameters of CNN.

(4) Classification by using a four-layer CNN: this classi-
fier includes four learning layers: convolution layer
1, max pooling layer, convolution layer 2, and fully
connected layer.

The flow chart of our FMRSS Net framework is shown in
Figure 1.

3.1. Preprocessing for HSI. Suppose the original HSI includes
T frequency bands, and each band corresponds to a two-
dimensional (2D) image with size 𝑀 × 𝑁. The noise bands
and water absorption bands need to be removed from the
T original bands in the beginning, resulting in U remaining
bands.

After normalizing to [-1, 1], the data of the remained U
bands are sorted by the energy parameter of the 2D image
corresponding to each band. In order to extract informative

bands, the topP bandswith bigger energy values are extracted
from U bands by using the following formula:

𝑃 = ⌊√𝑈⌋2 (1)

where ⌊⋅⌋ indicates rounding to the nearest integer towards
minus infinity.

3.2. Joint Spectral-Spatial Processing. This processing requires
a mean filter which is applied to each 2D image of P bands.
The selection of filter template is related to the image size as
well as the number of samples for every land cover type. For
example, in the Indian Pines dataset, some classes have very
few samples. Among these classes, if the filter template is too
small, the spectral information of the neighborhood cannot
be fully exploited. On the other hand, if bigger template is
used, the image blur will be enlarged. Therefore, choosing a
suitable filter template is of great importance. Here, we design
the size of filter template to adapt experimental datasets.

For 𝑃 bands of hyperspectral data, the collected data for
each band is a 2D image with size𝑀×𝑁. Let (1/𝑟2)𝐵𝑟 denote
a filter template per band, where 𝐵𝑟 is a matrix with size 𝑟 × 𝑟
and every value in the matrix is 1. For different datasets, the
values 𝑀 and 𝑁 represent the length and width of the 2D
image corresponding to each band, and 𝑟 is set as follows:
𝑟

=
{{{{
{{{{
{

7, (𝑀 > 300) 𝑎𝑛𝑑 (𝑁 > 300)
5, [(𝑀 ≤ 300) 𝑜𝑟 (𝑁 ≤ 300)] 𝑎𝑛𝑑 (∃𝑆 (𝑖) < 200)
3, [(𝑀 ≤ 300) 𝑜𝑟 (𝑁 ≤ 300)] 𝑎𝑛𝑑 (∀𝑆 (𝑖) ≥ 200)

(2)
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Figure 2: Format conversion of a pixel.

where 𝑆(⋅) indicates the number of samples for each class, 𝑖 =
1, 2, . . . , 𝑚, and𝑚 is the number of land cover types.

3.3. Format Conversion. According to the parameter settings
in following part, the number of training parameters is
related to the input data size, kernel size, and feature map
size. The input data with 1D vector column results in larger
kernel and feature map which brings huge computational
cost to CNN. We make a contribution to reduce the number
of training parameters before the input data is fed into
network, which is the format conversion using 2D matrix
representation feature. Multiband data of each pixel perform
format conversion, as shown in Figure 2. Format conversion,
which represents 1D array (𝑃 × 1) corresponding to a single
pixel, is converted to the 2D square (𝑄×𝑄) filled by column,
the data of 1D array from 1 to𝑄 is placed in first column of 2D
square matrix, then the next data from 𝑄 + 1 to 2𝑄 is placed
in second column, and so on. From (1), it can be inferred that
𝑄 = ⌊√𝑈⌋ = √𝑃, so the 1D array of 𝑃 × 1 just fills in the
square matrix of 𝑄 × 𝑄.

3.4. Architecture of the Proposed CNN. A four-learning-layer
based CNN classifier is proposed to extract features and
classify hyperspectral data, as shown in Figure 3.

The total spectral data to be processed has a total of𝑀×𝑁
pixel vectors, which are divided into training samples and
testing samples according to the proportion. To make more
concrete, we randomly select the number of training samples
according to the batch size (which is the number of training
samples per training session) fed into the network and get
parameters of the classifier by training these samples. Next,
we could observe that the classification results are obtained
by inputting the testing samples into the trained network.The
parameter settings for each layer are given in Table 1.

4. Experimental Results and Discussion

All programs are implemented using the deep learning
toolbox [22] based on MATLAB R2016a language, and the
toolbox offers some deep learning templates that allow
researchers in remote sensing to solve the issue of large-scale
image classification. The experimental results are generated
on a PC equipped with an Intel Core i7-7700 with 3.6GHz
and Nvidia GTX 1060 6G graphics card.

4.1. Experimental Datasets Description and Parameter
Settings. Theexperiments are performed on two popularHSI
classification datasets: Indian Pines [23] and Salinas (http://
www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
Sensing Scenes). Both datasets were captured by an airborne
visible/infrared imaging spectrometer (AVIRIS) sensor in
wavelength range 0.4 ∼ 2.5𝜇𝑚.

4.1.1. Indian Pines Dataset. The classification methods are
firstly applied to the Indian Pines dataset. Only 200 (𝑈 = 200)
bands are adopted after the removal of the spectral bands
affected by atmospheric absorption. By sorting through the
energy values, we finally select the 196 bands with larger
energy for evaluation where 𝑄 takes 14. The dataset contains
145 × 145 (𝑀 = 𝑁 = 145) pixels with a ground resolution
of 20 m. Since the number of samples in the dataset is not
evenly distributed based on the 16 land cover types (𝑚 = 16),
we randomly select 10% of the land cover pixels as training
samples and the remaining 90% as testing samples and set
the minimum number of training samples to 10 for each
class. Table 2 shows each class of experimental land cover
information and the corresponding number of training and
testing samples; we get a total of 10198 samples with 1000
training samples and 9198 testing samples. In addition, each
pixel must be scaled to [-1, 1]. The layer parameters of this
dataset in the proposed four-layer CNN classifier are given in
Parameter Settings for Indian Pines/Salinas (Table 3).

4.1.2. Salinas Dataset. For the Salinas dataset, before the
experiments, 20 noisy water absorption bandswere discarded
and only 204 (𝑈 = 204) bands remained for evaluation.
By sorting through the energy values, we discard some
bands and finally select the 196 bands with larger energy for
evaluation where 𝑄 takes 14. The dataset contains 512 × 217
(𝑀 = 512 and 𝑁 = 217) pixels with a ground resolution of
3.7 m and a total of 16 land cover types. We randomly pick
up half of the all ground-truth samples for experiment since
the number of all samples is so large to increase computation
burden, then we randomly select 10% of them for training
samples and the remaining 90% for testing sample s and set
theminimumnumber of training samples to 10 for each class.
Table 4 shows each class of the experimental land cover and
the corresponding numbers of training and testing samples.
A total of 2700 training samples and 24349 testing samples are
selected as the original data for the experiment. In addition,
each pixel is normalized to [-1, 1].The layer parameters of this
dataset in the proposed classifier are also given in Parameter
Settings for Indian Pines/Salinas.

4.2. Comparison with Other Classification Algorithms. The
test accuracies of the FMRSSNet framework (FMRSS) for the
Indian Pines and Salinas datasets are comparedwith sparsity-
based and deep learning-based algorithms in Table 5. All the
classifiers are trained on the same train set and tested on the
same test set for a fair comparison. According to (2), the filter
template with size 5 × 5 and 3 × 3 are chosen for the Indian
Pines and Salinas datasets. Among sparsity-based algorithms,
SAE [22], SAE-LR [21], and BTC-WLS [17] are compared
with our framework. A network structure of [196-100-16] is

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Table 1

Parameter Settings
INPUT:
(i) Input data: 𝑄 × 𝑄
CONVOLUTION 1:
(i) 6 feature maps
(ii) Kernel size: 𝑘

1
× 𝑘

1
, where 𝑘

1
= ⌈𝑄/3⌉, ⌈⋅⌉ rounds the elements to the nearest integers towards infinity.

(iii) Feature map size: 𝑛
1
× 𝑛

1
(𝑛

1
= 𝑄 − 𝑘

1
+ 1)

(iv) Training parameters number: (𝑘
1
× 𝑘

1
+ 1) × 6

(v) Activation function: Sigmoid
MAX POOLING:
(i) 6 feature maps
(ii) Kernel size: 𝑘

2
× 𝑘

2
, 𝑘

2
is set between 2 ∼ 5

(iii) Feature map size: 𝑛
2
× 𝑛

2
(𝑛

2
= 𝑛

1
/𝑘

2
)

(iv) Training parameters number: 6 × 𝑘
2

(v) Pooling function: Max pooling sampling
CONVOLUTION 2:
(i) 12 feature maps
(ii) Kernel size: 𝑘

3
= ⌊𝑛

2
/2⌋.

(iii) Feature map size: 𝑛
3
× 𝑛

3
(𝑛

3
= 𝑛

2
− 𝑘

3
+ 1)

(iv) Training parameters number: 6 × 𝑘
3
× 𝑘

3
× 12 + 12

(v) Activation function: Sigmoid
FULL CONNECTION:
(i) Units number: 𝑛

4
= 100

(ii) Training parameters number: 𝑛
4
× (12 × 𝑛

3
× 𝑛

3
+ 1)

(iii) Activation function: Softmax
OUTPUT:
(i) Units number𝑚, also named classes number
(ii) Training parameters number:𝑚 × (𝑛

4
+ 1)
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Table 2: Each class and the corresponding number of training and testing samples of Indian Pines dataset.

Color No. Class Train Samples Test Samples

1 Alfalfa 10 36

2 Corn-notill 143 1285

3 Corn-mintill 83 747

4 Corn 24 213

5 Grass-pasture 49 434

6 Grass-trees 73 657

7 Grass-pasture-mowed 10 18

8 Hay-windrowed 48 430

9 Oats 10 10

10 Soybean-notill 98 874

11 Soybean-mintill 195 2209

12 Soybean-clean 60 533

13 Wheat 21 184

14 Woods 127 1138

15 Buildings-Grass-Trees-Drives 39 347

16 Stone-Steel-Towers 10 83
Sum 1000 9198

to carry out 500 times unsupervised training on each SAE
network and 10,000 times supervised training on the entire
classification network with the sigmoid as activation function
[22]. Note that because deep learning-based methods may
perform poor when training samples are not enough, in the
comparison experiments the number of training samples in
SAE-LR is set as 60% of all labeled pixels for Indian Pines
dataset, while, for the Salinas dataset, we randomly pick up
half of the all ground-truth samples for experiment, then
we randomly select 60% of them for training samples, 20%
for validation samples, and the remaining 20% for testing
samples. The neural networks are constructed as [196-60-
60-60-60-60-16] for the Indian Pines dataset and [196-30-
30-30-30-30-16] for the Salinas dataset. The experiments
considering joint spectral-spatial information are carried out
with 3 principal components and 5000 epochs of pretraining
and 100,000 epochs of fine-tuning [21]. Parameters of the
learning algorithm of the BTC-WLS as well as the number
of output classes are set equal to the values mentioned in
[17] with the only exception that testing set size for Salinas is
set to half of the original paper. Among deep learning-based
classifiers, the simple 1D CNN architecture is implemented
with the same architecture and hyperparameter values as
mentioned in [13]. The proposed FMRSS and 1D CNN
both are trained 10,000 times with sigmoid as activation
function.Obviously, comparedwith several other algorithms,
our proposal achieves a better performance on the two
datasets in terms of overall accuracy (OA) of classification. In

addition, classification maps resulting from the Indian Pines
and Salinas scenes using our framework are presented in
Figures 4 and 5.

We present the confusionmatrix of our framework for the
Indian Pines in Table 6 where the index number (1, 2, . . .16)
represents the corresponding class in Table 2. The cell in the
ith row and jth column means the percentage of the ith class
samples (according to ground truth) which is classified to the
jth class. For example, 99.77% of class 2 (Corn-notill) samples
are classified correctly, but 0.16% of class 2 (Corn-notill)
samples are wrongly classified to class 3 (Fallow). The per-
centages on diagonal line are the classification accuracies of
corresponding classes. Furthermore, the performance verifies
that the proposed framework has discriminative capability to
extract subtle visual features, which is even superior to human
vision for classifying complex curve shapes.

Compared with BTC-WLS algorithm, the proposed
framework has higher classification accuracy not only for the
overall dataset but also for certain specific classes (classes
2, 3, 5, 10, 11, and 15) on Indian Pines dataset, as shown in
Figure 6. However, Figure 6 only shows accuracy in percent
and ignores the number of testing samples. For clearer
illustration of the advantage of the proposed algorithm,
Figure 7 presents the number comparison ofmisclassification
samples by FMRSS compared with BTC-WLS. Statistical
results indicate that the total number of misclassified samples
acquired by FMRSS (which is 208) is far less than BTC-WLS
(which is 332).
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(a) (b)

Figure 4: Classification maps on the Indian Pines dataset with 16 classes. (a) Ground truth; (b) our FMRSS Net.

Table 3

Parameter Settings for Indian Pines/Salinas
INPUT:
(i) Input data: 14 × 14 (𝑄 = 14)
(ii) Learning rate: 1
(iii) Batch size: 100
CONVOLUTION 1:
(i) 6 feature maps
(ii) Kernel size: 5 × 5 (𝑘

1
= 5)

(iii) Feature map size: 10 × 10 (𝑛
1
= 10)

(iv) Training parameters number: 156
(v) Activation function: Sigmoid
MAX POOLING:
(i) 6 feature maps
(ii) Kernel size: 𝑘

2
= 2

(iii) Feature map size: 5 × 5 (𝑛
2
= 5)

(iv) Training parameters number: 12
(v) Pooling function: Max pooling sampling
CONVOLUTION 2:
(i) 12 feature maps
(ii) Kernel size: 𝑘

3
= 2

(iii) Feature map size: 4 × 4 (𝑛
3
= 4)

(iv) Training parameters number: 300
(v) Activation function: Sigmoid
FULL CONNECTION:
(i) Units number: 𝑛

4
= 100

(ii) Training parameters number: 19300
(iii) Activation function: Softmax
OUTPUT:
(i) Units number𝑚 = 16, named classes number
(ii) Training parameters number: 1616

4.3. Comparison of Different Parameter Settings. Table 7
shows the classification results under different filter templates

on two datasets. The results show that the filter templates of
5 × 5 and 3 × 3 are appropriate for Indian Pines and Salinas
datasets, respectively. For the Indian Pines dataset, there exist
some classes (1, 7, 9, 16) with low number of samples where
the spectral information of neighborhood is not fully utilized
when the filter template size is 3 × 3, and the filter template
with size 7 × 7 enlarges image blur, and the size of 5 × 5
is the most suitable filter template that utilizes spatial and
spectral information properly. Based on the above analysis,
this method can achieve the best classification accuracy of
97.74% and 99.29% on two datasets, respectively.

The depth of network is also an important factor affecting
the network structure and determining the quality of the
extracted data characteristics. Table 8 tests the effect of net-
work depth on the classification results for different datasets.
Two-learning-layer based network includes convolution layer
and fully connected layer, while three-learning-layer based
network includes convolution layer, max pooling layer, and
fully connected layer. Four-learning-layer based network is
the proposed classifier in this paper by referring to Sec-
tion 3.4. The experiments show effectiveness of the proposed
four-layer structure.

4.4. Analysis of Computational Cost. In addition, CNN share
weights, which significantly decreases the number of param-
eters needed to be trained in comparison with other deep
approaches. However, the number of parameters is still high
when one needs to deal with hyperspectral data. The pro-
posed format conversion addresses this issue which converts
the 1D vector column into a matrix representation and thus
reduces large-scale parameters and network complexity. The
unified input bands and output classes are set to 196 and 16.
From the “Parameter Settings for Indian Pines/Salinas”, it
can be obviously obtained that the total number of training
parameters of the proposed framework is 156 + 12 + 300 +
19300 + 1616 = 21384.

Different from the proposed FMRSS Net, each input data
fed into CNN [13] is a 1D vector column. The input layer is
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Table 4: Each class and the corresponding number of training and testing samples of Salinas dataset.

Color No. Class Train Samples Test Samples

1 Broccoli green weeds 1 102 912

2 Broccoli green weeds 2 187 1674

3 Fallow 100 898

4 Fallow rough plow 71 635

5 Fallow smooth 135 1206

6 Stubble 200 1792

7 Celery 176 1583

8 Grapes untrained 552 5107

9 Soil vinyard develop 302 2710

10 Corn senesced green weeds 163 1461

11 Lettuce romaine 4wk 55 488

12 Lettuce romaine 5wk 97 867

13 Lettuce romaine 6wk 45 405

14 Lettuce romaine 7wk 57 504

15 Vinyard untrained 365 3279

16 Vinyard vertical trellis 93 828
Sum 2700 24349

Table 5: The overall accuracy comparison with different methods
on two datasets (in percent).

Algorithms Datasets
Indian Pines Salinas

SAE 74.95 85.80
CNN in [13] 90.44 92.75
SAE-LR 91.35 92.73
BTC-WLS 96.39 98.84
FMRSS Net 97.74 99.29

196 × 1. The first hidden convolutional layer C1 filters the
input data with 20 kernels of size 21 × 1. Layer C1 contains
20 × 176 × 1 nodes. The max pooling layer M2 is the second
hidden layer, and the kernel size is 4 × 1. Layer M2 contains
20 × 40 × 1 nodes, and there is no parameter in this layer.The
fully connected layer F3 has 100 nodes. The output layer has
16 nodes. Therefore, the total number of training parameters
in [13] is 20×(21+1)+(20×40+1)×100+(100+1)×16 = 82156.

Table 9 shows the comparison of classification and com-
putational cost both on two datasets to certify effectiveness
of format conversion for our frameworks: the framework
with 1D vector column and 2D matrix representation input
data. Comparedwith 1D vector column input data, 2Dmatrix
representation reduces significantly 60772 parameters. In
addition, compared to the 1D convolution kernel that only

extracts adjacent columns information of each pixel, the
proposed CNN model employs the 2D convolution kernel
which canutilize the neighborhood information of each pixel.
In addition, the proposed CNN model with four learning
layers can complete the layer-by-layer feature extraction
of the image through multiple convolution layers. It can
be obtained that the proposed framework can achieve an
improved classification accuracy by 7.30% and 6.54% on
Indian Pines and Salinas, respectively.

5. Conclusions

In this paper, a CNN-based classification framework has been
proposed to directly address the problems of the training
parameter burden and spatial variability of spectral signature
pertaining to HSI classification. The matrix representation-
based spectral-spatial feature learning and extensive param-
eter sharing in the neural network help achieve superior
classification performance with fast speed than other popular
methods on benchmark HSI classification datasets. Experi-
ments results show that, comparedwith BTC-WLS algorithm,
the proposed framework achieves a classification accuracy
improvement of 1.35% on Indian Pines dataset and 0.45% on
Salinas dataset. Likewise, compared with SAE-LR algorithm,
this framework improves OA by 6.39% on Indian Pines
dataset and 6.56% on Salinas dataset. Future work will
focus on filtering parameters adaptive technique and semi-
supervised algorithms combined with CNN.
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Table 6: Confusion matrix of Indian Pines dataset (in percent).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 83.33 2.78 0 2.78 0 0 0 0 0 0 0 0 2.78 2.78 0 5.55
2 0 99.77 0.16 0.07 0 0 0 0 0 0 0 0 0 0 0 0
3 0.13 1.07 98.26 0.40 0 0 0 0 0 0 0.14 0 0 0 0 0
4 0.47 0 0.94 84.51 10.33 0 0 0 0.94 0.47 0 2.35 0 0 0 0
5 0 0 0 0 99.31 0.23 0 0 0.46 0 0 0 0 0 0 0
6 0 0 0 0 0.15 97.26 1.52 1.07 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 83.33 16.67 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0.70 1.16 94.88 2.09 0.47 0 0 0.23 0.23 0.23 0
9 0 0 0 10.0 0 0 0 10.0 80.0 0 0 0 0 0 0 0
10 0 0 0 0.11 0 0 0 0.23 0.11 99.31 0 0.24 0 0 0 0
11 0 0.18 0.05 0.09 0 0 0 0 0 0.09 99.59 0 0 0 0 0
12 0 0.75 2.06 0.75 0 0 0 0 0 0 0 95.87 0.57 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 2.72 92.39 4.89 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0.62 99.30 0.08 0
15 0 0 0 0 1.44 1.15 0.86 0.29 0.29 0 0 0 0 3.17 92.80 0
16 3.61 6.02 0 0 1.20 0 0 0 0 0 0 10.84 1.20 0 2.41 74.72

(a) (b)

Figure 5: Classification maps on the Salinas dataset with 16 classes. (a) Ground truth; (b) our FMRSS Net.

Table 7: The classification results under different filter windows on
two datasets (in percent).

Filter template Datasets
Indian Pines Salinas

3 × 3 96.28 99.29
5 × 5 97.74 99.15
7 × 7 96.31 99.03

Table 8: The classification accuracy under different depth of
network on two datasets (in percent).

Num. of Layers Datasets
Indian Pines Salinas

2 70.27 83.95
3 92.44 96.15
4 97.74 99.29
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Table 9: Computation cost with different neural networks on the two datasets.

Frameworks Classification accuracy (%) Parameters number Processing time (s)
Indian Pines Salinas Indian Pines Salinas

1D vector representation 90.44 92.75 82156 2700 9100
2D matrix representation 97.74 99.29 21384 900 3600
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Figure 6: Classification accuracy comparison of each class on
Indian Pines dataset.
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Figure 7: Number comparison of misclassified samples on Indian
Pines dataset.
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[17] M. A. Toksöz and I. Ulusoy, “Hyperspectral image classification
via basic thresholding classifier,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 54, no. 7, pp. 4039–4051, 2016.

[18] H. Rauhut, K. Schnass, and P. Vandergheynst, “Compressed
sensing and redundant dictionaries,” Institute of Electrical and
Electronics Engineers Transactions on Information Theory, vol.
54, no. 5, pp. 2210–2219, 2008.

[19] S. Foucart and H. Rauhut, “A Mathematical Introduction to
Compressive Sensing,” A Mathematical Introduction to Com-
pressive Sensing, vol. 44, 2013.

[20] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-
preserving decompositions for multi-scale tone and detail
manipulation,” ACM Transactions on Graphics, vol. 27, no. 3,
article 67, 2008.

[21] Y. S. Chen, Z. H. Lin, X. Zhao, G. Wang, and Y. F. Gu,
“Deep learning-based classification of hyperspectral data,” IEEE
Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 7, no. 6, pp. 2094–2107, 2014.

[22] R. B. Palm, “Prediction as a Candidate for Learning Deep
Hierarchical Models of Data,” Tech. Rep., Technical University
of Denmark, 2012.

[23] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, “220 Band
AVIRISHyperspectral ImageData Set: June 12, 1992 Indian Pine
Test Site 3,” 2015, https://purr.purdue.edu/publications/1947/1.

https://arxiv.org/abs/1411.1792
https://purr.purdue.edu/publications/1947/1


Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

