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Model reduction can greatly reduce complexity and difficulty of control design for spatiotemporal systems (STS) in engineering
applications. Empirical eigenfunctions (EEFs) are widely used for the model reduction of spatiotemporal systems, however,
truncation of higher modes may describe the behaviours of nonlinear spatiotemporal systems inaccurately. In this paper, modified
EEFs are proposed and applied tomodel reduction of nonlinear spatiotemporal systems. Modified EEFs are obtained viamodifying
the weights matrix in the method of snapshots, which can be rewritten as linear combinations of initial EEFs. The coefficient
matrix for combinations is computed according to the nonlinear temporal dynamics of STSs. Thus, the effects of higher modes are
considered into modified EEFs with less computational requirements. The reduced model can give a more accurate description
for behaviours of the system. The performance of the proposed method is further proved theoretically, and a numerical example
demonstrates the effectiveness of the proposed method.

1. Introduction

With their nonuniformly distributed dynamics in space,
many engineering problems belong to a class of nonlin-
ear spatiotemporal systems (STSs) or distributed parameter
systems (DPSs). Their infinite-dimensional spatiotemporal
coupling and complex nonlinear behavioursmakemodelling,
system analysis, numerical simulations and control design
very difficult. Thus, model reduction for nonlinear STSs
at a reasonable cost and accuracy has a great significance
in practical engineering applications. Empirical eigenfunc-
tions (EEFs) identified by proper orthogonal decomposition
(POD) [1] are widely used as global spatial basis functions
in advanced methods for model reduction of nonlinear STSs
[2–8]. Modes obtained from POD can be calculated quite
easily as the solutions of an eigenvalue problem involving
second-order correlation tensors. When establishing a low-
dimensional dynamic model, few POD modes are used to
capture the dominant dynamics of nonlinear STSs according
to the energetic optimality. However, the traditional POD is a
linear dimension reduction (i.e., linear projection and linear

reconstruction) method, and it produces a linear approxi-
mation to the measured data with nonlinear spatiotemporal
structure, which may not guarantee the assumption that
minor components do not contain important information.
As a result, truncation of higher modes with small “energies”
may have great influences on accuracy of the reduced model
[9]. Without considering the effects of higher modes, the
reduced dynamic model will give an inaccurate description
for the spatiotemporal dynamic behaviours of STSs.

This situation has been addressed in some literatures.
With more computational power for training, the nonlinear
dimension reduction method named nonlinear POD was
developed for nonlinear problems to retain more infor-
mation using fewer components. The nonlinear POD has
a more powerful capability of dimension reduction than
the traditional POD for nonlinear systems. This method
has been widely used to deal with the nonlinear dimen-
sion reduction problems in the field of machine learning,
image processing and pattern recognition. Examples include
principal curves, multilayer autoassociative neural networks,
kernel function approach, and radial basis function(RBF)
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networks. ISOMAP-based spatiotemporalmodelling [10] and
LLE- based nonlinear spatiotemporal modelling [11] are also
proposed to improve the performance of POD-based reduced
mode in recent years. However, these methods mainly focus
on the reduction and analysis of multivariate time series or
the order reduction of DPSs with no analytical models [12].

To deal with the inaccuracy of traditional POD method,
some literatures related to fluid dynamics are also given. In
1990s, Aubry [13] and Armbruster [14] respectively pointed
out that the reduced models using the first several EEFs can
have difficulties reproducing behaviours dominated by irreg-
ular transitions between different dynamical states. In 2003,
Noack [15] had found that the low-dimensional Galerkin
model by traditional POD method cannot approximate the
transient behaviours of flow around a circular cylinder well.
He introduced a new “shift mode” to improve the perfor-
mance of the low-dimensional model, which incorporates the
steady solution in the POD framework. In 2010, Sengupta [16]
built the relationship of instability modes with POD modes
in the study of global spatiotemporal nonlinear instabilities
for flow past a cylinder. In recent years, the effects of higher
modes are highlighted [17] and discussed [18] in the field
of fluid dynamic systems. Some approaches such as spectral
viscosity method [19] and variational multiscale model [20]
based on the traditional POD are developed to deal with the
problems. However, some additional empirical parameters
are introduced into these methods for model correction, and
their optimizations depend on specific problems. Another
important method to improve the accuracy and dynamical
system properties of POD-based reduced order models is
sensitivity-based enhancement of modes [21–23], which uses
sensitivity analysis (SA) to include the flow and shape param-
eters influence during the basis selection process to develop
more robust reduced order models for varying parameters.
It has shown promising results for parametric variation due
to richness in the eigenfunctions and presents modified
eigenfunctions though in a different setting.

To introduce the effects of higher modes into the POD-
based reduced model, nonlinear closure modelling [24, 25],
nonlinear Galerkin method, and improved EEFs [26–28] are
proposed to improve the model reduction performance. The
higher modes contain relatively low energies but play a vital
role in the overall dynamics of complex flows. Nonlinear
closure modelling [24, 25] enhances the performance of
POD-based reduced order model at low computational cost.
Though it still remains a challenging task for 3D turbulent
flows, closure modelling already shows promising results for
Burgers’ equation and the Navier-Stokes equations. Nonlin-
ear Galerkin method considers the effects of higher modes
via approximate inertial manifolds (AIM) [26] and is used
to approximate the nonlinear DPSs for fluids systems. The
space spanned by EEFs is split into two subspaces and the
interactions between lower and higher modes are built via
AIM to compensate the modelling accuracy. However, the
calculations forAIM in thismethod are theoretically complex
and computational power-consuming. The improved EEFs
[28] use the transformation for initial EEFs from traditional
POD to derive a new set of basis functions, while the transfor-
mation matrix is obtained according to balanced truncation

method for an approximated linear temporal system of a
STS. This method introduces the dynamical information of
higher modes into new basis functions to derive the reduced
model. Because the transformation matrix is obtained from
the linear approximation for nonlinear dynamics of the STS,
thismethod can be improved by utilizing the global nonlinear
dynamics directly to calculate the matrix.

In this paper, modified EEFs are developed and applied to
model reduction of nonlinear STSs. The EEFs are modified
by introducing an extra weights matrix into the method of
snapshots, which is commonly used to calculate the EEFs in
traditional POD.This procedure transforms the derivation of
modified EEFs to linear combinations of initial EEFs, where
the coefficients matrix is computed directly according to the
nonlinear temporal dynamics of STSs. Thus, the effects of
higher modes are considered into modified EEFs and give a
better accuracy of the reduced-ordermodel.The effectiveness
of the proposed method is proved theoretically. This method
requires less computational consumption and a numerical
example shows that it has a better performance than the
improved EEFs based modelling [28].

2. EEFs Based Model Reduction for STSs

Assuming that a kind of nonlinear STSs can be governed by
a partial differential equation (PDE) with the following state
description:

𝜕𝑋𝜕𝑡 = A𝑋 +B𝑈 +F(𝑋, 𝜕𝑋𝜕𝑧 , ⋅ ⋅ ⋅ ,𝑈, 𝜕𝑈𝜕𝑧 , ⋅ ⋅ ⋅) (1)

subject to a number of boundary and initial conditions. In
(1),𝑋 = 𝑋(𝑧, 𝑡) denotes the vector of state variable, where 𝑡 ∈[0,∞) is the time variable, 𝑧 ∈ Ω is the spatial coordinate, and
only one spatial-dimension is considered here. 𝑈 = 𝑈(𝑧, 𝑡)
denotes the vector of manipulated spatio-temporal inputs,
where 𝑈 = ∑𝑚𝑖=1 ℎ𝑖(𝑧)𝑢𝑖(𝑡) and 𝑢𝑖(𝑡) is the 𝑖th temporal
signal with certain spatial distributionℎ 𝑖(𝑧).A andB are two
linear operators that involve linear spatial derivatives on the
state variable and spatiotemporal input. 𝜕𝑋/𝜕𝑧 and 𝜕𝑈/𝜕𝑧
denote the partial derivatives of𝑋 and𝑈, respectively.F is a
nonlinear function containing spatial derivatives for𝑋 and𝑈.
A scalar product is defined on spatial domain Ω introduced
in the phase space of (1), which is given by (𝑓(𝑧),𝑔(𝑧))Ω =∫
Ω
𝑓(𝑧)𝑔(𝑧)𝑑𝑧.
The spatiotemporal variable 𝑋(𝑧, 𝑡) is assumed to be

expanded onto the set of EEFs {𝜑1(𝑧), 𝜑2(𝑧), ⋅ ⋅ ⋅ , 𝜑𝑁(𝑧)}
(the computational details are given in Appendix) with
corresponding temporal coefficients

𝑋 (𝑧, 𝑡) = 𝑁∑
𝑖=1

𝑥𝑖 (𝑡) 𝜑𝑖 (𝑧) . (2)

Suppose that the spatial-temporal output 𝑌(𝑧, 𝑡) is mea-
sured at 𝑀 spatial locations. Substituting the expansion (2)
into (1) and taking the inner product with 𝜑𝑖(𝑧) (orthogonal-
ity), the integration of equation will give a finite-dimensional
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nonlinear ordinary differential equation (ODE) system in a
general form as follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑥 (𝑡) ,𝑢 (𝑡))
𝑦 (𝑡) = 𝑆𝑥 (𝑡) (3)

where 𝑥(𝑡) = [𝑥1(𝑡),𝑥2(𝑡), ⋅ ⋅ ⋅ ,𝑥𝑁(𝑡)]𝑇 with 𝑥𝑖(𝑡) is the tem-
poral coefficient and𝑦(𝑡) = [𝑌(𝑧1, 𝑡),𝑌(𝑧2, 𝑡), ⋅ ⋅ ⋅ ,𝑌(𝑧𝑀, 𝑡)]𝑇
with 𝑌(𝑧𝑖, 𝑡) denotes the measured output on the location 𝑧𝑖.

The matrices and the nonlinear terms in (3) are given as
follows:

𝐴 = {𝐴𝑖𝑗}𝑁×𝑁 , 𝐴𝑖𝑗 = (A𝜑𝑗 (𝑧) , 𝜑𝑖 (𝑧))Ω ,
𝐵 = {𝐵𝑖𝑗}𝑁×𝑁 , 𝐵𝑖𝑗 = (B𝜑𝑗 (𝑧) , 𝜑𝑖 (𝑧))Ω ,
𝑆 = {𝑆𝑖𝑗}𝑀×𝑁 , 𝑆𝑖𝑗 = 𝜑𝑗 (𝑧𝑖) ,

(4)

where 𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑀 are the spatial locations.

𝑓 (𝑥 (𝑡) ,𝑢 (𝑡)) = [𝑓1 (𝑥 (𝑡) , 𝑢 (𝑡)) ,𝑓2 (𝑥 (𝑡) , 𝑢 (𝑡)) , ⋅ ⋅ ⋅ ,
𝑓𝑁 (𝑥 (𝑡) , 𝑢 (𝑡))]𝑇 (5)

is the vector of nonlinear terms with

𝑓𝑖 (𝑥 (𝑡) , 𝑢 (𝑡))= (F(𝑋, 𝜕𝑋𝜕𝑧 , ⋅ ⋅ ⋅ ,𝑈, 𝜕𝑈𝜕𝑧 , ⋅ ⋅ ⋅) , 𝜑𝑖 (𝑧))Ω . (6)

The EEFs-based modeling could be one of the most
commonly used DPS modeling methods. It has been applied
to system analysis, model reduction, simulations for many
complex processes. However, truncation of higher modes
with critical dynamics information will greatly influence the
model reduction performance in many situations.

3. Modified EEFs and Its Applications for
Model Reduction

3.1.TheModifiedPrinciple. It is assumed that {𝑌(𝑙)(𝑧)} denote
the ensemble data on space location 𝑧 in the method of
snapshots, where 𝑙 is the time sampling point. EEFs is
usually calculated in the situation that 𝑁𝑇𝑖𝑚, the number of
grid points for each snapshots, is much larger than 𝑁, the
total number of the ensemble {𝑌(𝑙)(𝑧)}. It is computationally
advantageous to transform the calculation of EEFs as a𝑁×𝑁
eigenvalue problem. Thus, the 𝑛 th EEFs of the eigenvalue
problem (Appendix, (A.6)) can be reconstructed from the
coefficients 𝑐𝑛𝑗 and eigenvalue 𝜆𝑛 via

𝜑𝑛 (𝑧) = 1𝜆𝑛𝑁 [𝑐𝑛1 ⋅ ⋅ ⋅ 𝑐𝑛𝑁] [[[[[
𝑌(1) (𝑧)...
𝑌(𝑁) (𝑧)

]]]]] . (7)

The maximum number of the EEFs in the eigenvalue
problem is𝑁, which can be given as follows:

[[[[[
𝜑1 (𝑧)...𝜑𝑁 (𝑧)

]]]]] = 1
𝑁

𝐶
[[[[[
𝑌(1) (𝑧)...
𝑌(𝑁) (𝑧)

]]]]] (8)

where

𝐶 = [[[[[[[[[

𝑐11𝜆1 ⋅ ⋅ ⋅ 𝑐1𝑁𝜆1... ...
𝑐𝑁1𝜆𝑁 ⋅ ⋅ ⋅ 𝑐𝑁𝑁𝜆𝑁

]]]]]]]]]
. (9)

If the first 𝑘 EEFs in (8) are truncated formodel reduction
of STSs, then we have

[[[[[
𝜑1 (𝑧)...𝜑𝑘 (𝑧)

]]]]] = 1
𝑁

𝐶(1)
[[[[[
𝑌(1) (𝑧)...
𝑌(𝑁) (𝑧)

]]]]] , (10)

[[[[[
𝜑𝑘+1 (𝑧)...𝜑𝑁 (𝑧)

]]]]] = 1
𝑁

𝐶
(2)
[[[[[
𝑌(1) (𝑧)...
𝑌(𝑁) (𝑧)

]]]]] , (11)

where 𝑘 ≤ 𝑁 and

𝐶
(1) = [[[[[[[[[

𝑐11𝜆1 ⋅ ⋅ ⋅ 𝑐1𝑁𝜆1... ...
𝑐𝑘1𝜆𝑘 ⋅ ⋅ ⋅ 𝑐𝑘𝑁𝜆𝑘

]]]]]]]]]
, (12)

𝐶
(2) = [[[[[[[[[

𝑐𝑘+11𝜆𝑘+1 ⋅ ⋅ ⋅ 𝑐𝑘+1𝑁𝜆𝑘+1... ...
𝑐𝑁1𝜆𝑁 ⋅ ⋅ ⋅ 𝑐𝑁𝑁𝜆𝑁

]]]]]]]]]
. (13)

However, truncation of high modes in (8) may have a
great influence on performance of the EEF-based reduced
model. The solution of obtained nonlinear dynamic systems
will have high-sensitive dependence onperturbations, a slight
perturbation (e.g., inappropriate truncation of highermodes)
would lead to topological changes of the dynamic system.
Thus, the modified EEFs are given by adding an extra weight
matrix 𝑄 into (8)

[[[[[
𝜙1 (𝑧)...𝜙𝑘 (𝑧)

]]]]] = 1
𝑁

𝑄𝐶
[[[[[
𝑌(1) (𝑧)...
𝑌(𝑁) (𝑧)

]]]]] , (14)
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where

𝑄 = [[[[
𝑄11 ⋅ ⋅ ⋅ 𝑄1𝑁... ...
𝑄𝑘1 ⋅ ⋅ ⋅ 𝑄𝑘𝑁

]]]] . (15)

The modified EEFs (14) can be rewritten as follows:

[[[[
𝜙1 (𝑧)...𝜙𝑘 (𝑧)

]]]] = 1
𝑁

[𝑄(1) 𝑄(2)] [𝐶(1)
𝐶(2)

][[[[
𝑌(1) (𝑧)...
𝑌(𝑁) (𝑧)

]]]]
= 1

𝑁
𝑄
(1)
𝐶
(1) [[[[

𝑌(1) (𝑧)...
𝑌(𝑁) (𝑧)

]]]]
+ 1

𝑁
𝑄(2)𝐶(2)

[[[[
𝑌(1) (𝑧)...
𝑌(𝑁) (𝑧)

]]]]

(16)

where

𝑄
(1) = [[[[

𝑄11 ⋅ ⋅ ⋅ 𝑄1𝑘... ...
𝑄𝑘1 ⋅ ⋅ ⋅ 𝑄𝑘𝑘

]]]] ,
𝑄
(2) = [[[[

𝑄1𝑘+1 ⋅ ⋅ ⋅ 𝑄1𝑁... ...
𝑄𝑘𝑘+1 ⋅ ⋅ ⋅ 𝑄𝑘𝑁

]]]] .
(17)

Substituting (10) and (11) into (16), the modified EEFs are
obtained from the first 𝑘 EEFs and truncated higher modes
as follows:

[[[[
𝜙1 (𝑧)...𝜙𝑘 (𝑧)

]]]] = 𝑄
(1) [[[[

𝜑1 (𝑧)...𝜑𝑘 (𝑧)
]]]] +𝑄

(2) [[[[
𝜑𝑘+1 (𝑧)...𝜑𝑁 (𝑧)

]]]] . (18)

It is clear that theweights of initial EEFs in (8) are changed
from𝐶 to𝑄𝐶. Andwe can find that eachmodified EEFs is the
linear combination of initial 𝑁 EEFs as follows:𝜙𝑖 (𝑧) = 𝑄𝑖1𝜑1 (𝑧) +𝑄𝑖2𝜑2 (𝑧) + ⋅ ⋅ ⋅ +𝑄𝑖𝑁𝜑𝑁 (𝑧) , (19)

where 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑘. This relationship of modified EEFs and
initial EEFs can be rewritten in the following:{𝜙1 (𝑧) , 𝜙2 (𝑧) , ⋅ ⋅ ⋅ , 𝜙𝑘 (𝑧)}= {𝜑1 (𝑧) , 𝜑2 (𝑧) , ⋅ ⋅ ⋅ , 𝜑𝑁 (𝑧)}𝑄𝑇 (20)

where 𝑘 < 𝑛 and 𝑄 denotes the matrix of combined
coefficients. The modified EEFs is transformed from initial
EEFs using (20), which number is smaller than that of
initial EEFs. This indicates that new reduced model based
on modified EEFs will have fewer modes compared with the
set of initial 𝑁 EEFs-based models. The coefficients’ matrix
is derived from the nonlinear temporal dynamics of DPSs to
introduce the information of highermodes tomodified EEFs.

3.2. The Calculations of Coefficients’ Matrix. Let 𝑇𝑃 = {𝑇1,
𝑇2, ⋅ ⋅ ⋅ ,𝑇𝑟1 ; 𝑇𝑇𝑖 𝑇𝑖 = 𝐼, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑟1} be a set of 𝑟1
orthogonal 𝑁 × 𝑁 matrices, where 𝑟1 denotes the num-
ber of matrices for excitation/perturbation directions. Let
𝑀𝑠1 = {𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑠1 ; 𝑐𝑖>0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑠1} be a set of 𝑠1
positive constants, where 𝑠1 denotes the number of different
excitation/perturbation sizes for each direction. Let 𝐸𝑃 ={𝑒1, 𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑝} be 𝑝 standard unit vectors in R𝑝, where 𝑝
denotes the number of inputs. Given a function 𝑥(𝑡), define
the mean by

⟨𝑥 (𝑡)⟩ = lim
𝑇󳨀→∞

1
𝑇
∫𝑇
0
𝑥 (𝑡)𝑑𝑡. (21)

The definitions of empirical controllability and observ-
ability matrices calculated according to the dynamical system
(3) are given to compute the coefficients’ matrix. The empiri-
cal controllability matrix [29–31] is defined by

𝑊̂𝐶 = 𝑟1∑
𝑙=1

𝑠1∑
𝑚=1

𝑝∑
𝑖=1

1
𝑟1 ⋅ 𝑠1 ⋅ 𝑐2𝑚 ∫∞0 Φ𝑖𝑙𝑚 (𝑡)𝑑𝑡, (22)

whereΦ𝑖𝑙𝑚(𝑡) ∈ R𝑁×𝑁 is given byΦ𝑖𝑙𝑚 (𝑡) = (𝑥𝑖𝑙𝑚 (𝑡) − 𝑥
𝑖𝑙𝑚) (𝑥𝑖𝑙𝑚 (𝑡) − 𝑥

𝑖𝑙𝑚)𝑇 . (23)

𝑥𝑖𝑙𝑚(𝑡) and 𝑥𝑖𝑙𝑚 are the state and mean state of𝑁 th dynam-
ical system corresponding to the impulsive input 𝑢(𝑡) =
𝑐𝑚𝑇𝑙𝑒𝑖𝛿(𝑡), which is the system trajectory resulting from
different excitations. The empirical controllability matrix
𝑊̂𝑐 has the property that its eigenvectors corresponding to
nonzero eigenvalues span a subspace which contains the set
of states reachable using the chosen initial impulsive inputs.

Let 𝑇𝑁 = {𝑇1,𝑇2, ⋅ ⋅ ⋅ ,𝑇𝑟2 ; 𝑇𝑇𝑖 𝑇𝑖 = 𝐼, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑟2} be a
set of 𝑟2 orthogonal 𝑁 × 𝑁 matrices, where 𝑟2 denotes the
number of matrices for excitation/perturbation directions.
Let 𝑀𝑠2 = {𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑠2 ; 𝑐𝑖 > 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑠2} be a
set of 𝑠2 positive constants, where 𝑠2 denotes the number of
different excitation/perturbation sizes for each direction. Let
𝐸𝑁 = {𝑒1, 𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑁} be𝑁 standard unit vectors inR𝑁. The
empirical observability matrix [29–31] is the analogue of the
previous one for the output behaviors of the nonlinear system,
which is defined by

𝑊̂𝑂 = 𝑟2∑
𝑙=1

𝑠2∑
𝑚=1

1
𝑟2 ⋅ 𝑠2 ⋅ 𝑐2𝑚 ∫∞0 𝑇𝑙Ψ𝑙𝑚 (𝑡)𝑇𝑇𝑙 𝑑𝑡 (24)

whereΨ𝑙𝑚(𝑡) ∈ R𝑁×𝑁 is given byΨ𝑙𝑚𝑖𝑗 (𝑡) = (𝑦𝑖𝑙𝑚 (𝑡) − 𝑦
𝑖𝑙𝑚)𝑇 (𝑦𝑖𝑙𝑚 (𝑡) − 𝑦

𝑖𝑙𝑚) . (25)

𝑦𝑖𝑙𝑚(𝑡) and 𝑦𝑖𝑙𝑚 are the output and mean output of 𝑁 th
dynamical system corresponding to the initial condition 𝑥0 =
𝑐𝑚𝑇𝑙𝑒𝑙 with 𝑢(𝑡) = 0, which is the system trajectory resulting
from different perturbations in the initial conditions with the
steady inputs.

Each of the empirical matrices can be diagonalized by
a linear coordinate transformation. This can be done for
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an empirical matrix by determining the eigenvectors and
corresponding eigenvalues of the matrix [29–31]. If the
diagonalized ones of thematrices are equal, then the system is
said to be in balanced form and the transformation is called a
balancing transformation. The balancing-like transformation
[30, 32] is used within a Galerkin projection in order to trans-
form the matrices 𝑊̂𝐶, 𝑊̂𝑂 into the balanced form 𝑊𝐶,𝑊𝑂.
The calculations of transformation can be formulated as
finding an invertible state transformation that makes two
symmetric positive semidefinite matrices diagonal and equal
in the states that are both controllable and observable. The
proof that such a transformation exists is given by Zhou
and Doyle [33]. The transformation 𝑄 that diagonalizes the
matrices and balances the states that are both observable and
controllable is shown as follows:

𝑄𝑊̂𝐶𝑄
𝑇 = (𝑄−1)𝑇 𝑊̂𝑂𝑄−1 = diag (𝜎1, 𝜎2, ⋅ ⋅ ⋅ , 𝜎𝑁) (26)

where 𝑄 denotes the balanced transformation matrix, 𝜎1 ≥𝜎2 ≥ ⋅ ⋅ ⋅ ≥ 𝜎𝑁 ≥ 0, and 𝜎𝑖’s are the Hankel singular
values. The computations for the balanced transformation
matrix𝑄 according to the matrices 𝑊̂𝐶, 𝑊̂𝑂 are given by Lall
[30]. The state-coordinates of the nonlinear systems can be
changed and truncated using the Galerkin projection. The
rowof𝑄maybe thought of as giving the ‘modes’ of the system
associated with Hankel singular values. Thus, the coefficients
matrix in (20) is set to be 𝑄 = 𝑄(:, 1:𝑘)𝑇 with the MATLAB
style colon notation, which is the transposition of first 𝑘

columns of transformation matrix 𝑄.

3.3. Modified EEFs Based Model Reduction. The spatiotem-
poral variable of PDE (1) can be expanded onto the modified
EEFs 𝜙𝑖(𝑧) with corresponding temporal coefficients 𝑥𝑖(𝑡) as
follows:

𝑋 (𝑧, 𝑡) ≈ 𝑘∑
𝑖=1

𝑥𝑖 (𝑡) 𝜙𝑖 (𝑧) . (27)

For (1), the following is derived:
𝑘∑
𝑖=1

𝑥̇𝑖 (𝑡) 𝜙𝑖 (𝑧) = A( 𝑘∑
𝑖=1

𝑥𝑖 (𝑡) 𝜙𝑖 (𝑧))
+B( 𝑚∑

𝑖=1

𝑢𝑖 (𝑡) ℎ𝑖 (𝑧)) +F( 𝑘∑
𝑖=1

𝑥𝑖 (𝑡) 𝜙𝑖 (𝑧) ,
𝜕 (∑𝑘𝑖=1 𝑥𝑖 (𝑡) 𝜙𝑖 (𝑧))𝜕𝑧 , ⋅ ⋅ ⋅ , 𝑚∑

𝑖=1

𝑢𝑖 (𝑡) ℎ𝑖 (𝑧) ,
𝜕 (∑𝑚𝑖=1 𝑢𝑖 (𝑡)ℎ𝑖 (𝑧))𝜕𝑧 , ⋅ ⋅ ⋅) .

(28)

Using the Galerkin method, the following is then
obtained:∫
Ω

𝑘∑
𝑖=1

𝑥̇𝑖 (𝑡) 𝜙𝑖 (𝑧) 𝜙𝑗 (𝑧)𝑑𝑧
= ∫
Ω
(A( 𝑘∑

𝑖=1

𝑥𝑖 (𝑡) 𝜙𝑖 (𝑧))

+B( 𝑚∑
𝑖=1

𝑢𝑖 (𝑡) ℎ𝑖 (𝑧)))𝜙𝑗 (𝑧)𝑑𝑧
+ ∫
Ω
F( 𝑘∑
𝑖=1

𝑥𝑖 (𝑡) 𝜙𝑖 (𝑧) , 𝜕 (∑𝑘𝑖=1 𝑥𝑖 (𝑡) 𝜙𝑖 (𝑧))𝜕𝑧 , ⋅ ⋅ ⋅ ,
𝑚∑
𝑖=1

𝑢𝑖 (𝑡)ℎ𝑖 (𝑧) , 𝜕 (∑𝑚𝑖=1 𝑢𝑖 (𝑡)ℎ𝑖 (𝑧))𝜕𝑧 , ⋅ ⋅ ⋅)
⋅ 𝜙𝑗 (𝑧)𝑑𝑧.

(29)

This will transform (29) into the following ODE system:

𝑥̇ (𝑡) = 𝐷
−1
𝐴𝑥 (𝑡) +𝐷

−1
𝐵𝑢 (𝑡) +𝐷

−1
𝑔 (𝑥 (𝑡) , 𝑢 (𝑡))

𝑦 (𝑡) = 𝐶𝑥 (𝑡) (30)

where the 𝐷−1 denotes the inverse matrix of𝐷,

𝑥 (𝑡) = [𝑥1 (𝑡) ,𝑥2 (𝑡) , ⋅ ⋅ ⋅ ,𝑥𝑘 (𝑡)]𝑇 ,
𝑢 (𝑡) = [𝑢1 (𝑡) , 𝑢2 (𝑡) , ⋅ ⋅ ⋅ , 𝑢𝑚 (𝑡)]𝑇 ,
𝑔 (𝑥 (𝑡) ,𝑢 (𝑡)) = [𝑔1 (𝑥 (𝑡) , 𝑢 (𝑡)) , ⋅ ⋅ ⋅ ,𝑔𝑘 (𝑥 (𝑡) ,

𝑢 (𝑡))]𝑇 ,
𝑔𝑖 (𝑥 (𝑡) , 𝑢 (𝑡)) = ∫

Ω
F( 𝑘∑
𝑖=1

𝑥𝑖 (𝑡) 𝜙𝑖 (𝑧) ,
𝜕 (∑𝑘𝑖=1 𝑥𝑖 (𝑡) 𝜙𝑖 (𝑧))𝜕𝑧 , ⋅ ⋅ ⋅ , 𝑚∑

𝑖=1

𝑢𝑖 (𝑡)ℎ𝑖 (𝑧) ,
𝜕 (∑𝑚𝑖=1 𝑢𝑖 (𝑡)ℎ𝑖 (𝑧))𝜕𝑧 , ⋅ ⋅ ⋅)𝜙𝑗 (𝑧)𝑑𝑧.

(31)

Letting 𝑄𝑖 denotes the 𝑖 th row of the coefficient matrix
𝑄, then the elements of matrices 𝐷,𝐴,𝐵,𝐶 can be calculated
as follows:

𝐷𝑖𝑗 = ∫
Ω
𝜙𝑖 (𝑧) 𝜙𝑗 (𝑧)𝑑𝑧

= 𝑁∑
𝑙=1

𝑄𝑖𝑙𝑄𝑗𝑙 ∫
Ω
𝜑𝑖 (𝑧) 𝜑𝑗 (𝑧)𝑑𝑧 = 𝑄𝑖𝑄

𝑇
𝑗 ,

𝐴𝑖𝑗 = ∫
Ω
A (𝜙𝑗 (𝑧)) 𝜙𝑖 (𝑧)𝑑𝑧

= ∫
Ω
A( 𝑁∑
𝑙=1

𝑄𝑗𝑙𝜑𝑙 (𝑧))( 𝑁∑
𝑙=1

𝑄𝑖𝑙𝜑𝑙 (𝑧))𝑑𝑧

= 𝑄𝑖𝐴𝑄
𝑇
𝑗 ,
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𝐵𝑖𝑗 = ∫
Ω
B (ℎ𝑗 (𝑧)) 𝜙𝑖 (𝑧)𝑑𝑧

= ∫
Ω
B (ℎ𝑗 (𝑧)) ( 𝑁∑

𝑙=1

𝑄𝑖𝑙𝜑𝑙 (𝑧))𝑑𝑧 = 𝑄𝑖𝐵𝑗,
𝐶𝑖𝑗 = 𝜙𝑗 (𝑧𝑖) = [𝑆𝑖1 𝑆𝑖2 ⋅ ⋅ ⋅ 𝑆𝑖𝑁]𝑄𝑇𝑗 .

(32)

For simplicity, the equation can be derived as

𝑥̇ (𝑡) = 𝐴𝑙𝑥 (𝑡) + 𝐵𝑙𝑢 (𝑡) + 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡))
𝑦 (𝑡) = 𝐶𝑙𝑥 (𝑡) (33)

where𝐴𝑙 = 𝐷−1𝐴, 𝐵𝑙 = 𝐷−1𝐵, and 𝐶𝑙 = 𝐶,

𝑓 (𝑥 (𝑡) ,𝑢 (𝑡)) = 𝐷
−1
𝑔 (𝑥 (𝑡) , 𝑢 (𝑡)) . (34)

3.4. Model Reduction Performances. The effectiveness of
the improved EEFs in our previous work was proofed
in [28], and model reduction performance of modified
EEFs can be given in a similar way. Suppose that there
are enough sensors for measurements and 𝑌𝑃(𝑧, 𝑡)
denotes the predicted spatiotemporal variable for
𝑋(𝑧, 𝑡). Let 𝑌𝑗 = [𝑌(𝑧1, 𝑡𝑗),𝑌(𝑧2, 𝑡𝑗), ⋅ ⋅ ⋅ ,𝑌(𝑧𝑀, 𝑡𝑗)]𝑇
and 𝑌𝑃𝑗 = [𝑌𝑃(𝑧1, 𝑡𝑗),𝑌𝑃(𝑧2, 𝑡𝑗), ⋅ ⋅ ⋅ ,𝑌𝑃(𝑧𝑀, 𝑡𝑗)]𝑇 be the
measured data of spatiotemporal variable 𝑌(𝑧, 𝑡) and𝑌𝑃(𝑧, 𝑡)
at 𝑀 spatial locations 𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑀 and the sampling times
𝑡𝑗, respectively. To evaluate themodel reduction performance
at any sampling time 𝑡𝑗 by using modified EEFs and initial
EEFs, the root-square error (RSE) as a performance index is
introduced for comparisons

𝑅𝑆𝐸 = √𝑀∑
𝑙=1

𝑒 (𝑧𝑖, 𝑡𝑗)2, (35)

where 𝑒(𝑧𝑙, 𝑡𝑗) = 𝑌(𝑧𝑙, 𝑡𝑗) − 𝑌𝑃(𝑧𝑙, 𝑡𝑗). The effectiveness
of model reduction with the modified EEFs is given in the
following theorem.

Theorem 1. Given an coefficient matrix 𝑄 obtained in Sec-
tion 3.2, then the RSE based on 𝑘 modified EEFs is smaller
than that based on 𝑘 initial EEFs at any sampling time
𝑡𝑗 if 𝐸(𝑄𝑄𝑇)−1𝑄𝐸1𝐸2𝑄

𝑇(𝑄𝑄𝑇)−1 𝐸 is negative semidefinite,
where𝐸 is a diagonalmatrix with𝐸𝑖𝑖 = 𝑄𝑖𝑄

𝑇
𝑖 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑘,

and

𝐸1 = (𝐼𝑘 00 0𝑁−𝑘) − 𝑄
𝑇
𝐸
−1
𝑄,

𝐸2 = (𝐼𝑘 00 2𝐼𝑁−𝑘) −𝑄
𝑇
𝐸
−1
𝑄. (36)

Proof. From POD decomposition for the measured spa-
tiotemporal observation at the sampling time 𝑡𝑗, we have

𝑌𝑗 = 𝑌 + 𝑁∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖. (37)

The predicted output based on 𝑘 initial EEFs at the
sampling time 𝑡𝑗 is as follows:

𝑌𝐼𝐸𝑗 = 𝑌 + 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖. (38)

The predicted output based on 𝑘 modified EEFs at
sampling time 𝑡𝑗 can be expressed as follows:

𝑌𝐸𝐸𝑗 = 𝑌 + 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜙𝑖. (39)

The RSE with 𝑘 initial EEFs is defined as

𝐺𝐼𝐸 (𝑡𝑗) = √ 𝑀∑
𝑙=1

( 𝑁∑
𝑖=𝑘+1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙))2. (40)

The RSE with 𝑘modified EEFs is defined as

𝐺𝐸𝐸 (𝑡𝑗)
= √ 𝑀∑
𝑙=1

( 𝑁∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙) − 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜙𝑖 (𝑧𝑙))2. (41)

To prove that 0 ≤ 𝐺𝐸𝐸(𝑡𝑗) < 𝐺𝐼𝐸(𝑡𝑗), only the following
inequality has to be proved:(𝐺𝐸𝐸 (𝑡𝑗))2 < (𝐺𝐼𝐸 (𝑡𝑗))2 . (42)

Substituting (40) and (41) into (42) yields

𝑀∑
𝑙=1

( 𝑁∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙) − 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜙𝑖 (𝑧𝑙))2
< 𝑀∑
𝑙=1

( 𝑁∑
𝑖=𝑘+1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙))2 . (43)

Then, we have

𝑀∑
𝑙=1

(( 𝑁∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙) − 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜙𝑖 (𝑧𝑙))2
− ( 𝑁∑
𝑖=𝑘+1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙))2) < 0. (44)

And the following inequality can be derived:

𝑀∑
𝑙=1

{( 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙) − 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜙𝑖 (𝑧𝑙))
⋅ ( 𝑁∑
𝑖=𝑘+1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙) + 𝑁∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙)
− 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜙𝑖 (𝑧𝑙))} < 0.
(45)
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Note that

𝑦𝑖 (𝑡𝑗) = (𝑌 (𝑧, 𝑡) − 𝑌, 𝜙𝑖)(𝜙𝑖, 𝜙𝑖) (46)

where (𝜙𝑖, 𝜙𝑖) = (∑𝑁𝑗=1𝑄𝑖𝑗𝜑𝑗, ∑𝑁𝑗=1𝑄𝑖𝑗𝜑𝑗) = 𝑄𝑖𝑄
𝑇
𝑖 ,

(𝑌 (𝑧, 𝑡) − 𝑌, 𝜙𝑖) = (𝑌 (𝑧, 𝑡) − 𝑌, 𝑁∑
𝑗=1

𝑄𝑖𝑗𝜑𝑗)
= [𝑦1 (𝑡) , ⋅ ⋅ ⋅ ,𝑦𝑁 (𝑡)] [[[[[

𝑄1𝑖...
𝑄𝑁𝑖

]]]]] . (47)

Let 𝐸𝑘×𝑘 be the diagonal matrix and 𝐸𝑖𝑖 = 𝑄𝑖𝑄
𝑇
𝑖 , 𝑖 =1, 2, ⋅ ⋅ ⋅ , 𝑘; then

[𝑦1 (𝑡) , ⋅ ⋅ ⋅ ,𝑦𝑘 (𝑡)] = [𝑦1 (𝑡) , ⋅ ⋅ ⋅ ,𝑦𝑁 (𝑡)]𝑄𝑇𝐸−1 (48)

Then [𝑦1 (𝑡) , ⋅ ⋅ ⋅ ,𝑦𝑁 (𝑡)]= [𝑦1 (𝑡) , ⋅ ⋅ ⋅ ,𝑦𝑘 (𝑡)]𝐸 (𝑄𝑄
𝑇)−1𝑄 (49)

In inequality (45),

( 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙) − 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜙𝑖 (𝑧𝑙))
= (𝜑1 (𝑧𝑙) , 𝜑2 (𝑧𝑙) , ⋅ ⋅ ⋅ , 𝜑𝑁 (𝑧𝑙))
⋅ 𝐸1(

(

𝑦1 (𝑡𝑗)
𝑦2 (𝑡𝑗)...
𝑦𝑁 (𝑡𝑗)

)
)

,
(50)

( 𝑁∑
𝑖=𝑘+1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙) + 𝑁∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜑𝑖 (𝑧𝑙)
− 𝑘∑
𝑖=1

𝑦𝑖 (𝑡𝑗) 𝜙𝑖 (𝑧𝑙))
= (𝜑1 (𝑧𝑙) , 𝜑2 (𝑧𝑙) , ⋅ ⋅ ⋅ , 𝜑𝑁 (𝑧𝑙))
⋅ 𝐸2(

(

𝑦1 (𝑡𝑗)
𝑦2 (𝑡𝑗)...
𝑦𝑁 (𝑡𝑗)

)
)

,
(51)

where

𝐸1 = (𝐼𝑘 00 0𝑁−𝑘) −𝑄𝑇𝐸−1𝑄,
𝐸2 = (𝐼𝑘 00 2𝐼𝑁−𝑘) −𝑄

𝑇
𝐸
−1
𝑄. (52)

Then (50) timing (51) yields(𝐺𝐸𝐸 (𝑡𝑗))2 − (𝐺𝐼𝐸 (𝑡𝑗))2= (𝑦1 (𝑡𝑗) ,𝑦2 (𝑡𝑗) , ⋅ ⋅ ⋅ ,𝑦𝑁 (𝑡𝑗))
⋅ 𝐸1𝐸3𝐸2(

(

𝑦1 (𝑡𝑗)
𝑦2 (𝑡𝑗)...
𝑦𝑁 (𝑡𝑗)

)
)

. (53)

where

𝐸3 =
[[[[[[[[[[

𝑀∑
𝑙=1

𝜑𝑇1 (𝑧𝑙) 𝜑1 (𝑧𝑙) ⋅ ⋅ ⋅ 𝑀∑
𝑙=1

𝜑𝑇1 (𝑧𝑙) 𝜑𝑁 (𝑧𝑙)... ⋅ ⋅ ⋅ ...
𝑀∑
𝑙=1

𝜑𝑇𝑁 (𝑧𝑙) 𝜑1 (𝑧𝑙) ⋅ ⋅ ⋅ 𝑀∑
𝑙=1

𝜑𝑇𝑁 (𝑧𝑙) 𝜑𝑁 (𝑧𝑙)
]]]]]]]]]]
. (54)

As (𝜑1, 𝜑2, ⋅ ⋅ ⋅ , 𝜑𝑁) are orthogonal each other, thus

𝐸3 = [[[[[[[
1 0 ⋅ ⋅ ⋅ 00 1 ⋅ ⋅ ⋅ 0... ... d

...0 0 0 1
]]]]]]]
= 𝐼𝑁 (55)

Substituting (55) and (49) into (53) yields(𝐺𝐸𝐸 (𝑡𝑗))2 − (𝐺𝐼𝐸 (𝑡𝑗))2= (𝑦1 (𝑡𝑗) ,𝑦2 (𝑡𝑗) , ⋅ ⋅ ⋅ ,𝑦𝑘 (𝑡𝑗)) ⋅ 𝐸 (𝑄𝑄
𝑇)−1

⋅𝑄𝐸1𝐸2𝑄
𝑇 (𝑄𝑄

𝑇)−1 𝐸(
(

𝑦1 (𝑡𝑗)
𝑦2 (𝑡𝑗)...
𝑦𝑘 (𝑡𝑗)

)
)

(56)

If 𝐸(𝑄𝑄𝑇)−1𝑄𝐸1𝐸2𝑄
𝑇(𝑄𝑄𝑇)−1 𝐸 is negative semi-definite,

then 𝐺𝐸𝐸(𝑡𝑗) < 𝐺𝐼𝐸(𝑡𝑗) because of 𝐺𝐼𝐸(𝑡𝑗) ≥ 0 and
𝐺𝐸𝐸(𝑡𝑗) ≥ 0. This completes the proof and the results will
be used in the numerical example. This theorem can only
certificate that the modified EEFs is superior to the initial
EEFs under certain constrained conditions. The comparisons
for the performances of modified EEFs and improved EEFs
[28] are given in the numerical example.
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4. Modified EEFs-Based Neural Modelling

Let 𝑦 = {𝑦𝑖(𝑡𝑗)}𝑁,𝐿𝑖=1,𝑗=1 be the corresponding temporal
coefficients of initial EEFs for the measured output 𝑌 ={𝑌(𝑧𝑖, 𝑡𝑗)}𝑀,𝐿𝑖=1,𝑗=1. The corresponding temporal coefficients of
modified EEFs can be derived as follows:

(𝑌, 𝜙𝑖) = (𝑌, 𝑁∑
𝑝=1

𝑄𝑖𝑝𝜑𝑝) = 𝑄𝑖𝑦 (57)

where 𝑄𝑖 denotes the 𝑖 th row of coefficient matrix. The
corresponding temporal coefficients 𝑦̃ = {𝑦𝑖(𝑡𝑗)}𝑘,𝐿𝑖=1,𝑗=1 can
also be derived as follows:

𝑦̃𝑘×𝐿 = 𝑄𝑘×𝑁 ⋅ 𝑦𝑁×𝐿. (58)

In the Galerkin method, obtaining an exact analytical
description of the ODE systems is difficult and complex
because of the nonlinearities in the inner product.Therefore,
the neural networks can be used to identify the long-term
dynamical behaviors from the input 𝑢(𝑡) and the correspond-
ing temporal coefficients 𝑦̃ of modified EEFs

𝑦̂ (𝑝 + 1) = 𝑁𝑁 (𝑦̂ (𝑝) , 𝑢 (𝑝)) , (59)

where 𝑦̂(𝑝) = [𝑦̂1(𝑝), 𝑦̂2(𝑝), ⋅ ⋅ ⋅ , 𝑦̂𝑘(𝑝)]𝑇, 𝑘 < 𝑁.
The advantage of the neural networks is its ability to

model complex nonlinear relationships without any assump-
tions on the nature of these relationships.Themost often used
neural networks include the radial basis function networks
(RBF), backpropagation (BP) neural networks [28], among
others. The present study employs a feedforward BP neural
network to construct low-dimensional substitute model for
the dynamics of DPSs. The prediction output of nonlinear
DPSs is obtained by synthesis of temporal predicted outputs
and the modified EEFs

𝑌𝑝 (𝑧,𝑝) = 𝑌 + 𝑘∑
𝑖=1

𝑦̂𝑖 (𝑝) 𝜙𝑖 (𝑧) . (60)

5. A Numerical Example

Suppose that 𝑌(𝑧, 𝑡) and 𝑌𝑝(𝑧, 𝑡) are the measured and
predicted outputs at the 𝑀 spatial locations 𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑀
and sampling times 𝑡1, 𝑡2, ⋅ ⋅ ⋅ , 𝑡𝐿, respectively. For an easy
comparison, the root of mean squared error (RMSE) is set
up as the performance index as follows:

𝑅𝑀𝑆𝐸 = √∑𝑀𝑖=1∑𝐿𝑗=1 (𝑒 (𝑧𝑖, 𝑡𝑗))2
𝑀𝐿

(61)

where 𝑒(𝑧𝑖, 𝑡𝑗) = 𝑌(𝑧𝑖, 𝑡𝑗) − 𝑌𝑝(𝑧𝑖, 𝑡𝑗).
To evaluate the performance of modified EEFs for model

reduction, the rescaledKuramoto-sivashinsky (K-S) equation
[34, 35] in one-space dimension is considered. The K-S
equations are one of the typical PDEs, which has been derived
in 1976 by Kuramoto and Tsuzuki [34] as a model equation
for interfacial instabilities in the context of angular phase

turbulence for a system of a Reaction-diffusion equation
that model the Belouzov-Zabotinskii reaction in three space
dimensions, and independently, in 1977, by Sivashinsky [35]
to model thermal diffusion instabilities observed in laminar
Mame fronts in two space dimensions:𝜕𝑋𝜕𝑡 + 4𝜕4𝑋𝜕𝑧4 + 𝛼[𝜕2𝑋𝜕𝑧2 + 12 (𝜕𝑋𝜕𝑧 )2]

+ 𝑚∑
𝑖=1

ℎ𝑖 (𝑧) 𝑢𝑖 (𝑡) = 0 (62)

where 𝛼 = 84.25; ℎ𝑖(𝑧) = 𝛿[𝑧 + 3𝜋/4 − (𝑖 − 1)𝜋/2];𝑚 = 4;[𝑢1 (𝑡) , 𝑢2 (𝑡) , 𝑢3 (𝑡) , 𝑢4 (𝑡)]= [5 cos 𝑡4 , 5 sin 𝑡4 , 5 cos 𝑡2 , 5 sin 𝑡2] . (63)

Equation (62) is subject to periodic boundary condition
𝑋(𝑧, 𝑡) = 𝑋(𝑧 + 2𝜋, 𝑡), and the initial condition is set
to be cos 𝑧. The sampling interval Δ𝑡 is 0.001s and the
simulation time is 0.5s. In this case, forty-one sensors uni-
formly distributed in the space are used for measurements.
A noise dataset of 500 data is collected from (62). This
size of data set used for training may be determined by
the system complexity and the desired modelling accuracy.
More complex system and higher accuracy requirements may
need more data from the observation. The solutions of K-
S Equation (62) are calculated using the same method in
[28], and the performance of this method is compared with
the improved EEFs proposed in [28]. After the initial EEFs
are derived from the collected spatiotemporal data, a 5-order
nonlinear ODE system can be obtained by time/space separa-
tion and Galerkin projection. According to the ODE system,
coefficient matrix in (20) can be computed by the balanced
realization and truncation for its empirical controllability
and observability matrices. This computational approach is
introduced by Juergen Hahn [29]. Thus, the modified EEFs
can be obtained by linear combinations of initial EEFs.
A new set of 100 data is collected for testing to compare
the performances of two kinds of spatial basis functions
(Figure 1). The spatiotemporal output of the K-S equation
on testing data can be estimated from the synthesis of the
temporal approximate model and spatial basis functions.

The first four initial EEFs capture over 99% of energy,
the RMSEs of the approximate models based on the first
four EEFs, and the first four improved EEFs, and the four
modified EEFs are compared in Figure 2.The values of RMSE
using modified EEFs are smaller than that using the same
number of improved EEFs and also much smaller than that
using initial EEFs. Because the improved and modified EEFs
are derived from linear combinations of initial EEFs (the
number is larger than their numbers), the dynamics of the
neglectful modes are used to compensate the initial EEFs-
based reduced models and then the modeling performance
based on improved and modified EEFs is better than initial
EEFs-based models. It is worth noticing that when three or
four spatial basis functions are used to model reduction for
nonlinear DPSs, their model accuracy is close. The reason
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Figure 1: Measured spatiotemporal output for testing.
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Figure 2: RMSEs based on traditional, improved and modified
EEFs.

is that the dynamics information of the neglectful modes
becomes much smaller for long-term behaviors and the
compensations for the dynamics of the reduced model are
restricted.

In order to demonstrate the performance of the modified
EEFs clearly, model reduction performances by using the
first two improved and modified EEFs on the testing data
are compared. First, the two improved and modified EEFs
are shown in Figures 3 and 5, respectively. The predicted
spatiotemporal outputs based on two kinds of basis functions
are given in Figures 4 and 6, respectively. Compared with
the testing data, the predicted distribution errors based on
two kinds of basis functions are shown in Figures 7 and 8,
respectively. The RMSEs of the approximate model based on
the two improved and modified EEFs are 0.0728 and 0.0563,
respectively.

Remarks. Nonlinear closure modeling [24, 25] also consid-
ered the influences of higher POD modes on the stability
and accuracy of the reduced-order model in turbulent, which
has shown promising results for Burger’s equation and the
Navier-Stokes equations. In its numerical examples, it can
be found that the first several POD modes that capture over
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Figure 3: The first two improved EEFs in [28].

Sensors locations
Sampling time

100 80 40

Pr
ed

ic
te

d 
ou

tp
ut

60 3040 20

−5

0

5

10

20 100 0

Figure 4: The predicted output based on two improved EEFs based
modelling.
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Figure 5: The first two modified EEFs.

99% of energy are used in model reduction will generate less
accurate results for the cases. This illustrates the significant
role of higher POD modes in the closure model, which
improve the accuracy of the reduced order model. Unlike
the nonlinear closure modeling approach, the method in
this paper actually uses the linear combinations of initial
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Figure 6: The predicted output based on two modified EEFs based
modelling.
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EEFs with more modes to obtain the modified EEFs with
fewer modes, and the coefficients are derived from the
temporal dynamics to introduce the information of higher
modes to the reduced order model. The first couple of
modes with 99% of energies are employed to demonstrate
the compensation effects of higher modes on the reduced
model. The influences by higher modes for dynamics of the
reduced model can be found from the variations of RMSEs
in Figure 2. However, to further improve the accuracy of the
reduced model and optimize the proposed technique, more
initial EEFs can be employed to generate the modified EEFs,
which can be chosen arbitrarily according to its energies (i.e.,
all initial modes with non-zero energies are used for linear
combinations). This will require higher computational costs
to enhance the numerical accuracy. The comparisons with
nonlinear closure modeling approach and the utilization of

sensitivity analysis [21–23] to enhance the robustness of the
reduced model will be carried out in our further research
work, which deserve a long-term study.

6. Conclusions

In this paper, modified EEFs were proposed for model
reduction of the nonlinear STSs, which were derived by
adding an extra weight matrix in the method of snapshots.
This transforms the derivation of modified EEFs to linear
combinations of initial EEFs, while the coefficients matrix
was computed according to the nonlinear temporal dynamics
of STSs. Thus, the effects of high modes were considered into
model reduction with less computational requirements, and
the dimension of reduced model is smaller under a given
accuracy. The performance of modified EEFs based model
reduction is proved theoretically, which are compared with
that of the traditional EEFs and the improved EEFs in [28] by
a numerical example.

Appendix

The Karhunen–Loève expansion (also known as principal
component analysis, principal orthogonal decomposition) is
to find an optimal basis from a representative set of process
data. Suppose that there is an observation {𝑌(𝑧𝑖, 𝑡𝑗) | 𝑧𝑖 ∈Ω, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀, 𝑗 = 1, ⋅ ⋅ ⋅ ,𝐿} (called snapshots). The
problem is how to compute the most characteristic structure𝜑(𝑧) among these snapshots 𝑌(𝑧, 𝑡).

For simplicity, assume that the observations {𝑌(𝑧𝑖, 𝑡𝑗)}
are uniformly sampled in time and space. Defining the inner
product, norm, and ensemble average as (𝑓(𝑧),𝑔(𝑧))Ω =∫
Ω
𝑓(𝑧)𝑔(𝑧)𝑑𝑧, ‖𝑓(𝑧)‖ = (𝑓(𝑧),𝑓(𝑧))1/2Ω , and ⟨𝑓(𝑧, 𝑡)⟩ =(1/𝐿)∑𝐿𝑡=1 𝑓(𝑧, 𝑡).
Motivated by Fourier series, the spatiotemporal vari-

able 𝑌(𝑧, 𝑡) can be expanded onto an infinite number of
orthonormal spatial basis functions {𝜑𝑖(𝑧)}∞𝑖=1 with temporal
coefficients {𝑦𝑖(𝑡)}∞𝑖=1:

𝑌 (𝑧, 𝑡) = ∞∑
𝑖=1

𝑦𝑖 (𝑡) 𝜑𝑖 (𝑧) . (A.1)

The temporal coefficients can be computed from
𝑦𝑖 (𝑡) = (𝜙𝑖 (𝑧) ,𝑌 (𝑧, 𝑡))Ω , 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,∞. (A.2)

𝑌𝑀(𝑧, 𝑡) denotes the𝑀-order approximation

𝑌𝑀 (𝑧, 𝑡) = 𝑀∑
𝑖=1

𝑦𝑖 (𝑡) 𝜑𝑖 (𝑧) . (A.3)

Themain procedure of using Karhunen–Loève expansion
for time/space separation is computing the most character-
istic spatial structure {𝜑𝑖(𝑧)}𝑀𝑖=1 among the spatiotemporal
output {𝑌(𝑧𝑖, 𝑡𝑗)}𝑀,𝐿𝑖=1,𝑗=1. This typical structure can be found
by minimizing the objective function

min
𝜙𝑖(𝑧)

⟨󵄩󵄩󵄩󵄩𝑌 (𝑧, 𝑡) − 𝑌𝑀 (𝑧, 𝑡)󵄩󵄩󵄩󵄩2⟩
subject to (𝜑𝑖, 𝜑𝑖) = 1, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀. (A.4)
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The orthogonal constraint is imposed to ensure that
the function 𝜑𝑖(𝑧) is unique. The Lagrangian functional
corresponding to this constrained optimization problem is

𝐽 = ⟨󵄩󵄩󵄩󵄩𝑌 (𝑧, 𝑡) − 𝑌𝑀 (𝑧, 𝑡)󵄩󵄩󵄩󵄩2⟩ + 𝑀∑
𝑖=1

𝜆𝑖 [(𝜑𝑖, 𝜑𝑖) − 1] . (A.5)

And the solution can be obtained as∫
Ω
𝐷 (𝑧, 𝜉) 𝜑𝑖 (𝑧)𝑑𝜉 = 𝜆𝑖𝜑𝑖 (𝑧) ,(𝜑𝑖, 𝜑𝑖) = 1, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀, (A.6)

where 𝐷(𝑧, 𝜉) = ⟨𝑌(𝑧, 𝑡)𝑌(𝜉, 𝑡)⟩ is the spatial two-point
correlation function. 𝜑𝑖(𝑧) is the ith eigenfunction, and 𝜆𝑖
is the corresponding eigenvalue. Given that the covariance
matrix 𝜆𝑖 is symmetric and positive definite, its eigenvalues𝜆𝑖 are real and its eigenvectors 𝜑𝑖(𝑧), 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑀, form
an orthogonal set. Since the data are always discrete in space,
one must numerically solve the integral (A.6). Discretizing
the integral equation gives a 𝑀 × 𝑀 matrix eigenvalue
problem. Thus, at most 𝑀 eigenfunctions at 𝑀 sampling
spatial locations can be obtained.

The maximum number of nonzero eigenvalues is 𝑛 =
min(𝑀,𝐿). We arrange the eigenvalues 𝜆1>𝜆2> ⋅ ⋅ ⋅ >𝜆𝑛 and𝜑1(𝑧), 𝜑2(𝑧), ⋅ ⋅ ⋅ , 𝜑𝑛(𝑧), in order of the magnitude of the
eigenvalues. Each eigenfunction has an energy percentage
which depends on the associated eigenvalues of the eigen-
functions:

𝐹𝑘 = 𝜆𝑘
𝐹

(A.7)

where𝐹 = ∑𝑛𝑖=1 𝜆𝑖 denotes the sum of the matrix eigenvalues.
Assuming that the eigenvalues are sorted in descending order,
the eigenfunctions are ordered from most to least energetic.
In general, an expansion in terms of only the first few
temporal coefficients

𝑌𝑛 (𝑧, 𝑡) = 𝑛∑
𝑖=1

𝑦𝑖 (𝑡) 𝜑𝑖 (𝑧) (A.8)

can be used to represent the dominant dynamics of DPSs.
The common model reduction can be accomplished for the
nonlinear DPSs based on the initial EEFs.

Data Availability

TheMATLAB programs for the data of the numerical exam-
ple used to support the findings of this study are available
from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This project is supported by National Natural Science Foun-
dation of China (Grant nos. 51775182, 51775181). Natural Sci-
ence Foundation of Hunan province (Grant no. 2018JJ3170)

and the Outstanding Youth Fund of the Education Depart-
ment of Hunan Province (Grant no. 16B093) are also grate-
fully acknowledged.

References

[1] H. Park and D. Cho, “The use of the Karhunen-Loève decom-
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