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The concept of diagonally invariant exponential stability (DIES) was originally introduced for single-model linear systems and
subsequently expanded in the study of linear systems with interval-type uncertainties and linear systems with arbitrary switching.
The results presented in this article refer to new approaches to DIES characterization for arbitrary switching systems, which exploit
mathematical tools completely different from earlier work. The previous papers are based on the properties of matrix norms and
measures applied to the constituent matrices defining the switching system, while the present paper uses the eigenvalues and
eigenvectors of the column and row representatives built for a set of matrices derived from the constituentmatrices of the switching
system. The applicability of previous and new results, respectively, is illustrated by case studies (in both continuous- and discrete-
time) that lead to relevant comparisons between the two classes of analysis methods.

1. Introduction

1.1. Research Framework. The current paper considers the
dynamics of switching linear systems described in discrete-
time by

x (𝑡 + 1) = A𝜐(𝑡)x (𝑡) ,
x (𝑡0) = x0,

A𝜐(𝑡) ∈ A, 𝑡, 𝑡0 ∈ Z+, 𝑡 ≥ 𝑡0,
(1-S)

and in continuous-time by

ẋ (𝑡) = A𝜐(𝑡)x (𝑡) ,
x (𝑡0) = x0,

A𝜐(𝑡) ∈ A, 𝑡, 𝑡0 ∈ R+, 𝑡 ≥ 𝑡0,
(1-H)

where

A = {A1, A2, . . . , A𝑁} ⊂ R
𝑛×𝑛 (2)

is a set of matrices characterizing the 𝑁 linear modes
exhibited by the switching system, and 𝜐 : Z+ → {1, . . . , 𝑁}

(discrete-time) and, respectively, 𝜐 : R+ → {1, 2, . . . , 𝑁}
(continuous-time) are, respectively, an arbitrarily switching
signal. At any time instant 𝑡 ∈ Z+ (discrete-time) or 𝑡 ∈ R+
(continuous-time), the active mode of the switching system is
defined by the subscript 𝜃 = 𝜐(𝑡) associated with the matrix
A𝜃 ∈ A that, respectively, uniquely generates the dynamics

x (𝑡 + 1) = A𝜃x (𝑡) , 𝑡 ∈ Z+, 𝜃 ∈ {1, . . . , 𝑁} (3-S)
and

ẋ (𝑡) = A𝜃x (𝑡) , 𝑡 ∈ R+, 𝜃 ∈ {1, . . . , 𝑁} . (3-H)
A system trajectory that starts from the initial condition
x(𝑡0) = x0 ∈ R𝑛 depends on the switching signal 𝜐(⋅), reason
for which this dependence is outlined by the notation x(𝑡) =
x(𝑡; 𝑡0, x0, 𝜐).

The continuous-time operation of the switching system(1-H) is assumed to preserve the values of the state-space
variables at any commutation time 𝜏 ∈ R+; i.e., the equality
limℎ↓0x(𝜏 − ℎ) = x(𝜏) is satisfied.

The notations “S” and “H” used above, as extension
in equations numbering, come from the stability analysis
intended by our work, which is addressed in the sense
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of Schur (abbreviated “S”) for discrete-time dynamics and
in the sense of Hurwitz (abbreviated “H”) for continuous-
time dynamics. The meaning of this notations will also be
preserved when used as superscripts for some matrices.

Throughout the text the notation “X//Y” is used in place
of “X” and, respectively, “Y” in order to organize a parallel
presentation of the statements referring to analogous proper-
ties exhibited by discrete- and continuous-time systems.

The study of stability and stabilizability of switching
and switched systems constituted the research interests of
numerous control engineering groups during the past fifteen
years.Themonograph [1] presents the background existing in
the early 2000, created by the pioneering works in this field.
Later on, the picture is enlarged by the survey paper [2] and
themonographs [3, 4], as well as by the numerous works cited
therein. The recent period, meaning results reported after
2010, can be globally characterized as focusing on specialized
classes of dynamics (such as dynamics with dwell time, e.g.,
[5–7]; delayed dynamics, e.g., [7–9]; positive dynamics, e.g.,
[10–12]—to mention just a few of the representative publica-
tions of the period we are referring to).

The nomenclature used by most of the cited works
considers that the commutations of a switching system are
determined by external signals, whereas the commutations
of a switched system are controlled by internal signals. In
accordance with this terminology, system (3-S)//(3-H) de-
scribed above exhibits an arbitrary switching, where the
commutations between modes are driven by the signal 𝜐 :
Z+ → {1, . . . , 𝑁} (discrete-time), 𝜐 : R+ → {1, 2, . . . , 𝑁}
(continuous-time).

The concept of diagonally invariant exponential stability
(DIES) to be analyzed by the current articlewas introduced by
paper [13] for linear time-invariant systems whose discrete-
and continuous-time dynamics was described by a unique
matrix. Paper [13] shows that DIES characterizes a partic-
ular type of exponential stability, reason for which the test
instruments rely on algebraic properties stronger than the
eigenvalue location, namely, inequalities involving matrix
norms andmatrix measures.TheDIES concept was extended
to interval systems by [14] and to switching systems of form(1-S)//(1-H)by [15] for discrete-time and [16] for continuous-
time.

1.2. Research Objectives and Exposition Plan. The current re-
search is founded on the DIES concept and its characteri-
zation, by equivalence, presented in our previous works [15]
for discrete-time and [16] for continuous-time. The develop-
ments proposed in this article refer to novel approaches to
DIES characterization that exploit mathematical instruments
completely different from [15, 16].

Briefly speaking, the old results, corresponding to [15, 16],
rely on the properties of matrix norms and matrix measures
applied to the matrices A𝜃 ∈ R𝑛×𝑛, 𝜃 = 1, . . . , 𝑁, defining
A (2), whereas the new results (herein developed) explore the
spectra of the column and row representatives built for the
matrix setA (2). It is worth mentioning that the new results
have been derived only for the DIES analysis with respect to
the Hölder p-norms, with 𝑝 ∈ {1, 2,∞}, although the DIES
concept is defined for 1 ≤ 𝑝 ≤ ∞.This fact should not be seen

as a limitation of the new results, since most of the concrete
problems are formulated relatively to the above-mentioned
norms.

The exposition plan for the remainder of the text takes
into consideration a short visit of the already existing results
(also called old results) that are summarized by Section 2, by
using a presentation style that unifies the discrete- and con-
tinuous-time cases (separately addressed by [15, 16], respec-
tively). Section 3 develops the novel results in full accordance
with the background created by the previous section and by
using the same unified presentation style. Section 4 illustrates
the applicability of the old and new results in parallel for
concrete numerical examples and carefully compares similar-
ities and differences between the two types of results. Some
concluding remarks on the role and importance of our new
results are formulated in Section 5.

The notations used throughout the whole text are pre-
sented by the appendix accompanying this article.

2. Background: Results Available on DIES

2.1. Definition and Characterization of DIES. The DIES con-
cept was introduced by paper [13] for linear time-invariant
systems whose discrete- and continuous-time dynamics are
described by a unique matrix. Papers [15, 16] extended the
DIES concept to switching linear systems in accordance with
the following definition.

Definition 1. Let 1 ≤ 𝑝 ≤ ∞, D = diag{𝑑1, . . . , 𝑑𝑛}, 𝑑𝑖 > 0,𝑖 = 1, . . . , 𝑛, and 0 < 𝑟 < 1//𝑟 < 0.The switching linear system(1-S)//(1-H) is called diagonally invariant exponentially stable
relative to the p-norm and parameters D, 𝑟 (abbreviated as
DIESD,𝑟𝑝 ) under arbitrary switching if

∀𝜀 > 0,
∀𝑡0 ∈ Z+,
∀x0 = x (𝑡0) ∈ R

𝑛,
∀𝜐 : Z+ → {1, 2, . . . , 𝑁} :
x0

D𝑝 ≤ 𝜀 ⇒ x (𝑡; 𝑡0, x0, 𝜐)D𝑝 ≤ 𝜀𝑟𝑡−𝑡0 ,
∀𝑡 ∈ Z+, 𝑡 ≥ 𝑡0.

(4-S)

and, respectively,

∀𝜀 > 0,
∀𝑡0 ∈ R+,
∀x0 = x (𝑡0) ∈ R

𝑛,
∀𝜐 : R+ → {1, 2, . . . , 𝑁} :
x0

D𝑝 ≤ 𝜀 ⇒ x (𝑡; 𝑡0, x0, 𝜐)D𝑝 ≤ 𝜀𝑒𝑟(𝑡−𝑡0),
∀𝑡 ∈ R+, 𝑡 ≥ 𝑡0.

(4-H)

In (4-S) and (4-H), the vector norm ‖x‖D𝑝 = ‖D−1x‖𝑝 is used
in accordance with the details given in the appendix.
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A qualitative analysis developed in terms of invariant sets
reveals that DIESD,𝑟𝑝 property expresses the invariance of the
exponentially decreasing time-dependent sets (or, equivalently,
contractive sets)

X
D,𝑟
𝑝 (𝜀; 𝑡, 𝑡0) = {x ∈ R

𝑛 | ‖x‖D𝑝 ≤ 𝜀𝑟𝑡−𝑡0} ,
𝑡, 𝑡0 ∈ Z+, 𝑡 ≥ 𝑡0, 𝜀 > 0, (5-S)

and, respectively,

X
D,𝑟
𝑝 (𝜀; 𝑡, 𝑡0) = {x ∈ R

𝑛 | ‖x‖D𝑝 ≤ 𝜀𝑒𝑟(𝑡−𝑡0)} ,
𝑡, 𝑡0 ∈ R+, 𝑡 ≥ 𝑡0, 𝜀 > 0, (5-H)

with respect to the trajectories of the switching linear system(1-S)//(1-H) for any switching sequence 𝜐.
For further details on exploring the connection between

set invariance and the standard definition of (local and
global) exponential stability, the reader is referred to the
discussions in paper [13]. For instance, the DIESD,𝑟𝑝 concept
implies the satisfaction of the classical 𝛿 − 𝜀 definition of the
exponential stability of the equilibrium {0} of system (1-S)//(1-H), by using the vector norm ‖‖D𝑝 and the precise value𝛿(𝜀) = 𝜀 for satisfying the inequality 𝛿(𝜀) ≥ 𝜀. In other
words, the equilibrium {0} may be exponentially stable, but
the switching system (1-S)//(1-H) does not have invariant sets
of form (5-S)//(5-H).

In relation (5-S)//(5-H) the diagonal entries of matrix D
scale the state variables, and the constant 0 < 𝑟 < 1//𝑟 < 0
represents the contraction rate of the considered time-de-
pendent sets. For the usual p-norms defined by 𝑝 ∈ {1, 2,∞},
the contractive sets (5-S)//(5-H) have well-known geometric
shapes: hyper-rhombus, ellipses, and rectangles, respectively.

The DIESD,𝑟𝑝 property of switching linear systems of form(1-S)//(1-H) is characterized by the following theorem that
employs the matrix norms and measures defined in the
appendix.This theorem merges, in a unified form, the results
proven in [15] for the discrete-time case and in [16] for the
continuous-time case.

Theorem 2. Let 1 ≤ 𝑝 ≤ ∞, D ≻ 0 diagonal, and 0 < 𝑟 <1//𝑟 < 0. The following statements are equivalent:
(i) The switching system (1-S)//(1-H) is 𝐷𝐼𝐸𝑆D,𝑟𝑝 under

arbitrary switching.
(ii) The function

V : R𝑛 → R+,
V (x) = ‖x‖D𝑝 (6)

is a strong Lyapunov function for the switching system(1-S)//(1-H), which exhibits the decreasing rate r along each
nontrivial trajectory of the considered system; i.e.,

∀𝑡 ∈ Z+ : V (x (𝑡 + 1)) ≤ 𝑟V (x (𝑡)) , (7-S)
and, respectively,

∀𝑡 ∈ R+ : 𝐷+𝑡V (x (𝑡))
= lim
ℎ↓0

V (x (𝑡 + ℎ)) −V (x (𝑡))ℎ ≤ 𝑟V (x (𝑡)) . (7-H)

(iii) The matrices A𝜃, 𝜃 = 1, . . . ,𝑁, defining the component
subsystems of the switching system (1-S)//(1-H) satisfy the
inequalities

A𝜃
D𝑝 ≤ 𝑟, 𝜃 = 1, . . . , 𝑁, (8-S)

and, respectively,

𝜇D
𝑝 (A𝜃) ≤ 𝑟, 𝜃 = 1, . . . ,𝑁. (8-H)

Proof. See the proofs of Theorem 2 in [15] for the discrete-
time case andTheorem 1 in [16] for the continuous-time case.

Inequalities (8-S)//(8-H) may be utilized in testing the
DIESD,𝑟𝑝 of system (1-S)//(1-H). It is important to notice
the necessary and sufficient role of these inequalities in the
DIESD,𝑟𝑝 characterization, because other works, such as [2, 17],
mention their use just as sufficient conditions for uniform
asymptotic stability.

For a single-model system, the DIES characterization via(8-S)//(8-H) operates in the particular form ||A||D𝑝 ≤ 𝑟
// 𝜇D
𝑝 (A) ≤ 𝑟 presented in our previous work [13]. This

matrix-norm//matrix-measure inequality implies the Schur//
Hurwitz property of matrix A, a fact which offers a supple-
mentary motivation for the discussion on “DIES stronger
compared to exponential stability” developed above, after
Definition 1. An interesting consequence refers to the dynam-
ics of the arbitrary switching system (1-S)//(1-H), analyzed
from the perspective of the individual dynamics exhibited
by the N constituent subsystems. Thus, it is well known
that system (1-S)//(1-H) is not necessarily stable if all its
constituent subsystems are exponentially stable. On the other
hand, if there exist a matrix D ≻ 0 diagonal and N
constants 0 < 𝑟1, . . . , 𝑟𝑁 < 1//𝑟1 , . . . , 𝑟𝑁 < 0, such
that theN constituent subsystems are DIESD,𝑟1𝑝 , . . . ,DIESD,𝑟𝑁𝑝 ,
respectively, then system (1-S)//(1-H) is DIESD,𝑟𝑝 , for 𝑟 =
max{𝑟1, . . . , 𝑟𝑁}.
2.2. Particular Forms of Inequalities (8-S)//(8-H) inTheorem 2
for 𝑝 ∈ {1, 2,∞}. The easy to handle, concrete forms of
the matrix norms//matrix measures corresponding to 𝑝 ∈{1, 2,∞} (see Appendix) allow a convenient reformulation of
inequalities (8-S)//(8-H) in Theorem 2, as shown by Theo-
rem 3 stated below, which joins results proven in [15] for the
discrete-time case and in [16] for the continuous-time case.

Consider the set of matrices A = {A1,A2, . . . , A𝑁} (2)
that generates the dynamics of switching system (1-S)//(1-H).
For the discrete-time case, define the set of matrices A𝑆 ={A𝑆1,A𝑆2, . . . , A𝑆𝑁}, where

[𝐴𝑆𝜃]𝑖𝑗 = [𝐴𝜃]𝑖𝑗
 , 𝑖, 𝑗 = 1, . . . , 𝑛, 𝜃 = 1, . . . , 𝑁, (9-S)



4 Mathematical Problems in Engineering

and for the continuous-time case, the set of matrices A𝐻 ={A𝐻1 , A𝐻2 , . . . , A𝐻𝑁}, where
[𝐴𝐻𝜃 ]𝑖𝑗 = {{{

[𝐴𝜃]𝑖𝑗[𝐴𝜃]𝑖𝑗


,
𝑖, 𝑗 = 1, . . . , 𝑛, 𝜃 = 1, . . . , 𝑁.

(9-H)

Theorem 3. Let D = diag{𝑑1, . . . , 𝑑𝑛}, 𝑑𝑖 > 0, 𝑖 = 1, . . . , 𝑛,
and 𝑟 ∈ R.

(i) For 𝑝 = 1, inequalities (8-S)//(8-H) are equivalent to
k𝑇A𝑆𝜃 ≤ 𝑟k𝑇, 𝜃 = 1, . . . ,𝑁, (10-S)

and

k𝑇A𝐻𝜃 ≤ 𝑟k𝑇, 𝜃 = 1, . . . ,𝑁, (10-H)
respectively, where k = [1/𝑑1 ⋅ ⋅ ⋅ 1/𝑑𝑛]𝑇 ∈ R𝑛 is a positive
vector formed with the inverses of the diagonal entries of matrix
D.

(ii) For 𝑝 = 2, inequalities (8-S)//(8-H) are equivalent to
A𝑇𝜃QA𝜃 − 𝑟2Q ⪯ 0, 𝜃 = 1, . . . ,𝑁, (11-S)

and

(A𝜃)𝑇Q + QA𝜃 − 2𝑟Q ⪯ 0, 𝜃 = 1, . . . ,𝑁 (11-H)
respectively, where Q = (D−1)2 is a positive definite diagonal
matrix, formed with the square values of the inverses of the
diagonal entries of matrix D.

(iii) For 𝑝 = ∞, inequalities (8-S)//(8-H) are equivalent to
A𝑆𝜃k ≤ 𝑟k, 𝜃 = 1, . . . , 𝑁, (12-S)

and

A𝐻𝜃 k ≤ 𝑟k, 𝜃 = 1, . . . , 𝑁, (12-H)
respectively, where k = [𝑑1 ⋅ ⋅ ⋅ 𝑑𝑛]𝑇 ∈ R𝑛 is a positive vector
formed with the diagonal entries of matrix D.

Proof. See the proofs of Corollary 1 in [15] for the discrete-
time case andCorollary 1 in [16] for the continuous-time case.

Papers [15, 16] recommend the use of the above results in
the sense that, for a chosen (or given) value of 0 < 𝑟 < 1//𝑟 <0, Theorem 3 permits the search for a diagonal matrix D ≻ 0.
Thus, inequalities (10-S)//(10-H) and (12-S)//(12-H) can be
numerically approached as LP problems, and (11-S)//(11-H)
as LMI problems.

It is worth noticing that DIESD,𝑟𝑝 testing in the manner
of the concomitant search for the parameters D, 𝑟 requires a
different point of view on the numerical exploitation ofTheo-
rem3. For instance, one candevise algorithms that involve the
iterative use of the LP or LMI problems (providing matrix D),
correlated to an optimization scheme looking for the value𝑟, e.g., a bisection method [18]. Another numerical approach
may regard inequalities (10-S)//(10-H) to (12-S)//(12-H)
as BMI problems, in accordance with the key principles
discussed by [19].

3. New Results: Column and Row
Representatives-Based Approach to DIES

This section shows that the DIESD,𝑟𝑝 characterization, for 𝑝 ∈{1, 2,∞}, expressed by inequalities (8-S)//(8-H) inTheorem2
can also be addressed in terms of eigenvalues of some special
matrices. These matrices are constructed from the set A ={A1,A2, . . . , A𝑁} that generates the dynamics of switching
system (1-S)//(1-H), relying on the concepts of column and
row representatives of a matrix set.

The eigenvalue employment in the DIESD,𝑟𝑝 testing for
switching linear systems represents an important (and, in
principle, expected) generalization of the results reported
in [13] for DIESD,𝑟𝑝 , 𝑝 ∈ {1, 2,∞}, of linear time-invariant
systems (single mode systems).

3.1. Column and Row Representatives for a Set of Matrices as
Analytical Tools. Let M = {M1, . . . , M𝑁} ⊂ R𝑛×𝑛 be a set
of matrices. Given a function 𝜎 : {1, . . . , 𝑛} → {1, . . . , 𝑁},
denote by 𝜎 = (𝜎(1), . . . , 𝜎(𝑛)) the corresponding n-tuple and
represent by C the set of all the n-tuples with elements from{1, . . . ,𝑁}.

For any 𝜎 ∈ C, we construct the matrix M
𝜎

∈ R𝑛×𝑛,
whose first column is the first column of M𝜎(1) (denoted
as [M𝜎(1)](:,1)), second column is the second column of
M𝜎(2) (denoted as [M𝜎(2)](:,2)), and so on; that is, M

𝜎
=[[M𝜎(1)](:,1) ⋅ ⋅ ⋅ [M𝜎(𝑛)](:,𝑛)] ∈ R𝑛×𝑛. A matrix M

𝜎
∈ R𝑛×𝑛,

𝜎 ∈ C, constructed as above is called a column representative
of the matrix set M. We say that 𝜎 ∈ C labels the column
representatives.

For any 𝜎 ∈ C, we construct the matrix M
𝜎

∈
R𝑛×𝑛, whose first row is the first row of M𝜎(1) (denoted as[M𝜎(1)](1,:)), second row is the second row of M𝜎(2) (denoted
as [M𝜎(2)](2,:)), and so on; that is, M

𝜎
= [ [M𝜎(1)](1,:)⋅⋅⋅
[M𝜎(n)](𝑛,:)

] ∈ R𝑛×𝑛. A

matrix M
𝜎

∈ R𝑛×𝑛, 𝜎 ∈ C, constructed as above is called a
row representative of the matrix set M. We say that 𝜎 ∈ C
labels the row representatives.

If the matrices M𝜃 ∈ R𝑛×𝑛, 𝜃 = 1, . . . , 𝑁, are (essentially)
nonnegative, then all column representatives M

𝜎
∈ R𝑛×𝑛,

𝜎 ∈ C, and all row representatives M
𝜎

∈ R𝑛×𝑛, 𝜎 ∈ C, are
(essentially) nonnegative matrices. Subsequently, relying on
Perron-Frobenius theory, one can define

𝜆∗ = max
𝜎∈C

𝜆max (M
𝜎
) ,

C
∗ = {𝜎∗ ∈ C | 𝜆max (M

𝜎
∗) = 𝜆∗} , (13)

where 𝜆∗ represents the dominant eigenvalue of the column
representatives and C∗ the set of labels associated with 𝜆∗.
Similarly, one can define

𝜆∗ = max
𝜎∈C

𝜆max (M
𝜎
) ,

C
∗ = {𝜎∗ ∈ C | 𝜆max (M

𝜎
∗) = 𝜆∗} ,

(14)

where 𝜆∗ represents the dominant eigenvalue of the row re-
presentatives andC

∗
the set of labels associated with 𝜆∗.
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In the next two subsections, regarding the switching sys-
tem (1-S)//(1-H) and (2), we are going to exploit the follow-
ing:

(a) For the discrete-time case, the representatives of the
matrix set A𝑆 = {A𝑆1, A𝑆2, . . . , A𝑆𝑁} are defined by (9-S), the
dominant eigenvalue of the column representatives is defined
by

(𝜆𝑆)∗ = max
𝜎∈C

𝜆max (A𝑆
𝜎
) ,

C
𝑆∗ = {𝜎∗ ∈ C | 𝜆max (A𝑆

𝜎
∗) = (𝜆𝑆)∗} ,

(15-S)

and the dominant eigenvalue of the row representatives is
defined by

(𝜆𝑆)∗ = max
𝜎∈C

𝜆max (A𝑆
𝜎
) ,

C
𝑆∗ = {𝜎∗ ∈ C | 𝜆max (A𝑆

𝜎
∗) = (𝜆𝑆)∗} .

(16-S)

(b) For the continuous-time case, the representatives of the
matrix setA𝐻 = {A𝐻1 , A𝐻2 , . . . , A𝐻𝑁} are defined by (9-H), the
dominant eigenvalue of the column representatives is defined
by

(𝜆𝐻)∗ = max
𝜎∈C

𝜆max (A𝐻
𝜎
) ,

C
𝐻∗ = {𝜎∗ ∈ C | 𝜆max (A𝐻

𝜎
∗) = (𝜆𝐻)∗} ,

(15-H)

and the dominant eigenvalue of the row representatives is
defined by

(𝜆𝐻)∗ = max
𝜎∈C

𝜆max (A𝐻
𝜎
) ,

C
𝐻∗ = {𝜎∗ ∈ C | 𝜆max (A𝐻

𝜎
∗) = (𝜆𝐻)∗} .

(16-H)

3.2. Necessary and Sufficient Conditions for DIESD,𝑟𝑝 with 𝑝 ∈{1,∞}
Theorem 4. (a)There existD ≻ 0 diagonal and 0 < 𝑟 < 1 such
that system (1-S) is 𝐷𝐼𝐸𝑆D,𝑟1 under arbitrary switching, if and
only if 0 < (𝜆𝑆)∗ < 1.

(b) There exist D ≻ 0 diagonal and 𝑟 < 0 such that sys-
tem (1-H) is 𝐷𝐼𝐸𝑆D,𝑟1 under arbitrary switching, if and only if(𝜆𝐻)∗ < 0.
Proof. We give the proof only for the continuous-time case
(b); the proof of discrete-time case (a)may be addressed along
the same main lines.

Theorem 2 shows that system (1-H) is DIESD,𝑟1 under
arbitrary switching, if and only if inequalities (8-H) are
satisfied.On the other hand, in accordancewithTheorem3(i),
inequalities (8-H) are equivalent to inequalities (10-H), and
therefore the proof relies on the use of the latter.

Only If. We first show that if inequalities (10-H) have solu-
tions k > 0, 𝑟 ∈ R, then r satisfies the inequality 𝑟 ≥ (𝜆𝐻)∗.
Indeed, assume that 𝑟 < (𝜆𝐻)∗ and k > 0; 𝑟 solves the
inequality (inequalities) k𝑇A𝐻

𝜎
∗ ≤ 𝑟k𝑇, 𝜎∗ ∈ C𝐻

∗. By taking𝑟 = (𝜆𝐻)∗ − 𝜀, 𝜀 > 0 and referring to one of the matrices A𝐻
𝜎
∗ ,

we get the inequality ((𝜆𝐻)∗I − A𝐻
𝜎
∗)𝑇k ≥ 𝜀k with solutions

k > 0. If we use the notation M
𝜎
∗ = ((𝜆𝐻)∗I − A𝐻

𝜎
∗)𝑇, then

M
𝜎
∗ is an M-matrix, and, for all the nonzero components of

the vector k > 0, we have (M
𝜎
∗k)𝑖 ≥ 𝜀k𝑖 > 0. This contradicts

Theorem 6.4.6 (A5) from ([20], p. 149). Thus, the conditions𝑟 < 0 and 𝑟 ≥ (𝜆𝐻)∗ imply the inequality (𝜆𝐻)∗ < 0.
If. Define the matrices M𝜃 = 𝑟I − A𝐻𝜃 , 𝜃 = 1, . . . , 𝑁, with(𝜆𝐻)∗ ≤ 𝑟 < 0. In accordance with Exercise 1.3.7 ([20], p. 9),
the following two algebraic systems are dual:

(S)
{{{{{{{{{{{{{

[[[[
[

(M1)𝑇
⋅ ⋅ ⋅

(M𝑁)𝑇
]]]]
]
k ≥ 0

k > 0,
(17)

and

(S̃)
{{{{{{{{{{{{{{{

[M1 . . . M𝑁]
[[[[
[

x1
...

x𝑁

]]]]
]

≪ 0

x𝜃 ≫ 0, 𝜃 = 1, . . . , 𝑁.
(18)

Wewrite the first inequality in (S̃) asM1x1+⋅ ⋅ ⋅+M𝑁x𝑁 = −x0,
x0 ≫ 0, which is equivalent to the equality (IX0 + M1X1 +⋅ ⋅ ⋅ + M𝑁X𝑁)e = 0, where X𝜃 = diag{x𝜃} has all diagonal
entries positive, 𝜃 = 0, 1, . . . , 𝑁, and e = [1 ⋅ ⋅ ⋅ 1]𝑇 ∈ R𝑛. All
the column representatives of M = {I, M1, . . . ,M𝑁} are M-
matrices and their determinants are nonnegative (Theorem
6.4.6 (A1) in ([20], p. 149). Since det(I) > 0, M has the
column-W0-property and det(IX0+M1X1+⋅ ⋅ ⋅+M𝑁X𝑁) ̸= 0
for any diagonal matrix X𝜃 with positive diagonal entries,𝜃 = 0, 1, . . . , 𝑁, as per Theorem 7, [21]. Hence, the equality(IX0 + M1X1 + ⋅ ⋅ ⋅ + M𝑁X𝑁)e = 0 is not true and (S̃) is
not consistent. Subsequently, (S) is consistent and inequalities(10-H) have the solution k > 0 – as being equivalent to the
algebraic system (S). Implicitly, the semipositive vector k > 0
satisfies the inequality ((𝜆𝐻)∗I − A𝐻

𝜎
∗)𝑇k ≥ 0.

Case (1). If there exists 𝜎∗ ∈ C∗ such that the matrix A𝐻
𝜎
∗

is irreducible, then ((𝜆𝐻)∗I − A𝐻𝜎∗)𝑇 is a singular, irreducible
M-matrix. Thus, Theorem 6.4.16 ([20], p. 156) applied to((𝜆𝐻)∗I−A𝐻

𝜎
∗)𝑇k ≥ 0 shows that the only semipositive vector

k > 0, ‖k‖1 = 1, satisfying (10-H) is the left eigenvector
w𝐿(A𝐻𝜎∗) ≫ 0 (that is strictly positive). Thus, there exist
D = diag{w𝐿(A𝐻𝜎∗)} ≻ 0 diagonal and 𝑟 = (𝜆𝐻)∗ < 0 ensuring𝜇𝐷1 (A𝜃) = 𝜇𝐷1 (A𝐻𝜃 ) ≤ 𝑟, 𝜃 = 1, . . . , 𝑁, a fact which shows that
inequalities (8-H) are satisfied.
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Case (2). If for all 𝜎∗ ∈ C∗ the matrices A𝐻
𝜎
∗ are reducible,

then consider the matrix E ∈ Int(R𝑛×𝑛+ ) and 𝑐 > 0. Define
the set of essentially positive matrices A𝐻𝜃 (𝑐) = A𝐻𝜃 + 𝑐E,𝜃 = 1, . . . , 𝑁, and their column representatives A𝐻

𝜎
(𝑐) =

A𝐻
𝜎

+ 𝑐E, 𝜎 ∈ C. For any 𝜎 ∈ C, 𝜆max(A𝐻𝜎 (𝑐)) is a continuous
and increasing function with respect to 𝑐 > 0, so that for
any small 𝜀 > 0 we can define the interval J𝜀 = (0, 𝑐𝜀] ={𝑐 > 0 | max

𝜎∈C𝜆max(A𝐻𝜎 (𝑐)) ≤ (𝜆𝐻)∗ + 𝜀 < 0}. For
any 𝑐 ∈ J𝜀, introduce (similarly to (15-H)) (𝜆𝐻(𝑐))∗ =
max
𝜎∈C𝜆max(A𝐻𝜎 (𝑐)), C𝐻∗𝑐 = {𝜎∗𝑐 ∈ C | 𝜆max(A𝐻𝜎∗𝑐 (𝑐)) =

(𝜆𝐻(𝑐))∗} and notice that there exists 𝜎∗𝑐 ∈ C𝐻∗𝑐 such that
matrix A𝐻

𝜎
∗
𝑐
(𝑐) is irreducible (since all A𝐻

𝜎
(𝑐), 𝜎 ∈ C are

essentially positive and, inherently, irreducible). Hence, for
any 𝑐 ∈ J𝜀, we apply case (1) detailed above to the inequality(k(𝑐))𝑇A𝐻

𝜎
∗
𝑐
(𝑐) ≤ (𝜆𝐻(𝑐))∗(k(𝑐))𝑇, and we show that k(𝑐) =

w𝐿(A𝐻𝜎∗𝑐 (𝑐)) ≫ 0, 𝑟(𝑐) = (𝜆𝐻(𝑐))∗ < 0 solve the inequalities
k𝑇A𝐻𝜃 (𝑐) ≤ 𝑟k𝑇, 𝜃 = 1, . . . , 𝑁. For these k(𝑐), 𝑟(𝑐), we can
write (k(𝑐))𝑇A𝐻𝜃 < (k(𝑐))𝑇A𝐻𝜃 (𝑐) ≤ 𝑟(𝑐)(k(𝑐))𝑇, 𝜃 = 1, . . . , 𝑁,
meaning that k(𝑐), 𝑟(𝑐) solve inequalities (10-H). Thus, there
exist D = diag{w𝐿(A𝐻𝜎∗𝑐 (𝑐))} ≻ 0 diagonal and 𝑟 = (𝜆𝐻(c))∗ <
0 ensuring 𝜇D

1 (A𝜃) = 𝜇D
1 (A𝐻𝜃 ) ≤ 𝑟, 𝜃 = 1, . . . , 𝑁, a fact which

shows that inequalities (8-H) are satisfied.
The analysis of both irreducible and reducible cases for

A𝐻
𝜎
∗ completes the proof.

Theorem 5. (a) There exist D ≻ 0 diagonal and 0 < 𝑟 < 1
such that system (1-S) is 𝐷𝐼𝐸𝑆D,𝑟∞ under arbitrary switching, if
and only if 0 < (𝜆𝑆)∗ < 1.

(b) There exist D ≻ 0 diagonal and 𝑟 < 0 such that sys-
tem (1-H) is 𝐷𝐼𝐸𝑆D,𝑟∞ under arbitrary switching, if and only if
(𝜆𝐻)∗ < 0.
Proof. It is similar to the proof of Theorem 4, taking into
account the fact that, in accordance with Theorem 3(iii), in-
equalities (8-S)//(8-H) are equivalent to inequalities (12-S)//(12-H).
Remark 6. The results in Theorems 4 and 5 focus on the
qualitative aspect of the DIES analysis based on the dominant
eigenvalues of the representatives, in the sense of the tradi-
tional threshold values 1 for discrete-time and 0 for contin-
uous-time dynamics.

However the proof of Theorem 4 together with Lemma 1
in [22] also allows addressing quantitative aspects, in the sense
that there exist pairs (k, 𝑟), with k ≫ 0, satisfying inequalities(10-S), with 𝑟 ≥ (𝜆𝑆)∗ as close to (𝜆𝑆)∗ as we want, and,
respectively, inequalities (10-H), with 𝑟 ≥ (𝜆𝐻)∗ as close to(𝜆𝐻)∗ as we want. Equivalently, this means that (𝜆𝑆)∗ and(𝜆𝐻)∗, respectively, represent the best (fastest) contraction
rate for all the invariant sets defined by inequality (8-S) and(8-H), respectively, with 𝑝 = 1. Similar reasoning supports
the conclusion that (𝜆𝑆)∗ and (𝜆𝐻)∗, respectively, represent
the best (fastest) contraction rate for all the invariant sets
defined by inequality (8-S) and (8-H), respectively, with 𝑝 =∞.

3.3. Sufficient Conditions for 𝐷𝐼𝐸𝑆D,𝑟2
Theorem 7. (a) If 0 < (𝜆𝑆)∗(𝜆𝑆)∗ < 1, then there exist D ≻ 0
diagonal and 0 < 𝑟 < 1, such that the discrete-time system(1-S) is 𝐷𝐼𝐸𝑆D,𝑟2 under arbitrary switching.

(b) If (𝜆𝐻)∗ + (𝜆𝐻)∗ < 0, then there exist D ≻ 0 diagonal
and 𝑟 < 0, such that the continuous-time system (1-H) is
DIESD,𝑟2 under arbitrary switching.

Proof. We give the proof only for the continuous-time case
(b); the proof of discrete-time case (a)may be addressed along
the samemain lines, by usingmatrix-normproperties instead
of matrix-measure properties.

If 𝜀 > 0 is arbitrarily small, then there exist 𝑟 with
(𝜆𝐻)∗ < 𝑟 and 𝑟 with (𝜆𝐻)∗ < 𝑟, such that 𝑟 + 𝑟 = 2𝑟 =
(𝜆𝐻)∗ + (𝜆𝐻)∗ + 𝜀 < 0. Since (𝜆𝐻)∗ < 𝑟, from the proof of
Theorem 4 (“if” part) we can find D ≻ 0 diagonal, such that𝜇1(D−1A𝜃D) = 𝜇1(D−1A𝐻𝜃 D) ≤ 𝑟, 𝜃 = 1, . . . , 𝑁. By a similar
reasoning (relative toTheorem 5), we can get D ≻ 0 diagonal,
such that 𝜇∞(D−1A𝜃D) = 𝜇∞(D−1A𝐻𝜃 D) ≤ 𝑟, 𝜃 = 1, . . . , 𝑁.

Now, if we use the notations D = (U)2, D = (U)2, we can
write

2𝑟 = 𝑟 + 𝑟 ≥ 𝜇1 (D−1A𝜃D) + 𝜇∞ (D−1A𝜃D)
= 𝜇1 (D−1A𝜃D) + 𝜇1 (D (A𝜃)𝑇D−1)

≥ 𝜇1 (D−1A𝜃D + D (A𝜃)𝑇D−1)
≥ 𝜆max (D−1A𝜃D + D (A𝜃)𝑇D−1)

= 𝜆max ((U−1)2 A𝜃U
2 + U2 (A𝜃)𝑇 (U−1)2)

= 𝜆max ((U−1U) [(U−1)2 A𝜃U
2

+U2 (A𝜃)𝑇 (U−1)2] (U−1U)−1)
= 𝜆max (U−1U−1A𝜃UU + UU (A𝜃)𝑇U−1U−1)

= 𝜆max ((UU)−1 A𝜃 (UU) + (UU) (A𝜃)𝑇 (UU)−1)
= 2𝜇2 ((UU)−1 A𝜃 (UU)) , 𝜃 = 1, . . . ,𝑁.

(19)

Thus, we have proven the existence of D = UU ≻ 0 diagonal
and 𝑟 = (𝑟 + 𝑟)/2 < 0 ensuring 𝜇D

2 (A𝜃) ≤ 𝑟, 𝜃 = 1, . . . , 𝑁, a
fact which shows that inequalities (8-H) are satisfied.
Remark 8. Unlike Theorems 4 and 5, Theorem 7 expresses
only a sufficient condition for DIES. It is formulated in
qualitative terms by referring to the dominant eigenvalues
of the representatives, as well as to the traditional threshold
values 1 for discrete-time and 0 for continuous-time.

However the proofs of Theorems 4 and 7 also allow a
refined formulation in quantitative terms, in the sense that, for
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𝑝 = 2, there exist pairs (D, 𝑟), with D ≻ 0, satisfying inequal-
ities (8-S), with 𝑟 ≥ √(𝜆𝑆)∗(𝜆𝑆)∗ as close to √(𝜆𝑆)∗(𝜆𝑆)∗
as we want, and, respectively, inequalities (8-H), with 𝑟 ≥
(1/2)((𝜆𝐻)∗ + (𝜆𝐻)∗) as close to (1/2)((𝜆𝐻)∗ + (𝜆𝐻)∗) as
we want. Obviously, this formulation in quantitative terms
is still limited just to sufficiency (similarly to Theorem 7).

Subsequently, the corresponding value, i.e.,√(𝜆𝑆)∗(𝜆𝑆)∗ and
(1/2)((𝜆𝐻)∗ + (𝜆𝐻)∗), respectively, does not necessarily rep-
resent the best (fastest) contraction rate for all the invariant
sets defined by inequality (8-S) and (8-H), respectively, with𝑝 = 2.
4. Illustrative Examples and
Numerical Considerations

The theoretical results on DIES are applied to two numerical
examples referring to both continuous-time (example 1) and
discrete-time (example 2) switching dynamics. Examples 1
and 2 have a similar architecture, in the sense that the con-
stituent matrices are parameterized by two parameters 𝑎, 𝑏.
In both examples, the construction of the DIES domains cor-
responding to𝑝 ∈ {1, 2,∞}, is addressed in a dual manner, by
using the older results (summarized by Section 2), in parallel
with the new ones (developed by Section 3). Relevant com-
parisons are permitted for the applicability of Theorem 3(i)
versus Theorem 4, of Theorem 3(ii) versus Theorem 7, and
of Theorem 3(iii) versus Theorem 5, respectively. Moreover,
these comparative discussions on the DIES domains can in-
clude information about subdomains corresponding to vari-
ous values selected for the contraction rate 𝑟 < 0 (continuous-
time) and 0 < 𝑟 < 1 (discrete-time).

Both considered examples are inspired by the literature
of arbitrary switching linear systems, as detailed below.
Unlike the organization of the exposition for theoretical re-
sults, in the previous sections, the current section starts
with the continuous-time case—example 1—continued by the
discrete-time case—example 2. This is because example 1
presents a higher numerical complexity and requires more
meticulous explanations. The computations are performed
in MATLAB R2016a, running on a laptop equipped with an
Intel(R) Core� i7-4710HQ CPU @2.50 GHz x64-based pro-
cessor and 16 GB RAM.

Example 1. Consider a continuous-time arbitrary switching
linear system of form (1-H) defined by the matrices

A = {A1,A2, A3} ⊂ R
3×3,

A1 = [[
[

−12 6 2𝑎1 −10 2𝑏 + 1 3 −10
]]
]

,

A2 = [[
[
−12 −4 0−6 −10 −9−𝑏 −𝑎 −13

]]
]

,

A3 = [[
[
−9 −2 −8−6 −10 −𝑏−𝑎 0 −11

]]
]

,

(20)

where 𝑎, 𝑏 ∈ [1, 10] are parameters, inspired by the numerical
example presented in [23].

We are interested in finding the domain of the parameters(𝑎, 𝑏) ∈ [1, 10]×[1, 10] that guaranteesDIES for𝑝 ∈ {1, 2,∞}.
Given a certain 𝑝 ∈ {1, 2,∞}, the corresponding DIES
domain is represented as a union of subdomains correspond-
ing to different decreasing rates r, namely, −0.25 ≤ 𝑟 < 0,−0.50 ≤ 𝑟 < −0.25, etc. The subdomain role is understood
as a refinement of the global results with 𝑟 < 0, which can
take into consideration quantitative information about the
contraction of the invariant sets defined by (5-H). For
instance, if a point (𝑎∗, 𝑏∗) belongs to the DIESD,𝑟1 subdomain
corresponding to−0.25 ≤ 𝑟 < 0, then, for theparameter values𝑎∗, 𝑏∗, system (1-H) cannot have invariant sets of form (5-H)
with 𝑝 = 1 and a decreasing rate faster than −0.25 (regardless
of the considered positive definite diagonal matrix D ≻ 0).

The DIES analysis is meant to permit comparisons
between the employment of the already known results repro-
duced in Section 2 and the employment of the new results
proposed by Section 3, for all the points belonging to the grid
constructed for (𝑎, 𝑏) ∈ [1, 10] × [1, 10], with a step of 0.05.
When applying the results from Section 2 for 𝑝 ∈ {1, 2,∞},
in each point of the grid we look for the minimum value of 𝑟
such that there exists a positive vector k ∈ R4, k ≫ 0, fulfilling(8-H) or the particular forms derived in Theorem 3, namely,(10-H), (11-H), and (12-H), respectively. This problem can
be solved numerically by using the fmincon solver from the
Optimization Toolbox forMATLAB or the ga solver from the
Global Optimization Toolbox for MATLAB, that performs
the minimization of a function subject to nonlinear con-
straints. For the particular case when 𝑝 = 2, the constraints(11-H) are in the form of BMIs (bilinear matrix inequalities)
and may be solved, for example, using the PENBMI solver
commercially available from TOMLAB Optimization [24]. A
second strategy that can be employed uses a bisection strategy
for 𝑟 ∈ [max{𝜆max(A𝐻1 ), 𝜆max(A𝐻2 ), 𝜆max(A𝐻3 )}, 10] that yields
(for every feasible r) a linear programming problem for 𝑝 ∈{1,∞} that can be approached using the linprog solver from
the Optimization Toolbox for MATLAB or an LMI (linear
matrix inequality) problem for 𝑝 = 2 that can be solved using
CVX, a MATLAB package for specifying and solving convex
programs [25, 26]. In the current paper we have adopted the
first strategy depicted previously. The numerical implemen-
tation of the results from Section 3 requires standard linear
algebra facilities for the representative construction and
eigenvalue computation using MATLAB built-in functions.

Let us begin the DIES analysis for 𝑝 = 1. The DIESD,𝑟1
parametric domain in Figure 1(a) is obtained applying The-
orems 2 and 3(i). The DIESD,𝑟1 parametric domain in Fig-
ure 1(b) was obtained applying Theorem 4(b) and Remark 6.
In each point of the grid, we compute the dominant eigen-
value (𝜆𝐻)∗ for all column representatives of the matrix
family

A
𝐻 = {A𝐻1 , A𝐻2 , A𝐻3 } ⊂ R

3×3,

A𝐻1 = [[
[

−12 6 2𝑎
1 −10 2

𝑏 + 1 3 −10
]]
]

,
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Figure 1: Comparative plots of DIESD,𝑟1 parametric domain for example 1 provided by (a) the MATLAB implementation of the old results
summarized in Section 2 (Theorems 2 and 3(i)); (b) the MATLAB implementation of the new results developed in Section 3 (Theorem 4(b)
and Remark 6).

A𝐻2 = [[
[

−12 4 0
6 −10 9
𝑏 𝑎 −13

]]
]

,

A𝐻3 = [[
[

−9 2 8
6 −10 𝑏
𝑎 0 −11

]]
]

.
(21)

The plot presented in Figure 1(b) offers the same graphic
information as Figure 1(a)—a fact expected from the theoret-
ical point of view, in accordance with the proof of Theorem 4
and the comments included in Remark 6. Nevertheless, it
is extremely important to notice that the computation effort
corresponding to the old approach (summarized in Section 2)
is significantly greater than the effort corresponding to the
newone (developed in Section 3). For the considered example
(studied on the machine with the characteristics presented
above), the requested computation time is 8,826 seconds for
the first (old) procedure and 10.85 seconds for the second
(new) one. This major difference is caused by the great
number of points in the grid, but even at the level of a single
point the faster operation of the new procedure is directly
visible.This factmay be regarded as a general advantage of the
new approach, not strictly related to the considered example.
However, generally speaking, the cardinality of the column-
representative set associated with A𝐻 must be reasonable,
because the existence of a highnumber of representativesmay
severely increase the computation time for (𝜆𝐻)∗.

Here we may also point out an interesting connection
with the numerical example frompaper [23] that corresponds
to the arbitrary switching positive system defined by the
essentially nonnegative matrices (21), with the particular
values 𝑎 ∈ {3, 5} and 𝑏 = 4. The cited example studies the
stability by means of copositive linear Lyapunov functions,
an investigation which is equivalent to DIES1 analysis of the
switching system defined by the matrices (20). Our results
are in agreement with the findings in [23]. For 𝑎 = 3 and𝑏 = 4, the switching system defined by matrices (20) is
DIES1, meaning the existence of a common copositive linear
Lyapunov function for the switching positive system defined
by matrices (21). For 𝑎 = 5 and 𝑏 = 4 the switching sys-
tem defined by matrices (20) is not DIES1 , meaning that no
common copositive linear Lyapunov function can be found
for the switching positive system defined by matrices (21).

For 𝑝 = ∞ the DIES analysis is addressedmutatis mutan-
dis along the same lines as the previously discussed case
of 𝑝 = 1. The old procedure relies on the use of Theorems
2 and 3(iii) in each point of the grid and provides the DIESD,𝑟∞
parametric domain in Figure 2(a).The new procedure applies
Theorem 5(b) and Remark 6 in each point of the grid
and computes the dominant eigenvalue (𝜆𝐻)∗ for all row
representatives of the matrix family A𝐻 = {A𝐻1 , A𝐻2 , A𝐻3 };
the resulting DIESD,𝑟∞ parametric domain is depicted in Fig-
ure 2(b).The substantial difference between the computation
times requested by the two methods (commented above for𝑝 = 1) is also evident here, 9,026 seconds being necessary
for the first (old) procedure and 10.89 seconds for the second
(new) one.
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Figure 2: Comparative plots of DIESD,𝑟∞ parametric domain for example 1 provided by (a) the MATLAB implementation of the old results
summarized in Section 2 (Theorems 2 and 3(iii)); (b) the MATLAB implementation of the new results developed in Section 3 (Theorem 5(b)
and Remark 6).

The DIES analysis for 𝑝 = 2 reveals noticeable variations
in the structure of the DIESD,𝑟2 parametric domains provided
by the old results summarized in Section 2 (i.e., Theorems
2 and 3(ii)) and by the new results developed in Section 3
(i.e., Theorem 7(b) and Remark 8). Theorems 2 and 3(ii) are
applied in each point of the grid and provide the domain
presented in Figure 3(a). Theorem 7(b) and Remark 8 are
applied in each point of the grid for computing (𝜆𝐻)∗ asso-
ciated with all column representatives and (𝜆𝐻)∗ associated
with all row representatives, as well as the value (𝜆𝐻)∗+(𝜆𝐻)∗.
The resulting domain is presented in Figure 3(b) and one can
simply notice that the DIESD,𝑟2 region in this figure is included
into (but not identical to) the DIESD,𝑟2 region in Figure 3(a).
This is because Theorem 7(b) expresses just a sufficient
condition, unlike the necessary and sufficient condition
formulated byTheorems 2 and 3(ii), a fact already mentioned
in Remark 8. On the other hand, the advantage of a much
shorter computation time requested by the new procedure,
compared to the old one, still exists (as in the previously
studied cases of 𝑝 ∈ {1,∞}). The concrete duration for this
example is 20,652 seconds for the first approach and 21.75
seconds for the second one. Under such circumstances, the
use of the new procedure may be preferable for some types of
DIESD,𝑟2 problems, compared to the old procedure, despite the
inconvenience of the new one that ensures only sufficiency.

This example, via Figure 3, shows that relatively large
differences can occur for DIESD,𝑟2 when using the sufficient
condition in Theorem 7, unlike the necessary and suffi-
cient condition in Theorem 3(ii). Generally speaking, these

differences cannot be anticipated from the simple examina-
tion of the switching systemmodel. For instance our example
2 illustrates a visibly smaller difference between the applica-
tions of the two theorems.

Example 2. Consider a discrete-time arbitrary switching line-
ar system of form (1-S) defined by the matrices

A = {A1, A2} ,
A1 = [ 𝑎 0.8

0.3 0.3] ,

A2 = [ 𝑏 0.2
0.6 0.2] ,

(22)

where 𝑎, 𝑏 ∈ [0, 1] are parameters, inspired by the numerical
example presented in [27]. Note that matrices A1, A2 (22)
are nonnegative, and therefore A𝑆𝜃 = A𝜃, 𝜃 = 1, 2; i.e.,
A𝑆 = A. The DIES analysis is organized mutatis mutandis
as in example 1, by taking a grid constructed for (𝑎, 𝑏) ∈[0, 1] × [0, 1], with a step of 0.02.

Figures 4 and 5 present the DIESD,𝑟1 and the DIESD,𝑟∞ para-
metric domain, respectively, obtained by applying Theorems
4(a) and 4(a), whose numerical implementation required
0.115 seconds and 0.105 seconds, respectively. As mentioned
in the comment on example 1, the application of Theorem 2
together with Theorem 3(i) or 2(iii) would provide the same
domains but at the expense of much longer computation
times.
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Figure 3: Comparative plots of DIESD,𝑟2 parametric domain for example 1 provided by (a) the MATLAB implementation of the old results
summarized in Section 2 (Theorems 2 and 3(ii)); (b) the MATLAB implementation of the new results developed in Section 3 (Theorem 7(b)
and Remark 8).
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Figure 4: Plot ofDIESD,𝑟1 parametric domain for example 2 provided
by the MATLAB implementation of Theorem 4(a) and Remark 6.

The application ofTheorem 2 together withTheorem 3(ii)
yields the DIESD,𝑟2 parametric domain depicted in Figure 6(a)
and requires a computation time of 765.9 seconds. On the
other hand, the application of Theorem 7 requires only 0.23
seconds and yields the DIESD,𝑟2 parametric domain depicted
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Figure 5: Plot ofDIESD,𝑟∞ parametric domain for example 2 provided
bythe MATLAB implementation of Theorem 5(a) and Remark 6.

in Figure 6(b). A direct visual inspection of Figures 3 and 6
shows that the differences between the DIESD,𝑟2 parametric
domains provided by the two theorems (Theorem 7 versus
Theorem 3(ii)) is significantly smaller in example 2 than in
example 1. This comparison consolidates our point of view
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Figure 6: Comparative plots of DIESD,𝑟2 parametric domain for example 2 provided by (a) the MATLAB implementation of the old results
summarized in Section 2 (Theorems 2 and 3(ii)); (b) the MATLAB implementation of the new results developed in Section 3 (Theorem 7(a)
and Remark 8).

on the practical usefulness of Theorem 7, offering a DIESD,𝑟2
sufficient condition, whose computational advantages cannot
be ignored.

5. Conclusions

The current paper presents a novel approach to the character-
ization of DIESD,𝑟𝑝 with 𝑝 ∈ {1, 2,∞}, for arbitrary switching
linear systems modelled by (1-S)//(1-H) and (2), in both
discrete- and continuous-time, based on the usage of row and
column representatives built for the set of nonnegative matri-
ces A𝑆 (discrete-time case) and A𝐻 (continuous-time case),
respectively. This approach explores a theoretical potential
that has not been exploited by previous works, whose main
results are stated in Theorems 2 and 3. For 𝑝 ∈ {1,∞}
Theorems 4 and 5 provide necessary and sufficient conditions
for DIESD,𝑟𝑝 , whereas for 𝑝 = 2 the condition presented in
Theorem 7 is only sufficient for DIESD,𝑟2 . The applicability
of the results is illustrated for concrete numerical examples
which also compare similarities and differences between the
current approach and the older results depicted in Theorems
2 and 3. At the same time, these comparisons highlight a
number of advantages referring to the computational effort
required by the numerical implementation based on the new
results paralleled to previous ones. The use of representatives
theory in DIESD,𝑟𝑝 analysis for 𝑝 ∈ {1, 2,∞} is expected
to be also applicable to linear dynamics with polytopic
uncertainties. Our further research will focus on this class of
systems, aimed at the possible development of results relying

on the same principles as proposed by the current paper for
switching linear systems.

Appendix

A. Notations and Nomenclature

A.1. Matrix Norms, Measures, and Inequalities [28]. For a
vector x = [𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛]𝑇 ∈ R𝑛, ‖x‖𝑝 is the Hölder vector
𝑝-norm defined by ‖x‖𝑝 = (∑𝑛𝑖=1 |𝑥𝑖|𝑝)1/𝑝 for 1 ≤ 𝑝 <∞ and ‖x‖∞ = max𝑖∈{1,...,𝑛}|𝑥𝑖| for 𝑝 = ∞. For a square
matrix M = [𝑚𝑖𝑗] ∈ R𝑛×𝑛, the matrix norm induced by
the vector norm ‖‖𝑝 is ‖M‖𝑝 = supy∈R𝑛 ,y ̸=0‖My‖𝑝/‖y‖𝑝 =
maxy∈R𝑛 ,‖y‖𝑝=1‖My‖𝑝, and 𝜇𝑝(M) = lim𝜃↓0(‖I + 𝜃M‖𝑝 − 1)/𝜃
is the corresponding matrix measure (logarithmic norm).

For a square matrix M ∈ R𝑛×𝑛, 𝜆𝑖(𝑀) ∈ C, 𝑖 = 1, . . . , 𝑛,
denote its eigenvalues; if M is symmetric, then 𝜆𝑖(M) ∈ R,𝑖 = 1, . . . , 𝑛.

Given D = diag{𝑑1, . . . , 𝑑𝑛}, a positive definite diagonal
matrix (i.e., 𝑑𝑖 > 0, 𝑖 = 1, . . . 𝑛), we define the vector
norm ‖x‖D𝑝 = ‖D−1x‖𝑝, the induced matrix norm ‖M‖D𝑝 =
‖D−1MD‖𝑝, and the corresponding matrix measure 𝜇𝐷𝑝 (M) =
lim𝜃↓0(1/𝜃)(‖I + 𝜃M‖D𝑝 − 1). The particular cases when 𝑝 ∈{1, 2,∞} are

‖M‖D1 = max
𝑗∈{1,...,𝑛}

𝑛∑
𝑖=1

𝑑𝑗𝑑𝑖
𝑚𝑖𝑗 ,

𝜇D
1 (M) = max

𝑗∈{1,...,𝑛}

{{{
𝑚𝑗𝑗 +

𝑛∑
𝑖=1,𝑖 ̸=𝑗

𝑑𝑗𝑑𝑖
𝑚𝑖𝑗}}}

,
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‖M‖D2 = √ max
𝑖∈{1,...,𝑛}

{𝜆𝑖 (DM𝑇 (D−1)2MD)},
𝜇D
2 (M) = 1

2 max
𝑖∈{1,...,𝑛}

{𝜆𝑖 (D−1MD + DM𝑇D−1)} ,
‖M‖D∞ = max

𝑖∈{1,...,𝑛}

𝑛∑
𝑗=1

𝑑𝑗𝑑𝑖
𝑚𝑖𝑗 ,

𝜇D
∞ (M) = max

𝑖∈{1,...,𝑛}

{{{
𝑚𝑖𝑖 +

𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑑𝑗𝑑𝑖
𝑚𝑖𝑗}}}

.
(A.1)

For both vectors and matrices, X𝑇 denotes transposition, and
the inequalities X1 ≤ X2, X1 < X2 operate elementwise.

If matrix M ∈ R𝑛×𝑛 is symmetric, then M ≻ 0 (M ⪯ 0)
means M is positive definite (negative semidefinite).

A.2. (Essentially) Nonnegative and Positive Matrices [20]. A
rectangular matrix X = [𝑥𝑖𝑗] ∈ R𝑛×𝑚 is called (i) nonnegative
(notation X ≥ 0) if X ∈ R𝑛×𝑚+ ⇐⇒ 𝑥𝑖𝑗 ≥ 0, 𝑖 = 1, . . . , 𝑛,𝑗 = 1, . . . , 𝑚; (ii) semipositive (notation X > 0) if X ≥ 0 and
X ̸= 0; (iii) positive (notation X ≫ 0) if X ∈ Int(R𝑛×𝑚+ ) ⇐⇒𝑥𝑖𝑗 > 0, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚.

A square matrix X = [𝑥𝑖𝑗] ∈ R𝑛×𝑛 is called essentially
nonnegative (positive) if 𝑥𝑖𝑗 ≥ 0, (𝑥𝑖𝑗 > 0), 𝑖, 𝑗 = 1, . . . , 𝑛,𝑖 ̸= 𝑗.
A.3. Eigenstructure of (Essentially) Nonnegative Matrices [20].
Let M ∈ R𝑛×𝑛 be (essentially) nonnegative and let 𝜆𝑖(M),𝑖 = 1, . . . , 𝑛, denote its eigenvalues. (i) M nonnegative has
a real eigenvalue 𝜆max(M) such that |𝜆𝑖(M)| ≤ 𝜆max(M),𝑖 = 1, ..., 𝑛. (ii)M essentially nonnegative has a real eigenvalue𝜆max(M), such that Re{𝜆𝑖(M)} ≤ 𝜆max(M), 𝑖 = 1, ..., 𝑛. (iii) M
(essentially) nonnegative has a nonnegative right eigenvector
w𝑅(M) > 0, satisfying ‖w𝑅(M)‖1 = 1, and a nonnegative
left eigenvector w𝐿(M) > 0, satisfying ‖w𝐿(M)‖1 = 1,
that correspond to the eigenvalue 𝜆max(M). (iv) M (essen-
tially) nonnegative and irreducible (i.e., its associated graph
is strongly connected) has 𝜆max(M) simple eigenvalue and
w𝑅(M) ≫ 0, w𝐿(M) ≫ 0 (Perron-Frobenius eigenstructure).

M ∈ R𝑛×𝑛 is called an M-matrix if it has the form M =𝑠I − X, X ≥ 0, 𝑠 ≥ 𝜆max(X).
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