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This study proposes a novel method of optimal path planning in stochastic constraint network scenarios. We present a dynamic
stochastic grid network model containing semienclosed narrow and long constraint information according to the unstructured
environment of an underground or mine tunnel. This novel environment modeling (stochastic constraint grid network) computes
the most likely global path in terms of a defined minimum traffic cost for a roadheader in such unstructured environments.
Designing high-dimensional constraint vector and traffic cost in nodes and arcs based on two- and three-dimensional terrain
elevation data in a grid network, this study considers the walking and space constraints of a roadheader to construct the network
topology for the traffic cost value weights. The improved algorithm of variation self-adapting particle swarm optimization is
proposed to optimize the regional path. The experimental results both in the simulation and in the actual test model settings
illustrate the performance of the described approach, where a hybrid, centralized-distributedmodelingmethod with path planning
capabilities is used.

1. Introduction

Environment modeling refers to the use of a unified form
of expression to complete the environmental entity's own
attributes and the internal structure of the entity model
not only to describe the static attributes but also to express
dynamic changes. The study on environment modeling for
path planning at home and abroad mainly focuses on a
mobile robot [1–4], mostly in an indoor or outdoor structural
environment, such as an unmanned vehicle (e.g., rescue
vehicles, exploration car, lunar rover, and Mars rover). Tra-
ditional environmental modeling methods mainly include
V-Graph [5], T-Graph [6], and Voronoi [7] (e.g., space
method, artificial potential fieldmethod [8], and approximate
element decomposition method [9], such as topology graph
and mathematical analysis class). These methods usually
use external measurement to obtain the path planning of
terrain two-dimensional coordinates and three-dimensional
altitude information to establish digital terrain [10–13] and
estimate its trafficability [14]. These traditional approaches
solve the path planning problem to achieve two goals: shortest

path [15–17] and obstacle avoidance demand [18]. However,
in the face of an unstructured dynamic path environment
formed by geological structure and stochastic dynamic gen-
eration, traditional space environment modeling should also
consider topography and geology, pose adjustment cost, and
walking constraints in addition to the realization of the
shortest path planning target and obstacle avoidance.

Shi Meiping et al. [19] proposed a lunar surface multi-
constraint modeling method, while Chen Cheng et al. [20]
introduced a kind of a long-range polar robot environment
modeling method. Pablo Urcola [21] et al. proposed a path
planning method of a multirobot shortest path random
terrain. Li Tiancheng et al. used a fan-shaped grid network
to perform research robot path planning in a static envi-
ronment. Traditionally, the existing network path model is
established using the orthogonal grid. In these methods, the
digital terrain is determined by considering the factors of
motion constraint, system uncertainty, terrain availability,
and so on. However, this method is generally applicable
to the static structural environment model. Most of the
roadway engineering paths are dynamically generated, and
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Figure 1: Descartes coordinate grid map.
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Figure 2: Polar coordinate grid map.

the floor surface distribution is stochastic. The particularity
of the walking constraint and the pose adjustment cost
of the underground roadheader are not reflected in the
above-mentionedmethods.Therefore,most of these dynamic
stochastic unstructured environment modeling problems
can be more generally classified as a stochastic constraint
network.

Based on the above, this study investigates the stochastic
network unstructured spatial environment modeling and
availability problem and increases the high-dimensional con-
straint vector and traffic cost in the constraint grid network
(C-GNet) nodes and arcs based on grid two-dimensional
(2D) terrain data and three-dimensional (3D) altitude data.
A network topology with the walking cost weights is con-
structed considering the space and the walking constraints
of the roadheader. The minimum cost of the network nodes
and arcs was determined as the objective function to propose
the variation self-adapting particle swarm optimization algo-
rithm and optimize the region path.

2. Materials and Methods

2.1. Environment Model. The classical grid network partition
environment model mainly includes a Descartes coordinate
grid model (Figure 1) and a polar coordinate grid model
(Figure 2), which represents the two-dimensional position
information.𝑁𝑒𝑡 = (𝑃,𝐾; 𝐹) is a conventional grid network; P is a
set of nodes representing the grid position point (𝑥𝑖, 𝑦𝑖); K is
the set of altitudes representing the altitude value of the grid

Figure 3: C-GNet diagram structure.

position point; and F is the set of arcs representing the node
connection path.

The classical grid network 2D terrain data and the 3D
altitude data cannot reflect other dimensional data, such as
traffic cost and geological influence cost, in the modeling
of some stochastic dynamic network environment models
without considering the numerical representation of random
distribution and the behavior constraints of the roadheader.
Therefore, performing research on the multidimensional
constraint grid network and traffic cost information is of
practical significance.

Definition 1. The 6-tuple ∑ = (𝑃,𝐾; 𝐹,𝑊,𝑋,𝑀) is a grid
network system, which is the constraint grid network (C-
GNet) according to the following structural rules:

(1) 𝑁𝑒𝑡 = (𝑃,𝐾; 𝐹) is a conventional grid network.
(2) 𝐾 : 𝑃 → 𝑧𝑖 = 𝑓(𝑥𝑖, 𝑦𝑖) is the altitude function of

C-GNet.
(3) W: 𝐹 → {𝑤𝑖 = 𝑓(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑡𝑔)} is the weight function

of C-GNet.
(4) X: 𝐹 → {𝑋𝑖, 𝑖 = 1, 2, 3, 4} is the constraint variant set

of C-GNet.
(5) M:P→Z (set of nonnegative integer) is the token or

state.

The surface traffic attribute information of the con-
strained grid node was established (Figure 3). The proper-
ties of the C-GNet structure parameters were defined as
Property 2.

Property 2. ∑ = (𝑃,𝐾; 𝐹,𝑊,𝑋,𝑀), which satisfies the fol-
lowing conditions.(1) 𝑝 ∈ 𝑃 is any node ofC-GNet if∃𝑝1, 𝑝2, . . . 𝑝𝑁,making∀1 ≤ 𝑖 ≤ 𝑁, Δ𝑝𝑖 = {𝑝 | (𝑥𝑖−1, 𝑦𝑖−1)𝑈(𝑥𝑖, 𝑦𝑖−1)𝑈(𝑥𝑖+1,𝑦𝑖−1)𝑈(𝑥𝑖−1, 𝑦𝑖+2)𝑈(𝑥𝑖, 𝑦𝑖+2) U(𝑥𝑖+1, 𝑦𝑖+2) ⊂ 𝑃}, and Δ𝑝 = 𝑝Δ,
Δ𝑝, and 𝑝Δ are the preset and postset of 𝑝.(2) 𝑓 ∈ 𝐹, 𝑓𝑖,𝑖+1 = 𝑓(𝑝𝑖,𝑖 → 𝑝𝑖,𝑖+1), represents the
directed arc between (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖, 𝑦𝑖+1).The arc orientation
depends on the starting position of the node.𝜔 represents the
arc length weight of C-GNet. 𝜃 represents the arc angle con-
straint. The state transition (position transfer) between the
adjacent nodes is called transition: 𝜓𝑖−𝑗 : 𝑀(𝑝𝑖) → 𝑀(𝑝𝑗).(3) In the C-GNet, the path from the source node s to
the target node d cannot be closed,

󳨀󳨀󳨀→𝑟𝑜𝑎𝑑 : 𝑝𝑠, 𝜓𝑠−𝑎, 𝑝𝑎, 𝜓𝑎−𝑏,. . . 𝑝𝑑.󳨀󳨀󳨀→𝑟𝑜𝑎𝑑1(𝑠, 𝑑),󳨀󳨀󳨀→𝑟𝑜𝑎𝑑2(𝑠, 𝑑),. . .. 󳨀󳨀󳨀→𝑟𝑜𝑎𝑑𝑛(𝑠, 𝑑) represent the



Mathematical Problems in Engineering 3

road from the source nodes to the target nodes. 𝑅(𝑠, 𝑑)
represents the set of paths, and the total cost expression
for a path is 𝑊𝑟(𝑠, 𝑑) = ∑𝑑𝑖=𝑠 𝑤𝑖 = ∑𝑑𝑖=𝑠 𝑓 𝑖𝑡𝑟𝑎V𝑒𝑙−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 . The
mathematical expression of the optimal path 𝑅(𝑠, 𝑑) is trans-
formed into solving the minimum cost path in the path set.

𝑊min (𝑠, 𝑑) = min( 𝑑∑
𝑖=𝑠,𝑗

𝑤𝑖𝜓𝑖−𝑗)

= min( 𝑑∑
𝑖=𝑠,𝑗

𝑓𝑖𝑡𝑟𝑎V𝑒𝑙-𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝜓𝑖−𝑗)
(1)

𝑑∑
𝑖=𝑠,𝑗

𝜓𝑖−𝑗 ≤ 󵄨󵄨󵄨󵄨𝑃𝑟𝑛𝑢𝑚󵄨󵄨󵄨󵄨 − 1 (2)

2 ≤ 󵄨󵄨󵄨󵄨𝑃𝑟𝑛𝑢𝑚󵄨󵄨󵄨󵄨 ≤ 𝑚 + 1 (3)

𝑃𝑟𝑛𝑢𝑚 ⊂ {2, 3, 4 . . . 𝑚 + 1} (4)

𝜓𝑖−𝑗 = {{{
0, 󳨀󳨀󳨀→𝑟𝑜𝑎𝑑 (𝑖, 𝑗) ∉ 𝑅 (𝑠, 𝑑)
1, 󳨀󳨀󳨀→𝑟𝑜𝑎𝑑 (𝑖, 𝑗) ∈ 𝑅 (𝑠, 𝑑) . (5)

In the traffic cost model, 𝑊min(𝑠, 𝑑) is the objective function
value. Equations (2) to (5) denote the constraint function.
The transition𝜓𝑖−𝑗 indicates whether the destination path has
arcs𝑓𝑖−𝑗 = 𝑓(𝑝𝑖 → 𝑝𝑗). 𝑃𝑟𝑛𝑢𝑚 is the subset of all nodes in
the target path. |𝑃𝑟𝑛𝑢𝑚| is the number of all nodes in the set.𝜓𝑖−𝑗 = 0 indicates that the node transition does not belong to
the target path. 𝜓𝑖−𝑗 = 1 indicates the opposite situation.

The traffic cost of the path network model is established,
the nodes and the arcs of which have stochastic attributes
determined as Definition 3.

Definition 3. The network stochastic characteristics are
mainly embodied in the weight function W of the C-GNet
arc: 𝐹 → { 𝑓𝑖𝑡𝑟𝑎V𝑒𝑙−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛=𝑓(𝑥𝑖 ,𝑦𝑖 ,𝑧𝑖,𝑡𝑔),

𝑖=1,...𝑁;𝑔=1,2,3
}. When the arc weight

function of the network node dynamic randomly changes,𝑊(𝑖), which is the arc weight function, becomes a stochastic
process. Equation (6) denotes the dynamic stochastic con-
straint grid net (C-GNet).

∑∗ = (𝑃,𝐾; 𝐹,𝑊 (𝑖) , 𝑋,𝑀) . (6)

The cost function {𝑊(𝑖), 𝑖 ∈ 𝐼} in the dynamic stochastic
C-GNet obeys the discrete stochastic process distribution.𝐼 is the discrete sequence number, and 𝑊(𝑖) represents the
discrete distribution. In an instance of a specific network
node sequence number I, 𝑊(𝑖) is a discrete stochastic vari-
able, whose corresponding probability is expressed as 𝑝(𝑖) =𝑝(𝜓𝑖−𝑗) and ∑𝑖 𝑝(𝑖) = ∑𝑖+1,𝑗+1𝑖=𝑖−1,𝑗=𝑗−1 𝑝(𝜓𝑖−𝑗) = 1.
2.2. Guidance Factor and Network Cost Model of C-GNet.
The C-GNet model has the path guidance characteristics.
Path planning mainly combines the geological and guidance

factors of the special environment. The guidance factor
formula is defined as follows:

𝑔 (𝑖) = |𝑑 (𝑖)| × 𝑎 (7)

where 𝑖 represents the order number of the path points to be
selected, 𝑖 = 2, 3 . . . 9; 𝑑 is the distance between the central
line of each path point; and 𝑎 is the guide coefficient and span
belonging to [0, 1]. Its size reflects the influence of the path
point deviation from the degree of center to the overall path.

We propose herein the concept of centripetal degree
based on each path point corresponding to a guidance factor𝑔 (see (8)). Consider

𝐺 = 𝑁∑
𝑖=1

𝑔 (𝑖) . (8)

The information contained in the arc is (𝐼𝑛𝑓, 𝜃𝑟, 𝜃𝑝, 𝜃𝑡, 𝐿),
where 𝐼𝑛𝑓 indicates the geological cost; 𝜃𝑟 indicates the
rolling angle of the arc ground surface; 𝜃𝑝 indicates the angle
of pitch; 𝜃𝑡 indicates the steering angle; and𝐿 is the arc length.

𝑊𝑟 = 𝑁−1∑
𝑖=1

(𝐼𝑛𝑓𝑖 + 𝜃𝑟𝑖 + 𝜃𝑝𝑖 + 𝜃𝑡𝑖 + 𝐿 𝑖) . (9)

In (9), 𝑖 = 1, 2, 3, . . . , 𝑁 − 1, where N represents the number
of nodes for path planning.The total cost formula of the path
is denoted in

𝑊𝑟 (𝑠, 𝑑) = 𝑊 + 𝐺. (10)

Therefore, the optimal path planning aims to find the
comprehensive cost of min(𝑊𝑟(𝑠, 𝑑)).
2.3. Variation Self-Adapting Particle Swarm Optimization
(VSAPSO). This study compared and verified four kinds
of PSO algorithms, including this method, to verify the
VSAPSO algorithm performance. The simulation experi-
ments of this method were completed under MATLAB
R2016a. The operation system was Windows 10 64-bit opera-
tion system, while the CPU was i5-4590.

2.3.1. Algorithm Principle. The classical particle swarm opti-
mization algorithm [22] is expressed as

V𝑖𝑑 (𝑡 + 1) = 𝑤 × V𝑖𝑑 (𝑡) + 𝑐1 × 𝑟1 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑 (𝑡)) + 𝑐2
× 𝑟2 × (𝑝𝑔𝑑 − 𝑥𝑖𝑑 (𝑡)) (11)

𝑥𝑖𝑑 (𝑡 + 1) = 𝑥𝑖𝑑 (𝑡) + V𝑖𝑑 (𝑡 + 1) (12)

V𝑖𝑑 =
{{{{{{{{{

Vmax V𝑖𝑑 > Vmax

−Vmax V𝑖𝑑 < −Vmax

V𝑖𝑑
󵄨󵄨󵄨󵄨V𝑖𝑑󵄨󵄨󵄨󵄨 < Vmax

(13)

𝑤 (𝑡) = 𝑤max − 𝑤max − 𝑤min𝑇max
𝑡 (14)
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where V𝑖𝑑 is the speed of the current particle 𝑖; 𝑥𝑖𝑑 is the
position of the current particle 𝑖; 𝑐1 and 𝑐2 are the learning
factors; 𝑟1 and 𝑟2 are random numbers among [0, 1]; 𝑝𝑖𝑑 is
the personal best position of the current particle 𝑖; 𝑝𝑔𝑑 is
the global best position of the current particle 𝑖; Vmax is the
maximum speed; 𝑤𝑚𝑎𝑥 is the maximum inertia weight; 𝑤𝑚𝑖𝑛
is the minimum inertia weight; t is the number of iterations;
and 𝑇𝑚𝑎𝑥 is the maximum number of iterations.

This method has the advantages of a simple principle,
a few controlled parameters, and a fast convergence speed.
However, it also has the disadvantage of easy convergence
to local optimal and low search precision. Therefore, the
VSAPSO algorithm was proposed in this study:

𝑤 = 𝑤max − (𝑤max − 𝑤min) × (𝑓max − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (i))𝑓max − 𝑓min
(15)

where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) indicates the fitness for each generation of𝑖 particles; 𝑓max indicates the maximum fitness; and 𝑓min
indicates the minimum fitness.

This proposed algorithm can automatically adjust the
parameters of the inertia weight w according to the current
particle fitness. The w value increases when the fitness value
is large, thereby improving the search speed and the global
search ability of particles.Thew value becomes smaller when
the fitness value is small, thereby reducing the particle search
speed and improving the local search ability of particles.

The modified inertia weight w has a larger adjustment
range, which improves the search capability of the algorithm.
We used herein the way of mutation in the genetic algorithm
to enable the particles to randomly reset positions at a
certain probability, such that they can jump out of the
original location to research, thereby reducing the probability
of particle swarm falling into local minimum. The way of
mutation is shown in (16) as follows:

𝑥𝑖𝑑 = {{{
𝑥max × 𝑟𝑎𝑛𝑑𝑠 (1, 𝐷) 𝑟𝑎𝑛𝑑 () ≥ 𝑝
𝑥𝑖𝑑 𝑟𝑎𝑛𝑑 () < 𝑝 (16)

where p represents a mutation threshold; 𝑥max represents the
maximum value allowed by the location; and rands (1, D)
represents a D random number between 0 and 1.

2.3.2. VSAPSO Performance Test. We used herein four kinds
of test functions to test the standard PSO algorithm, adaptive
PSOalgorithmwithmodified inertiaweight formula (APSO),
adaptive weight particle swarm optimization algorithm with
the compression factor (CFWPSO), and VSAPSO.

The four kinds of PSO algorithms have the same basic
parameters, particle swarm size 𝑁 = 40, maximum speed𝑉max = 1, maximum inertia weight 𝑤max = 0.9, minimum
inertia weight𝑤min = 0.4, and learning factor 𝑐1 = 𝑐2 = 2.05,
where the VSAPSO mutation threshold is 𝑝 = 0.98. The
end condition of the four kinds of algorithms is to reach the
maximum iteration step of 100 steps, and the four kinds of
test functions are all four-dimensional functions.

When the maximum number of iterations is achieved,
the algorithm runs 10 times to obtain the fitness decreasing
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Figure 4: Fitness curve decreasing under the Griewank function.
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Figure 5: Fitness curve decreasing under the Rosenbrock function.
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Figure 6: Fitness curve decreasing under the Rastrigin function.

curve of each algorithmwhen it reaches the minimum fitness
function value under each test function (Figures 4–7).

The initial values of the algorithms were randomly
assigned; hence, the starting points of the curves were
different. As shown in Figures 4–7, the PSO and APSO
algorithms illustrate that the curve does not decrease in
the number of iterative steps when in convergence. The
effect of the CFWPSO algorithm was consistent with the
two above-mentioned items. Under the Ackley function
shown in Figure 7, the fitness value of the PSO/APSO and
CFWPSO algorithms even occurred over 20 in 100 steps
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Figure 7: Fitness curve decreasing under the Ackley function.

Table 1: Minimum fitness.

Test function PSO APSO CFWPSO VSAPSO
Griewank 0.327 0.7778 0.3195 2.220e−15
Rosenbrock 0.031 6.697e−4 0.0011 7.459e−18
Rastrigin 3.55e−15 6.28e−7 1.88e−10 0
Ackley 19.777 16.717 19.837 7.808e−7

Table 2: Variance.

Test function PSO APSO CFWPSO VSAPSO
Griewank 0.552 0.146 0.2653 1.261e−22
Rosenbrock 157.8 58.3 70.813 5.825e−27
Rastrigin 2.605e−21 2.453e−9 5.5779e−13 0
Ackley 1.319 0.037 0.0186 2.876e−9

because of the lack of global search ability and local minima
when these three algorithms were convergent, leading to the
inability to converge to the minimum. To sum up, under
the four functions, the VSAPSO algorithm had a stronger
global search ability and was better than the PSO/APSO and
CFWPSO algorithms in the decline speed.

Thefitness function is the optimization objective function
of the PSO algorithm. In this paper, the comprehensive cost
function of path planning is our fitness function. Tominimize
the energy and time consumption of the roadheader, the
minimum value of the comprehensive cost function is set
as the optimization target of the PSO algorithm. The PSO
algorithm itself has the randomness of optimization. There-
fore there will be a certain fluctuation in the optimization
results of the algorithm. It is necessary to evaluate the
advantages and disadvantages of the algorithm through the
mathematical statistics. When the maximum number of
iterations is achieved, the algorithm runs 10 times to obtain
the minimum fitness function value, variance, and mean of
each algorithm under each test function (Tables 1–3).

The inertia weight adjustment strategy proposed in this
paper can adjust the search speed of particles according to the
position of particles. And the convergence of the algorithm
also can be increased. The minimum fitness value of the
algorithm can be used to evaluate the limit optimization
ability of the algorithm.

Table 3: Average value.

Test function PSO APSO CFWPSO VSAPSO
Griewank 1.232 1.007 1.0371 6.621e−12
Rosenbrock 14.695 6.438 16.7508 4.980e−14
Rastrigin 1.676e−11 4.489e−05 3.3992e−07 0
Ackley 20.159 19.627 20.1086 2.862e−5

Table 1 showed that the minimum fitness function value
of the VSAPSO algorithm proposed in this study was the
highest compared with that of the PSO/APSO and CFWPSO
algorithms. The convergence accuracy was the highest.

Variance of minimum fitness represents the fluctuation
of minimum fitness function value obtained by algorithm
optimization. The probability that different improved PSO
algorithm can stabilize a certain value is also different.
The smaller the fluctuation, the better the stability of the
algorithm.

Average of minimum fitness represents the optimization
ability of the algorithm in the usual case and represents the
noncontingency of the minimum value that the algorithm
can reach. If the minimum value of the algorithm can be
achieved many times, it shows that the algorithm can reach
smaller fitness value by chance.This noncontingency is more
appropriate in the use of mean value in the mathematics.

In Tables 2 and 3, it was presented that the average value
and the variance of the VSAPSO algorithm were smaller
than those in the PSO/APSO and CFWPSO algorithms and
indicated that the stability and the convergence of VSAPSO
were the highest. The inertia weight adjustment strategy and
the compilation strategy proposed in this paper made the
VSAPSO algorithm more stable to find the minimum fitness
value. If the minimum fitness value generally deviated from
the mean value, the stability and reliability of the algorithm
were not high. On the contrary, it showed that the algorithm
has high stability and credibility. Consequently, the proposed
VSAPSO algorithm had a faster speed and a higher precision
in convergence than the other three algorithms.

3. Results and Discussion

3.1. Environment Modeling. Because of the special under-
ground coal mine traveling environment in this paper, it
belonged to the narrow space roadway terrain structure.
There were the strong coal dust, humid air, weak light, and
the threat of gas to human and the electrical and electronic
equipment in coal mine. These posed a great obstacle to
path planning of roadheader, and it was difficult to carry
out field test in the coal mine before the verified theory
method.Therefore, the authors and their teamhad carried out
related test research on the position and orientation detection
method of roadheader in the ground environment, such as
laser automatic measurement method.

The simulation coal mine roadway used in this paper was
based on the size and driving data of EBZ type roadheader. It
was a special lightweight roadheader, which was suitable for
coal roadway, half coal rock roadway and soft rock roadway,
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Figure 8: Simulation model of roadway.

and tunnel heading. The maximum cutting height was 2.8m,
and the maximum cutting bottom width was 3.52m. The
effective section area is 9.8m2, and wider cutting width was
less than 16 degrees.

By using the laser automatic measurement method, the
position information of the roadheader in the tunnel was
measured to determine the coordinate value in the map,
and the position and posture information was measured.
The roll angle, the pitch angle, and the steering angle of the
roadheader were obtained by the solution, which provided
the actual value of the cost function value solution of the
method proposed in this paper. The test basis and the steps
of the measurement were

(a)Model the laneway and deploy total stationmeasuring
platform, rear view prism, and prism to be measured.

(b) Level and adjust the total station, the tested prism, and
the rear viewing prism.

(c) Use the total station to collect the position and
orientation data of the roadheader.

(d) Calculate the position and orientation data of the
roadheader in order to obtain the roll angle, pitch angle,
steering angle, and location information of the roadheader.

The experimental environment and real view of experi-
mental scenario were shown in Figures 9∼11.

The experimental data showed that the positioning accu-
racy of the Y axis was better than that of 10cm, and the
positioning accuracy of X and Z axis was better than that of
2cm under the distance of 1.2m spacing and the distance of
17m between the launching station and the roadheader.

Through the data acquisition process of the position and
posture of the above roadheader, the information needed for
the calculation of the cost function value in the C-G gridmap
could be obtained.The data obtained from themeasured data
could be brought into the roadheader cost function model
proposed in this paper. Based on this test data, stochastic C-
G grid map proposed in this paper could be set up (Figure 8),
and theVSAPSO algorithmwas used to excavate theC-G grid
map information to plan optimal path of roadheader.

The establishment steps of the stochastic C-GNet envi-
ronment model are as follows.(1) The single path forward distance of the roadheader
is determined according to the step distance of the drifting
machine 𝐿 𝑖 = 0.8m.The transverse distance is 4 m.(2) The node resolution of the constraint grid is deter-
mined according to the stepping control precision of the

Figure 9: Laser automatic measurement.

Figure 10: Position measurement device.

Figure 11: Real view of experimental scenario.

roadheader 0.1 m. The parameter assignments of 𝑛 ∈ 𝑁 and𝑁 = 9 in 󳨀󳨀󳨀→𝑟𝑜𝑎𝑑𝑛(𝑠, 𝑑) are determined.(3) The geological cost 𝑓𝑖𝑡𝑟𝑎V𝑒𝑙−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = (𝐼𝑛𝑓𝑖 + 𝜃𝑟𝑖 +𝜃𝑝𝑖 + 𝜃𝑡𝑖)𝜓𝑖−𝑗, 𝑗 = 𝑛𝑒𝑥𝑡(𝑖), is determined according to the
sum of the total cost weights based on the node of the path:𝑊𝑟(𝑠, 𝑑) = ∑𝑑𝑖=𝑠 𝑤𝑖 = ∑𝑑𝑖=𝑠 𝑓𝑖𝑡𝑟𝑎V𝑒𝑙−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛.
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Figure 12: Cost simulation obeying the normal distribution.

(4) According to the behavior constraints of the road-
header in the narrow and long tunnel in Figure 9, formula𝑗 = 𝑛𝑒𝑥𝑡(𝑖) indicates the postposition node that is the
longitudinal direction of the current node, with 45∘, 90∘, and135∘ as the three direction nodes.(5) The precision position measurement system of the
roadheader in the mine determines the 3D coordinates and
completes the calculation of the pitch, roll, and deflection.
The reliability of themethod is verified by the simulation data
based on the value of 𝑓𝑖𝑡𝑟𝑎V𝑒𝑙−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛.(6) From the actual roadheader tunneling environment,
the roadway is close to the middle line after tunneling. The
coal-receiving condition here is relatively good, whereas that
on both sides of the roadways is relatively poor.Therefore, the
closer the roadway floor condition, the better the distance,
and the worse the middle line condition. According to the
distance between the nodes and the middle line, the cost
value distribution of the arc path is assumed to be a normal
distribution. The grid network model is set up as shown in
Figure 12. We first calculate the standard normal distribution
of the interval [−2, 2] and then take 41 intervals of 0.1 normal
distribution values. Each arc is determined according to the
content of Definition 3 (see (17)). Consider

𝑊(𝑖) = 𝑓𝑖𝑡𝑟𝑎V𝑒𝑙−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑟𝑎𝑛𝑑 (1) × (0.5 − 𝑁 (𝑖))0.5 (17)

where 𝑟𝑎𝑛𝑑(𝑖) indicates the random number between 0 and 1;𝑁(𝑖) represents the normal distribution value corresponding
to the arc; and 𝑖 is the number of network nodes in 𝑖 =1, 2 . . . , 41.(7)We set the centrality of cost 𝑔(𝑖) = |𝐷𝑖| × 𝑎𝑔 according
to the distanceD from the center of the roadheader path.D is
the distance of each path from the center line in centimeters,
the value of which is for the dimensionless form of the
distance. 𝑎𝑔 represents the guidance coefficient; |𝑎𝑔| ∈ [0, 1].
The centripetal degree concentration indicates the influence
of the path point deviation from the center degree to the
overall path. The greater the coefficient, the closer the path
closer to the middle line. Herein, 𝑎𝑔 = 0.5, and the numerical
value aims to satisfy the path point at a feasible interval and
guide the path to travel along the center line.(8) Integrating steps 6 and 7, we propose herein the traffic
cost formula𝑊𝑟(𝑠, 𝑑) = 𝑊 + 𝐺 = ∑𝑊(𝑖) + ∑𝑔(𝑖). Figure 10

Table 4: Comparison of path-planning results.

Type Minimum fitness Mean Variance
PSO 1.304 1.372 0.062
CFWPSO 1.154 1.284 0.009
VSAPSO 1.071 1.176 0.007

shows the network traffic cost model with the horizontal
direction for the 41 points and the longitudinal axis' nine steps
of the roadheader. An example of random starting nodes(0, 0) was established as a grid map based on this (Figure 13)

There were three algorithms used to plan path of the
roadheader. Each path planning algorithm runs 10 times, and
the path of theminimumfitness is obtained as planned by the
three algorithms shown in Figures 14 and 15.

Figures 14 and 15 show that the coincidence path of the
0∼0.1 part in the diagramwas planned by PSO andCFWPSO,
while 0.2∼0.3 part is determined by CFWPSO and VSAPSO.
The coincidence path of the 0.4∼0.5 part in the diagram
was planned by PSO and VSAPSO, while 0.5∼0.8 part is
determined by CFWPSO and PSO.

Theminimum comprehensive cost function value, mean,
and variance of the statistical algorithmafter running 10 times
were shown in Table 4.

It could be seen from Table 4 that, compared with the
other two PSO algorithms, the minimum comprehensive
cost function of the VSAPSO algorithm was minimized
by comparing the minimum comprehensive cost function
value under the premise of the stochastic starting point of
the path planning. Thus, the VSAPSO algorithm had better
optimization ability in the path planning problem. According
to the comparison of variance, the result of path planning
using the VSAPSO algorithm was smaller, which indicated
that the path planning was more stable using the VSAPSO
algorithm. Furthermore, the mean value of the path planning
using the VSAPSO algorithm was smaller by comparing the
mean value. It showed that the path planning was obtained
by using the VSAPSO algorithm. The probability of smaller
composite cost function value was higher and the result was
more believable.

On the premise of stochastic path planning and stop
point, the VSAPSO algorithm was more efficient in the
three algorithms, and the results were more stable and more
reliable.

3.2. Stochastic C-GNet Test under Multitarget Points. Taking
the actual working conditions of the roadheader in the tunnel
as an example, the cutting boundary can be compensated
by the motion of the cutting arm; hence, the moving target
point cannot be unique. In the simulation model, we define
the set of stochastic C-GNet target nodes as 𝐷𝑟, 𝐷𝑟(𝑖) ∈[−0.3, 0.3], and the source node 𝑃𝑠 ∈ 𝑆𝑟 as the random source
node (0.2, 0). The VSAPSO algorithm was used to simulate
the multitarget set random C-GNet test under the guidance
factor.

Figure 16 shows that the path point 𝑃𝑑 was found under
the above-mentioned conditions of the grid map, 𝑃𝑑 ∉ 𝐴 𝑟.
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Table 5: Minimum integrated cost value corresponding to each path.

Target −0.5, 0.8 −0.4, 0.8 −0.3, 0.8 −0.2, 0.8 −0.1, 0.8 0, 0.8 0.1, 0.8 0.2, 0.8 0.3, 0.8 0.4, 0.8 0.5, 0.8
Total cost 1.8 1.7 1.5 1.4 1.2 1.07 1.1 1.5 21.5 21.6 21.6
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Figure 13: Stochastic C-GNet environment model.
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Figure 14: Path planning under simple C-Grid network.

Therefore, the guidance factor G was added based on the arc
consumption. Figure 17 presents the planning path when the
guidance factor proportion was large. We can see from the
figure that the guiding factor can implement the rectification
work path well. However, if we consider that the guiding
factor will cause a large roadheader traveling traffic cost, we
must consider the compound factors of the guiding factor
and the consumption values (Figure 18) after adjusting the
guiding factor path planning algorithm.

The adjustment strategy was made according to the
comprehensive influence factors of the geological traffic and
the guidance factors in the above-mentioned terrain. An
example of random starting nodes (0.2, 0) was established as
a traffic cost model (Figure 19) and as a grid map based on
this (Figure 20).

We performed path planning for all sets of target points
using the VSAPSO algorithm (Figure 21).

Table 5 shows the cost 𝑊(𝑖) of the simulated net-
work nodes obeying a normal distribution, target nodes𝑃𝑑 = (0, 0), minimum traffic cost 𝑊𝑟(𝑠, 𝑑), and best path
(Figure 22).

After fully considering the stochastic characteristics of
the floor and the surrounding rock surface of tunneling
after roadheader cutting, the cost function of the simulation
roadway and the simulation modeling of the roadheader's
path planning were completed. In addition, the adaptability
of the theoretical method was verified. Under this theoretical
model, the practical measurement and path planning need to
further improve the reliability of the topographic survey data
and prior knowledge of geological conditions.
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Figure 15: Comparison path planning under stochastic C-GNet environment model.
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Figure 16: Single target path.

4. Conclusions

This work studied the stochastic network optimal path plan-
ning problem and analyzed the network structure character-
istics, stochastic nature, and cost model of network arcs and

nodes. We proposed a simulation for the stochastic process
by analyzing the embodiment of the behavioral constraints
in the network model. We took the 2D grid expansion
for the high-dimensional grid computing cost model and
comprehensive cost value into a 3D grid lower dimensional
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Figure 18: Path with the compound factor.

map using the VSAPSO optimization path planning method
to solve the multiconstrained optimal path problem in an
unstructured environment with stochastic C-GNet models.
This study draws the following conclusions.(1) The traditional environment modeling for the deter-
ministic space structure is effective. However, a complete

description of the cost price stochastic characteristics of
the nodes and arcs cannot be observed in some network
structures under the roadway space terrain composed of
roadheader cutting molding and cutting quality influence.
Hence, we proposed a stochastic C-GNet combined with the
stochastic network characteristics of the terrain geological
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Figure 20: Stochastic C-GNet environment model of the random starting point (0.2, 0).

attributes under a narrow and closed nonstructural tunnel-
ing.(2) The narrow and closed space belonged to the
indoor local space category. The computational complex-
ity was not high and using the particle swarm optimiza-
tion algorithm verification environment model was feasi-
ble. The VSAPSO algorithm used in path planning and
optimized in the convergence speed and accuracy met the
target planning requirements, and the validation of which
in the road in path planning was effective and practi-
cal. (3) The stochastic constrained modeling method was
based on the grid network environment, and the road-
header path planning was completed under a tunnel special
environment. This modeling and optimizing method was
suitable for the narrow priority large mechanical tunnel-
ing working space, but not limited to such problems, and
solved the problem of intelligent transportation and special

robot autonomous navigation in unstructured environment
dynamic stochastic network optimization problems.
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