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In this paper an approach for computing anoptimal control lawbasedon thePolynomial Least SquaresMethod (PLSM) is presented.
The initial optimal control problem is reformulated as a variational problemwhose correspondingEuler-Lagrange equation is solved
by using PLSM. A couple of examples emphasize the accuracy of the method.

1. Introduction

Optimal control problems occur inmany areas of science and
engineering such as system mechanics, hydrodynamics, elas-
ticity theory, geometrical optics, and aerospace engineering,
and they are one of the several applications and extensions of
the calculus of variations.

The beginning of optimal control is represented by the
Brachistochrone problem formulated by Galileo in 1683: A
massmaterial pointmmoves without friction along a vertical
curve joining the points (𝑥0, 𝑦0) and (𝑥1, 𝑦1). There is the
question of finding such a curve for which the scroll time
is minimal, curve called brachistochrone. Galileo’s attempts
to resolve it were incorrect [1, 2]. The problem raised great
interest at that time and solutions were proposed by many
mathematicians like Bernoulli, Leibnitz, l’Hopital, and New-
ton [1]. These results were published by Euler in 1744, who
concluded “nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.” Euler
also formulated the problem in general terms as the problem
of finding the curve 𝑦(𝑡) over the interval [𝑎, 𝑏] (with 𝑦(𝑎)
and 𝑦(𝑏) known) which minimizes:

𝐽 = ∫𝑏
𝑎

𝐹 (𝑡, 𝑦 (𝑡) , 𝑦󸀠 (𝑡)) 𝑑𝑡 (1)

for some given function 𝐹(𝑡, 𝑦(𝑡), 𝑦󸀠(𝑡)), where 𝑦󸀠 = 𝑑𝑦/𝑑𝑡.
Euler presented a necessary condition of optimality for

the curve 𝑦(𝑡):
𝑑𝑑𝑡𝐹𝑦󸀠 (𝑡, 𝑦 (𝑡) , 𝑦󸀠 (𝑡)) = 𝐹𝑦 (𝑡, 𝑦 (𝑡) , 𝑦󸀠 (𝑡)) (2)

where𝐹𝑦󸀠 and𝐹𝑦 represent the partial derivatives with respect
to 𝑦󸀠 and 𝑦, respectively.

The solution techniques proposed initially had been of
a geometric nature until 1755 when Lagrange described an
analytical approach, based on perturbations or “variations” of
the optimal curve and using his “undetermined multipliers,”
which led directly to Euler’s necessary condition, now known
as the “Euler-Lagrange equation.” Euler also adopted this
approach and renamed the subject “the calculus of variations”
[3].

In the years to come, considerable efforts have been made
to develop optimal control techniques. A classification of
methods for solving optimal control problems is presented by
Berkani et al. in [3]. Among the most used ones we mention
the following.

(i) The Dynamic Programming method, based on the
principle of optimality, was first formulated by Bellman [4]
and often used in the analysis and design of automatic
control systems. Bellman’s partial differential equation and
the boundary conditions included are necessary conditions
for obtaining the minimum of the optimal control problem.

(ii) The Pontryagin Minimum Principle [5] is built on
defining the Hamiltonian function by introducing adjoint
variables. The optimal control law is obtained by solving the
canonical differential equations (the Hamilton equations)
which are the necessary conditions of optimality according
to the minimum principle [6]. The optimality conditions
are in general not able to provide the exact optimum since
the resulting two-point boundary value problem (Bellman
partial differential equation) is not easy to be solved

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 9454160, 8 pages
https://doi.org/10.1155/2018/9454160

http://orcid.org/0000-0003-3907-2717
http://orcid.org/0000-0001-5464-6868
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/9454160


2 Mathematical Problems in Engineering

analytically and usually computational methods are
employed [7–9].

In this paper we apply the Polynomial Least Squares
Method (PLSM) in order to compute approximate analytical
polynomial solutions for a optimal control problems. This
method was used by C. Bota and B. Căruntu in 2014 to
compute approximate analytical solutions for the Brusselator
system which is a fractional-order system of nonlinear
differential equations [10]. In the following years the accuracy
of themethod is emphasized by its use in solving several types
of differential equations [11–13].

The optimal control problem approached in this paper is
the computation of the optimal control law 𝑢(𝑡) : [0, 𝑡𝑓] ⊂
R 󳨀→ R which minimizes the performance index:

𝐽 = ∫𝑡𝑓
0

𝐹 (𝑦 (𝑡) , 𝑢 (𝑡) , 𝑡) 𝑑𝑡 (3)

where the state equation is

𝑦󸀠 (𝑡) = 𝑓 (𝑦 (𝑡) , 𝑢 (𝑡) , 𝑡) (4)

and the state variable 𝑦(𝑡) satisfies the constraints 𝑦(0) = 𝑦0
and 𝑦(𝑡𝑓) = 𝑦𝑓.

We will assume that F is of class 𝐶1, so the solution of
the optimal control problem exists and is unique for the
given conditions. The state equation (4) may be linear or
nonlinear but we also assume that 𝑢(𝑡) can be explicitly
obtained from (4) as a function of 𝑦(𝑡). In this case solving
the optimal control problem is equivalent to solving the
variational problem of finding the minimum of functional:

𝐽 = ∫𝑡𝑓
0

𝐺 (𝑡, 𝑦 (𝑡) , 𝑦󸀠 (𝑡)) 𝑑𝑡 (5)

with

𝑦 (0) = 𝑦0,
𝑦 (𝑡𝑓) = 𝑦𝑓 (6)

where the relation (5) is obtained from (3) by substituting the
expression for 𝑢(𝑡) as a function of 𝑦(𝑡) (4).

The necessary condition for the uniqueness of the solu-
tion to the problem (5)-(6) is that 𝑦(𝑡) satisfies the conditions
(6) and the Euler-Lagrange equation:

𝜕𝐺 (𝑡, 𝑦 (𝑡) , 𝑦󸀠 (𝑡))
𝜕𝑦 (𝑡) = 𝑑𝑑𝑡 (𝜕𝐺 (𝑡, 𝑦 (𝑡) , 𝑦󸀠 (𝑡))

𝜕𝑦󸀠 (𝑡) ) . (7)

2. Approximate Solution for an Optimal
Control Problem Using the Polynomial
Least Squares Method

2.1. The Polynomial Least Squares Method. The Euler-
Lagrange equation associated with the optimal problem (5)-
(6) may have the expression:

𝑦󸀠󸀠 (𝑡) = F (𝑦󸀠 (𝑡) , 𝑦 (𝑡) , 𝑡) (8)

where F may be linear or nonlinear. We associate with this
equation the following operator:

𝐷 (𝑦 (𝑡)) = 𝑦󸀠󸀠 (𝑡) − F (𝑦󸀠 (𝑡) , 𝑦 (𝑡) , 𝑡) (9)

If we denote by 𝑦(𝑡) an approximate solution of (8), the
error obtained by replacing the exact solution 𝑦(𝑡) with the
approximation 𝑦(𝑡) is given by the remainder:

R (𝑡, 𝑦 (𝑡)) = 𝐷 (𝑦 (𝑡)) , 𝑡 ∈ [0, 𝑡𝑓] . (10)

Taking into account the boundary conditions (6), for 𝜖 ∈ 𝑅+,
we will compute approximate polynomial solutions 𝑦 of the
problem (8), (6) on the interval [0, 𝑡𝑓] as follows.
Definition 1. We call an 𝜖-approximate polynomial solution
of the problem (8), (6) an approximate polynomial solution𝑦 satisfying the relations󵄨󵄨󵄨󵄨R (𝑡, 𝑦)󵄨󵄨󵄨󵄨 < 𝜖 (11)

𝑦 (0) = 𝑦0,
𝑦 (𝑡𝑓) = 𝑦𝑓 (12)

We call a weak 𝜖-approximate polynomial solution of
the problem (8), (6) an approximate polynomial solution 𝑦
satisfying the relation

∫𝑡𝑓
0

󵄨󵄨󵄨󵄨R (𝑡, 𝑦)󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ 𝜖 (13)

together with the initial conditions (6)

Definition 2. Let 𝑃𝑚(𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅ + 𝑐𝑚𝑡𝑚, 𝑐𝑖 ∈ R,𝑖 = 0, 1, . . . , 𝑚, be a sequence of polynomials satisfying the
conditions 𝑃𝑚(0) = 𝑦0, 𝑃𝑚(𝑡𝑓) = 𝑦𝑓.

We call the sequence of polynomials 𝑃𝑚(𝑡) convergent to
the solution of the problem (8), (6) if lim𝑚󳨀→∞𝐷(𝑃𝑚(𝑡)) = 0.

We observe that from the hypothesis of the initial
problem (8), (6) it follows that there exists a sequence of
polynomials 𝑃𝑚(𝑡) which converges to the solution of the
problem.We will compute a weak 𝜖-approximate polynomial
solution, in the sense of the Definition 1, of the type

𝑦 (𝑡) = 𝑚∑
𝑘=0

𝑑𝑘𝑡𝑘 (14)

where 𝑑0, 𝑑1, . . . , 𝑑𝑚 are constants which are calculated using
the following steps:

(i) By substituting the approximate solution (14) in (8)
we obtain the remainder:

R (𝑡, 𝑦) = 𝑦󸀠󸀠 (𝑡) − F (𝑦󸀠 (𝑡) , 𝑦 (𝑡) , 𝑡) (15)

We remark that if we could find 𝑑0, 𝑑1, . . . , 𝑑𝑚 such
that R(𝑡, 𝑦) = 0, 𝑦(0) = 𝑦0, 𝑦(𝑡𝑓) = 𝑦𝑓, then
by substituting 𝑑0, 𝑑1, . . . , 𝑑𝑚 in (14) we would obtain
the exact solution of the problem (8), (6). This is not
generally possible, unless the exact solution is actually
a polynomial
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(ii) We attach to the problem (8), (6) the following
functional:

J (𝑑2, 𝑑3 ⋅ ⋅ ⋅ , 𝑑𝑚) = ∫𝑡𝑓
0

R
2 (𝑡, 𝑦 (𝑡)) 𝑑𝑡 (16)

where 𝑑0, 𝑑1 are computed as functions of 𝑑2,𝑑3 ⋅ ⋅ ⋅ 𝑑𝑚 using the conditions (6).
(iii) We compute the values 𝑑02, 𝑑03, ⋅ ⋅ ⋅ 𝑑0𝑚 as the values

which give the minimum of the functional J and the
values of 𝑑00 and 𝑑01 as functions of 𝑑02, 𝑑03, ⋅ ⋅ ⋅ 𝑑0𝑚 using
the conditions (6).

(iv) Using the constants 𝑑02, 𝑑03, ⋅ ⋅ ⋅ 𝑑0𝑚 previously deter-
mined we compute the polynomial

𝑀𝑚 (𝑡) = 𝑚∑
𝑘=0

𝑑0𝑘𝑡𝑘 (17)

Theorem 3. The sequence of polynomials 𝑀𝑚(𝑡) from (17)
satisfies the property

lim
𝑡󳨀→∞

∫𝑡𝑓
0

R
2 (𝑡, 𝑀𝑚 (𝑡)) 𝑑𝑡 = 0 (18)

Moreover, if ∀𝜖 > 0, ∃𝑚𝑜 ∈ N, 𝑚 > 𝑚0, it follows that 𝑀𝑚(𝑡)
is a weak 𝜖-approximate polynomial solution of the problem
(8), (6)

Proof. Based on the way the polynomials 𝑀𝑚(𝑡) are com-
puted and taking into account the relations (15)-(17), the
following inequalities are satisfied:

0 ≤ ∫𝑡f
0
R
2 (𝑡, 𝑀𝑚 (𝑡)) 𝑑𝑡 ≤ ∫𝑡𝑓

0
R
2 (𝑡, 𝑃𝑚 (𝑡)) 𝑑𝑡,

∀𝑚 ∈ N,
(19)

where 𝑃𝑚(𝑡) is the sequence of polynomials introduced in
Definition 2.

It follows that

0 ≤ lim
𝑡󳨀→∞

∫𝑡𝑓
0

R
2 (𝑡, 𝑀𝑚 (𝑡)) 𝑑𝑡

≤ lim
𝑡󳨀→∞

∫𝑡𝑓
0

R
2 (𝑡, 𝑃𝑚 (𝑡)) 𝑑𝑡 = 0.

(20)

We obtain

lim
𝑡󳨀→∞

∫𝑏
𝑎
R
2 (𝑡, 𝑀𝑚 (𝑡)) 𝑑𝑡 = 0. (21)

From this limit we obtain that ∀𝜖 > 0, ∃𝑚𝑜 ∈ N, 𝑚 > 𝑚0
and it follows that 𝑀𝑚(𝑡) is a weak 𝜖-approximate polynomial
solution of the problem (8), (6).

Remark 4. In order to find 𝜖-approximate polynomial solu-
tions of the problem (8), (6) by using the Polynomial Least
Squares Method we will first determine weak approximate
polynomial solutions, 𝑦. If |R(𝑡, 𝑦)| < 𝜖 then 𝑦 is also an 𝜖-
approximate polynomial solution of the problem.

2.2. Application of the Polynomial Least Squares Method for
an Optimal Control Problem. We will find the approximate
solution of the optimal control problem (3)-(4) using the
following steps:

(i) We transform the optimal control problem (3)-(4)
in a variational problem (5)-(6) as described in the
introduction.

(ii) We attach to the variational problem (5)-(6) the
corresponding Euler-Lagrange equation (7), (8).

(iii) We compute the approximate solution 𝑦(𝑡) of the
Euler-Lagrange equation using PLSM as described in
the previous section.Thus 𝑦(𝑡) is an approximation of
the state variable 𝑦(𝑡) of the optimal control problem.

(iv) Finally we compute an approximation𝑢(𝑡) of the opti-
mal control law 𝑢(𝑡) by means of the state equation
(4).

3. Applications

In this sectionwe apply the Polynomial Least SquaresMethod
in order to compute analytical approximate optimal control
laws for three optimal control problems.

3.1. Application 1. We consider the following optimal control
problem [3]:

min
𝑢(𝑡)

∫1
0

[(2 − 𝑦 (𝑡))2 + 𝑢2 (𝑡)] 𝑑𝑡 (22)

where the state equation is

𝑦󸀠 (𝑡) = 𝑢 (𝑡) − 14√𝑦 (𝑡) (23)

and the boundary conditions are

𝑦 (0) = 0,
𝑦 (1) = 2 (24)

The exact solution of this problem is [3]

𝑦 (𝑡)
= 𝑒−𝑡 (−𝑒 − 63𝑒2 − 63𝑒𝑡 + 63𝑒2𝑡 + 63𝑒2+𝑡 + 𝑒1+2𝑡)

32 (−1 + 𝑒2)
(25)

In order to apply PLSM we follow the steps presented in
the previous section:

(i) From the state equation (23) we obtain the optimal
control law 𝑢(𝑡) as a function of the state variable 𝑦(𝑡):

𝑢 (𝑡) = 𝑦󸀠 (𝑡) + 14√𝑦 (𝑡) (26)

Replacing this expression of 𝑢(𝑡) in the performance
index (22) we transform the initial optimal control
problem into the following variational problem:
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(a) Find the minimum of the functional

∫1
0

[(2 − 𝑦 (𝑡))2 + (𝑦󸀠 (𝑡) + 14√𝑦 (𝑡))2 (𝑡)] 𝑑𝑡 (27)

subject to the boundary conditions (24).
(ii) The corresponding Euler-Lagrange equation is

𝑦󸀠󸀠 (𝑡) − 𝑦 (𝑡) + 6332 = 0 (28)

(iii) We compute using PLSM an approximate analytical
solution of the type

𝑦 (𝑡) = 𝑑0 + 𝑑1 ⋅ 𝑡 + 𝑑2 ⋅ 𝑡2 + 𝑑3 ⋅ 𝑡3 + 𝑑4 ⋅ 𝑡4 + 𝑑5 ⋅ 𝑡5
+ 𝑑6 ⋅ 𝑡6 + 𝑑7 ⋅ 𝑡7 + 𝑑8 ⋅ 𝑡8 + 𝑑9 ⋅ 𝑡9. (29)

From the boundary conditions (24) we obtain 𝑑0 = 0
and 𝑑1 = 2 − 𝑑2 − 𝑑3 − 𝑑4 − 𝑑5 − 𝑑6 − 𝑑7 − 𝑑8 − 𝑑9.
The corresponding remainder (15) is

R (𝑡) = −6316 − 2 ⋅ (2 ⋅ 𝑑2 + 6 ⋅ 𝑑3 ⋅ 𝑡 + 12 ⋅ 𝑑4 ⋅ 𝑡2 + 20
⋅ 𝑑5 ⋅ 𝑡3 + 30 ⋅ 𝑑6 ⋅ 𝑡4 + 42 ⋅ 𝑑7 ⋅ 𝑡5 + 56 ⋅ 𝑑8 ⋅ 𝑡6
+ 72 ⋅ 𝑑9 ⋅ 𝑡7) + 2
⋅ ((2 − 𝑑2 − 𝑑3 − 𝑑4 − 𝑑5 − 𝑑6 − 𝑑7 − 𝑑8 − 𝑑9) ⋅ 𝑡
+ 𝑑2 ⋅ 𝑡2 + 𝑑3 ⋅ 𝑡3 + 𝑑4 ⋅ 𝑡4 + 𝑑5 ⋅ 𝑡5 + 𝑑6 ⋅ 𝑡6 + 𝑑7
⋅ 𝑡7 + 𝑑8 ⋅ 𝑡8 + 𝑑9 ⋅ 𝑡9) .

(30)

By minimizing the functional (16) J(𝑑2, 𝑑3 ⋅ ⋅ ⋅ , 𝑑9)
(too large to be included here)we obtain the values for𝑑2, 𝑑3 ⋅ ⋅ ⋅ , 𝑑9. We compute the corresponding values
of 𝑑0 and 𝑑1 using again the conditions (24) and
we replace all these values in 𝑦(𝑡) to obtain our
approximation:

𝑦 (𝑡) = 2.6116294098342876 ⋅ 𝑡
+ 0.9843749991096482 ⋅ 𝑡2
+ 0.43527154661696676 ⋅ 𝑡3
+ 0.08203105649571096 ⋅ 𝑡4
+ 0.021762704663334236 ⋅ 𝑡5
+ 0.0027321111314777993 ⋅ 𝑡6
+ 0.0005146366961518619 ⋅ 𝑡7
+ 0.0000454584242327247 ⋅ 𝑡8
+ 0.000005327350329483319 ⋅ 𝑡9.

(31)

Table 1: Absolute errors of the approximations of the state variable𝑦(𝑡) and the optimal control law 𝑢̃(𝑡) obtained by using PLSM for
Application 1.

𝑡 𝑦(𝑡) 𝑢̃(𝑡)
0 0 4.440892099 ⋅ 10−16
0.1 2.317035452 ⋅ 10−13 2.194910920 ⋅ 10−11
0.2 6.393774399 ⋅ 10−13 1.921662829 ⋅ 10−11
0.3 1.423638984 ⋅ 10−12 7.726264073 ⋅ 10−12
0.4 7.804867863 ⋅ 10−14 2.682920552 ⋅ 10−11
0.5 1.620037438 ⋅ 10−12 1.299405028 ⋅ 10−12
0.6 2.264854970 ⋅ 10−13 2.589484183 ⋅ 10−11
0.7 1.334266031 ⋅ 10−12 9.465761508 ⋅ 10−12
0.8 6.727951529 ⋅ 10−13 1.677147310 ⋅ 10−11
0.9 1.718625242 ⋅ 10−13 2.004618693 ⋅ 10−11
1.0 2.220446049 ⋅ 10−16 0

2.×10−10

1.5×10
−10

1.×10−10

5.×10−11

Error of y VIM
Error of y PLSM

0.2 0.4 0.6 0.8 1.0

Figure 1: The absolute errors corresponding to the approximations
of the state variable 𝑦(𝑡) in Application 1: approximate solution from
[3] given by VIM (red curve) and approximate solution given by
PLSM (blue curve).

(iv) Finally we can easily compute an approximation for𝑢̃(𝑡) (also not included here because of its large size)
by means of (26):

𝑢̃ (𝑡) = 𝑦󸀠 (𝑡) + 14√𝑦 (𝑡) (32)

Table 1 presents the absolute errors (as differences in
absolute value between the exact value and the approximate
one) corresponding to our approximations of the state vari-
able𝑦(𝑡) and of the optimal control law𝑢(𝑡) obtained by using
PLSM.

Figures 1 and 2 present the comparison between our
results and previous ones computed in [3] by using the
Variational Iteration Method (VIM). It can be easily observed
that not only is our approximation more precise, but while
the error function corresponding to the VIM approximations
shows a sizeable increase with 𝑡, the error function corre-
sponding to PLSM does not. Moreover, another advantage of
PLSM is the fact that, evidently, the approximation has the
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2.×10−10

2.5×10−10

1.5×10
−10

1.×10−10

5.×10−11

0.2 0.4 0.6 0.8 1.0

Error of u VIM
Error of u PLSM

Figure 2: The absolute errors corresponding to the approximations
of the optimal control law 𝑢̃(𝑡) in Application 1: approximate
solution from [3] given by VIM (red curve) and approximate
solution given by PLSM (blue curve).

simplest possible form, namely, a polynomial, and thus is very
easy to use in any further computations. Finally, we mention
the fact that by increasing the degree of the polynomial 𝑦(𝑡)
we can obtain higher accuracy: for example, using a 10-th
degree polynomial we obtain an overall error of 10−14.
3.2. Application 2. Our second application is the optimal
control problem:

min
𝑢(𝑡)

∫1
0

1 + 𝑦2 (𝑡)𝑢2 (𝑡) 𝑑𝑡 (33)

where there state equation is

𝑦󸀠 (𝑡) = 𝑢 (𝑡) (34)

and the boundary conditions are

𝑦 (0) = 0,
𝑦 (1) = 0.5 (35)

(i) Replacing the expression of 𝑢(𝑡) from (34) in the
performance index (33) we obtain the variational
problem [6]:

min
𝑦(𝑡)

∫1
0

1 + 𝑦2 (𝑡)𝑦󸀠2 (𝑡) 𝑑𝑡 (36)

with the same boundary conditions 𝑦(0) = 0, 𝑦(1) =0.5.
The exact solution of this problem is [6]

𝑦 (𝑡) = sinh (𝑡 ⋅ sinh−1 (12)) (37)

We apply the same steps as in the previous application:

2.×10−12

1.5×10
−12

1.×10−12

5.×10−13

0.2 0.4 0.6 0.8 1.0

Error of y PLSM

Figure 3:The absolute error corresponding to the approximation of
the state variable 𝑦(𝑡) in Application 2: approximate solution given
by PLSM.

(ii) The corresponding nonlinear Euler Lagrange equa-
tion is

𝑦󸀠󸀠 (𝑡) (1 + 𝑦2 (𝑡)) − 𝑦󸀠 (𝑡) 𝑦 (𝑡) = 0 (38)

(iii) We compute using PLSM an approximate analytical
solution of the type

𝑦 (𝑡) = 𝑑0 + 𝑑1 ⋅ 𝑡 + 𝑑2 ⋅ 𝑡2 + 𝑑3 ⋅ 𝑡3 + 𝑑4 ⋅ 𝑡4 + 𝑑5 ⋅ 𝑡5
+ 𝑑6 ⋅ 𝑡6 + 𝑑7 ⋅ 𝑡7. (39)

From the boundary conditions (35) we obtain 𝑑0 = 0
and 𝑑1 = 1/2 − 𝑑2 − 𝑑3 − 𝑑4 − 𝑑5 − 𝑑6 − 𝑑7.
We compute again the corresponding reminder
(15) and by minimizing the functional (16) J(𝑑2,𝑑3 ⋅ ⋅ ⋅ , 𝑑7)we obtain the values for 𝑑2 ⋅ ⋅ ⋅ 𝑑7. Using the
conditions (35) and replacing all the values in 𝑦, our
approximation of the state variable is

𝑦 = 0.4812118250596084 ⋅ 𝑡 − 5.310800720418878
⋅ 10−10 ⋅ 𝑡2 + 0.018571962082159076 ⋅ 𝑡3
− 3.347040175284603 ⋅ 10−8 ⋅ 𝑡4
+ 0.00021510474426296038 ⋅ 𝑡5
− 8.131321771683893 ⋅ 10−8 ⋅ 𝑡6
+ 1.2234286690670117 ⋅ 10−6 ⋅ 𝑡7

(40)

(iv) Using the state equation (34) we compute an approx-
imation for the optimal control law 𝑢̃(𝑡).

In Figures 3 and 4 we present the absolute errors cor-
responding to our approximations of the state variable 𝑦(𝑡)
and of the optimal control law 𝑢̃(𝑡) for the problem (33)-(35)
obtained by using PLSM.
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Figure 4:The absolute error corresponding to the approximation of
the optimal control law 𝑢̃(𝑡) in Application 2: approximate solution
given by PLSM.

3.3. Application 3. Our third application is the well-known
linear quadratic regulator (LQR), more precisely the finite-
horizon, continuous-time LQR. LQRs have a wide range of
applications in engineering such as trajectory tracking and
optimization in robotics, control system design for various
types of vehicles, automatic voltage regulators in electrical
generators, and optimal controls for various types of motors.

The corresponding optimal control problem may be
formulated as

𝐽 = 12𝑥 (𝑡𝑓)𝑇 𝑆𝑥 (𝑡𝑓)
+ 12 ∫𝑡𝑓
𝑡0

(𝑥𝑇𝑃𝑥 + 2𝑥𝑇𝑄𝑢 + 𝑢𝑇𝑅𝑢) 𝑑𝑡
(41)

𝑥󸀠 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) (42)

𝑥 (𝑡0) = 𝑥0,
𝑥 (𝑡𝑓) = 𝑥𝑓,

𝑡 ∈ [𝑡0, 𝑡𝑓] .
(43)

We consider the following particular case of the problem
(41)-(43) corresponding to the values A=1, B=1, S=8, P=3,
Q=0, R=1, and 𝑡𝑓=1 [14, 15]:

The performance index is

𝐽 = 4 ⋅ 𝑦2 (1) + 12 ∫1
0

(3 ⋅ 𝑦2 (𝑡) + 𝑢2 (𝑡)) 𝑑𝑡 (44)

the state equation is

𝑦󸀠 (𝑡) = 𝑢 (𝑡) (45)

and the boundary conditions are

𝑦 (0) = 3 + 209𝑒4 − 5,
𝑦 (1) = 8

(46)

Approximate solutions for this problemwere proposed in
[14] using the Homotopy Analysis Method and in [15] using
the Optimal Homotopy Analysis Method. The exact solution
of the problem is

𝑦 (𝑡)
= 𝑒−2𝑡 ((5 + 45𝑒2 + 72𝑒4) 𝑒4𝑡 + 𝑒2 (−40 − 45𝑒2 + 27𝑒4))

(1 + 𝑒2) (9𝑒4 − 5)
(47)

The corresponding expression of the control is

𝑢 (𝑡)
= 𝑒−2𝑡 ((5 + 45𝑒2 + 72𝑒4) 𝑒4𝑡 + 3𝑒2 (40 + 45𝑒2 − 27𝑒4))

(1 + 𝑒2) (9𝑒4 − 5)
(48)

Using the same steps presented in the previous examples
we computed the following approximation of the state vari-
able:

𝑦 (𝑡) = 3.041119828603783 − 1.8976676950657474
⋅ 𝑡 + 6.08223965125759 ⋅ 𝑡2
− 1.2651116099552036 ⋅ 𝑡3
+ 2.027411010322069 ⋅ 𝑡4
− 0.2530087549866359 ⋅ 𝑡5
+ 0.2702720790557366 ⋅ 𝑡6
− 0.02398312502575098
⋅ 𝑡70.01913989850290996 ⋅ 𝑡8
− 0.0011806615481455588 ⋅ 𝑡9
+ 0.0007696532612724977 ⋅ 𝑡10
− 0.00002286154490479068 ⋅ 𝑡11
+ 0.000022587123028528187 ⋅ 𝑡12.

(49)

In Figures 5 and 6 we present the absolute errors cor-
responding to our approximations of the state variable 𝑦(𝑡)
and of the optimal control law 𝑢̃(𝑡) for the problem (44)-(46)
obtained by using PLSM.

The accuracy of our method is emphasized by a compar-
ison with approximate solutions for Application 3 previously
computed by means of other well-known methods. Table 2
presents a comparison of the absolute errors corresponding
to the approximations of the state variable 𝑦(𝑡) obtained
by using the Homotopy Analysis Method (HAM [14]) and
by using the Optimal Homotopy Analysis Method (OHAM
[15]).

4. Conclusion

In this paper the application of the Polynomial Least Squares
Method to optimal control problems is presented.
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Table 2: Comparison of the absolute errors corresponding to the approximations of the state variable 𝑦(𝑡) obtained by using HAM, OHAM,
and PLSM for Application 3.

𝑡 𝑦(𝑡)𝐻𝐴𝑀 𝑦(𝑡)𝑂𝐻𝐴𝑀 𝑦(𝑡)𝑃𝐿𝑆𝑀
0 3.8034 ⋅ 10−4 2.2926 ⋅ 10−7 4.4409 ⋅ 10−16
0.2 3.7677 ⋅ 10−4 8.7067 ⋅ 10−7 1.7306 ⋅ 10−12
0.4 1.2227 ⋅ 10−4 3.1004 ⋅ 10−7 3.8681 ⋅ 10−12
0.6 1.5453 ⋅ 10−4 6.0923 ⋅ 10−8 9.6811 ⋅ 10−13
0.8 2.1309 ⋅ 10−4 7.4523 ⋅ 10−9 1.6227 ⋅ 10−12
1.0 0 3.7303 ⋅ 10−14 0

0.2 0.4 0.6 0.8 1.0

Error of y PLSM

3.×10−12

4.×10−12

2.×10−12

1.×10−12

Figure 5:The absolute error corresponding to the approximation of
the state variable 𝑦(𝑡) in Application 3: approximate solution given
by PLSM.

Figure 6:The absolute error corresponding to the approximation of
the optimal control law 𝑢̃(𝑡) in Application 3: approximate solution
given by PLSM.

In order to apply PLSM the optimal problem is trans-
formed to a variational problem by substituting in the per-
formance index the expression of the control variable given
by the state equation. PLSM is able to find accurate approx-
imations of the state variable by computing approximate
analytical polynomial solutions of the Euler-Lagrange equa-
tion corresponding to the variational problem. The optimal
control law is then computed by using the state equation.

The numerical examples included clearly illustrate the
accuracy of the method by means of a comparison with
solutions previously computed by other methods.
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