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The steady-state performance of a moving-object tracking filter is theoretically analyzed, assuming the simultaneous measurement
of the range and range-rate (RRM system), and the use of linear frequency modulated (LFM) waveforms (RRM-LFM filter). An
efficient analytical steady-state performance index, called anRMS index, is derived for the RRM-LFMfilter to clarify the steady-state
range prediction errors, theoretically. Using the derived RMS index, the optimal performance of the RRM-LFM filter is analyzed.
The performance variation due to the use of LFMwaveforms is clarified for the RRM tracking system.The theoretical performance
analysis verifies that the measured range-rate significantly improves the tracking accuracy, compared to the conventional range-
only measuring LFM tracking filter. Furthermore, the quantitative relationships among the measurement accuracy, degree of target
maneuvering, and steady-state range prediction errors are clarified to validate the effectiveness of the RRM-LFM filter.

1. Introduction

Tracking filters for robots and aircrafts predict the trajectory
and velocity of a maneuvering target based on the measure-
ments by remote sensors, such as radars, lidars, and/or sonars.
For certain applications in such fields, linear frequency-
modulated (LFM) waveforms are used for improving the
resolution of the range measurements and imaging [1–4].
In measurements using LFM waveforms, a bias error occurs
due to the Doppler effect, known as range-Doppler coupling
[4, 5], which must be compensated. To reduce such bias
errors, Kalman [6, 7] and 𝛼-𝛽 filters [8–10] modified for
LFM waveforms are used. The analysis of the 𝛼-𝛽 filter for
LFM waveforms (LFM 𝛼-𝛽 filter) is important because it
theoretically clarifies the mathematical formulation of the
steady-state performances of tracking filters [5, 9, 10]. Based
on the theoretical performance analysis, an optimal tracking
filter that minimizes the steady-state range prediction errors
for LFM waveforms is derived and validated [8].

Most conventional studies on steady-state LFM track-
ing filters have considered the measurement of the range
(distance) alone [5, 8–10], neglecting the measurement of
the range-rate. However, owing to technical advancements,

recent LFM radar systems can generally measure the range
and range-rate with sufficient accuracy [1–4, 11]. In [4], a
measurement model incorporating compensation for range-
Doppler coupling using the measured range-rate was pre-
sented and applied to radar ship tracking. In addition, the
effectiveness of this tracking technique was validated in var-
ious real environments [12, 13]. Therefore, the performance
analysis of tracking filters for range-rate-measured (RRM)
systems is important for their appropriate design [14–17].
Although Bar-Shalom [14] presented numerical examples of
an LFM tracking filter for RRM measurement, a stringent
theoretical analysis was not provided. Recently, some studies
have clarified the performance of LFM radar tracking by
numerical simulations [15–17]; however, their practicalities
were confirmed only in limited situations. Hence, these stud-
ies have empirically designed the tracking-filter parameters,
and the performancewas not sufficiently investigated. In view
of the above, a theoretical performance analysis of tracking
filters for LFM waveforms, assuming an RRM system, is
required for their appropriate design.

For the steady-state performance analysis of RRM sys-
tems, without using LFM waveforms, our previous work
had proposed an efficient analytical performance index that
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expresses the steady-state error in range prediction, called
the root-mean-square index (RMS index) [8, 18]. We had
presented an RMS index-based optimal design strategy for
a steady-state second-order tracking filter using an RRM
system, called the 𝛼-𝛽-𝜂-𝜃 filter [18, 19]. Moreover, the
previous research [8] had verified that the tracking accuracy
of an LFM 𝛼-𝛽 filter designed using the RMS index is
better than that designed using a representative Kalman-
filter equation-based approach [9, 10]. Based on these studies,
we believe that an RMS index-based analysis can reveal the
theoretical performance and enable the optimal design of a
steady-state tracking filter using an RRM system with LFM
waveforms.

In this paper, the theoretical analysis of a tracking filter,
using LFM waveforms and an RRM system (RRM-LFM
filter), in steady-state is presented. The 𝛼-𝛽-𝜂-𝜃 filter design
[18] is extended to the use of LFM waveforms through the
derivation of the RMS index. The derived RMS index-based
analysis clarifies the relationship between the parameters of
the LFM waveforms and the tracking accuracy of the RRM-
LFM filter. The theoretical steady-state performance of the
RRM-LFM filter is compared to that of the conventional
LFM 𝛼-𝛽 and 𝛼-𝛽-𝜂-𝜃 filters to reveal the effects of the use
of LFM waveforms in an RRM system and demonstrate the
effectiveness of range-rate measurement for tracking with
LFM waveforms.

2. LFM Tracking Filter with
Range-Rate Measurement

2.1. Problem Definition. This paper considers a steady-state
second-order tracking filter using LFMwaveforms, assuming
the simultaneous measurement of the range and range-rate
(RRM system). Figure 1 outlines a system for measurement
using LFMwaveforms and the tracking filter assumed in this
study. First, a measurement model for the RRM system is
described to define the tracking filter. This study assumes
the measurement model presented in [4]. Moving-object
tracking along the range direction using LFM waveforms is
assumed, and the target state includes the range, r, and range-
rate, V. At each time step 𝑘, the target range, 𝑟o𝑘, and the
range-rate, Vo𝑘, measured using LFM waveforms are input
to the tracking filter. It is traditionally known that the range
measured using the LFM waveforms includes not only the
random errors due to sensor noise but also bias error due to
the Doppler shift, which is modeled as [5]

𝑟o𝑘 = 𝑟t𝑘 + �𝑡Vt𝑘 + 𝑤r𝑘, (1)

where 𝑟t𝑘 and Vt𝑘 are the true range and range-rate at time
kT, T is the sampling interval, 𝑤r𝑘 is the white Gaussian noise
in terms of the range with a standard deviation, 𝜎r, and �𝑡
is the coefficient of the range-Doppler coupling expressed as
[4, 5, 10]

�𝑡 = 𝜏𝑓0𝐵w
, (2)

where 𝜏, 𝑓0, and 𝐵w are the pulse length, carrier frequency,
and bandwidth of the LFM waveform, respectively. �𝑡 > 0

corresponds to an up-chirp waveform, while �𝑡 < 0 corre-
sponds to a down-chirp one [5]. For the RRM system, the
range-Doppler coupling, �𝑡Vt𝑘, in the range measurement of
(1) is compensated using the measured range-rate, Vo𝑘, at each
time step [4]. This compensation process is expressed as [4]

𝑟o𝑘 = 𝑟ok − �𝑡Vo = 𝑟t𝑘 + �𝑡Vt𝑘 + 𝑤r𝑘 − �𝑡Vo𝑘. (3)

We assume that the measured range-rate also contained the
white Gaussian noise as [4]

Vo𝑘 = Vt𝑘 + 𝑤v𝑘, (4)

where 𝑤v𝑘 is the white Gaussian noise in terms of the range-
rate with a standard deviation, 𝜎v. Substituting (4) into (3),
we have

𝑟o𝑘 = 𝑟t𝑘 + 𝑤r𝑘 − �𝑡𝑤v𝑘, (5)

where 𝑤r𝑘 and 𝑤v𝑘 are independent. The measurement
models of the RRM system for defining the filtering process
are (4) and (5). As indicated in (5), although the bias error due
to theDoppler shift is removed by the range-rate correction in
(3), 𝑟o𝑘 is affected by random errors in Vo𝑘 and the coefficient
of the range-Doppler coupling. Thus, the reduction of these
errors is required in the tracking filtering process.

From the measured parameters, 𝑟o𝑘 and Vo𝑘, the tracking
filter calculates the predicted range, 𝑟p𝑘, and the range-rate,
Vp𝑘, as the outputs, as indicated in Figure 1.The tracking filter
invokes an iterative prediction and smoothing process. The
second-order tracking filter assumes a constant range-rate
motion model for the prediction process, which is expressed
as follows [8–10]:

𝑟p𝑘+1 = 𝑟s𝑘 + 𝑇Vs𝑘, (6)

Vp𝑘+1 = Vs𝑘, (7)

where 𝑟p𝑘 is the predicted target range, Vp𝑘 is the predicted
target range-rate, and 𝑟s𝑘 and Vs𝑘 are the smoothed range and
range-rate, respectively, obtained in the smoothing process.
The smoothing process of the RRM system is given by [18]

𝑟s𝑘 = 𝑟p𝑘 + 𝛼 (𝑟o𝑘 − 𝑟p𝑘) + 𝑇𝜂 (Vo𝑘 − Vp𝑘) , (8)

Vs𝑘 = Vp𝑘 + (𝛽𝑇) (𝑟o𝑘 − 𝑟p𝑘) + 𝜃 (Vo𝑘 − Vp𝑘) , (9)

where 𝛼, 𝛽, 𝜂, and 𝜃 are the filter gains.
The aim of this paper is to clarify the steady-state per-

formance of the tracking filter, expressed by (6)–(9), whose
measurement models are (4) and (5).We refer to this tracking
filter as the RRM-LFM filter. The assumptions made are as
follows:

(i) The measurement parameters 𝜎r, 𝜎v, and �𝑡 are
known and constant.

(ii) The sampling interval, 𝑇, is known and constant.
(iii) As a steady-state is assumed, the filter gains 𝛼, 𝛽, 𝜂,

and 𝜃 are fixed.
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Figure 1: Outline of the assumed measurement/tracking system.

(iv) Filter gains that minimize the RMS index [8, 18] are
set. The RMS index is a performance index of the
tracking filter that expresses the mean of the steady-
state errors in the predicted range.

In the rest of this paper, the RMS index of the RRM-LFM
filter is derived. Then, the optimal gain is calculated using the
derived RMS index. Finally, to clarify the effectiveness of the
RRM-LFM filter, its optimal performance is compared with
those of the conventional range-only measured LFM tracking
filter (LFM 𝛼-𝛽 filter) [8–10] and the range and range-rate
measured filter without considering LFMwaveforms (𝛼-𝛽-𝜂-𝜃 filter) [18].
2.2. Relationship with the LFM 𝛼-𝛽 Filter. The LFM 𝛼-𝛽 filter
is a steady-state tracking filter for LFMwaveforms, assuming
a range only measurement [8–10]. The difference between
the LFM 𝛼-𝛽 and RRM-LFM filters is that the measurement
range-rate, Vo, is not obtained in the former. Thus, differing
from (3), the range-Doppler coupling is not compensated
in the measurement process. Instead, this is compensated in
the smoothing process of the tracking filter. The smoothing
process in the LFM 𝛼-𝛽 filter is given by [8–10]

𝑟s𝑘 = 𝑟p𝑘 + 𝛼 (𝑟o𝑘 − �𝑡Vp𝑘 − 𝑟p𝑘) , (10)

Vs𝑘 = Vp𝑘 + (𝛽𝑇) (𝑟o𝑘 − �𝑡Vp𝑘 − 𝑟p𝑘) . (11)

The prediction process is the same as (6) and (7). As indicated
in (10) and (11), the bias error due to range-Doppler coupling
in 𝑟o is compensated using the predicted range-rate, Vp. The
optimization of the LFM 𝛼-𝛽 filter is presented in [10]. The
comparison of the RRM-LFMand LFM 𝛼-𝛽 filters reveals the
effectiveness of range-rate measurements in LFM radars.

2.3. Relationship with the 𝛼-𝛽-𝜂-𝜃 Filter. The 𝛼-𝛽-𝜂-𝜃 filter is
a steady-state tracking filter, which considers the range and
range-rate (position and velocity) measurements [18, 19].The
filtering process is the same as that of theRRM-LFMfilter, i.e.,
(6)–(9). Although its performance analysis and optimization
are presented in [18], the use of LFM waveforms is not
considered. The conventional performance analysis of the 𝛼-𝛽-𝜂-𝜃 filter assumes that there is no error covariance between

the range and range-rate. The variances and covariance of the
measurement noise assumed in [18] are as follows:

E [(𝑟convo𝑘 − 𝑟t𝑘)2] = 𝜎2r ,
E [(Vconvo𝑘 − Vt𝑘)2] = 𝜎2v ,

E [(𝑟convo𝑘 − 𝑟t𝑘) (Vconvo𝑘 − Vt𝑘)] = 0,
(12)

where E[ ] indicates the mean with respect to k and 𝑟convo and
Vconvo are the measurement range and range-rate, respectively,
assumed in conventional studies. The performance analysis
and design of the optimal filter gains of the 𝛼-𝛽-𝜂-𝜃 filter
assume (12). However, for the RRM-LFM filter, the error
covariances of 𝑟o and Vo apparently exist, as indicated in
(5). Thus, the analysis of the filter expressed by (6)–(9),
considering the error covariance matrix of the measurements
expressed by (4) and (5), is required for determining its
performance. The comparison of the RRM-LFM and con-
ventional 𝛼-𝛽-𝜂-𝜃 filters reveals the effect of range-Doppler
coupling on the RRM system.

3. Performance Index and Optimal Gain of
the RRM-LFM Filter

This section derives the RMS index of the RRM-LFMfilter in
a closed form and presents the optimal calculation procedure
for the filter gains. The definition of the RMS-index is given
by [8]

𝜀p ≡ lim
𝑘→∞

√E [(𝑟cat𝑘 − 𝑟p𝑘)2] = √𝜎2p + (𝐿 rp𝐴max𝑇2)2, (13)

where

𝑟cat𝑘 = 𝐴max (𝑘𝑇)22 (14)

is the true range of a target moving at constant acceleration,𝐴max; 𝜎2p is the steady-state error variance in the range
prediction assuming only sensor noise; and 𝐿 rp𝐴max𝑇2 is
the steady-state bias error in the range prediction [8, 10]. 𝜎2p
expresses the degree of random error due to sensor noise, and
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𝐿 rp𝐴max𝑇2 is the bias error caused by the difference between
the assumed motion model (constant-range-rate model or
constant-velocity model) and the target motion (accelerating
motion). When we assume that the maximum acceleration of
the target is 𝐴max, the RMS index expresses the maximum
RMS error of the range prediction in steady-state, for the
second-order tracking filter (a detailed discussion is available
in [18]).

The optimal filter gains are calculated by the minimiza-
tion of 𝜀p. Thus, we need 𝜎2p and 𝐿 rp to derive 𝜀p of the
RRM-LFM filter. Moreover, to derive 𝜎2p, the variances and
covariance of the measurement errors in the RRM system
are required.Thus, in the following subsections, the variances
and covariance of the measurement errors are derived. Using
these, 𝜎2p is derived. Further, 𝐿 rp and 𝜀p are determined, and
the optimal gain calculation procedure is finally presented.

3.1. Derivation of the Measurement Error Variance/Covari-
ance. In this section, the covariance matrix of the RRM-LFM
filter is derived for the derivation of the RMS index. With (4)
and (5), the measurement errors at time, kT, are

𝑟o𝑘 − 𝑟t𝑘 = 𝑤r𝑘 − �𝑡𝑤v𝑘, (15)

Vo𝑘 − Vt𝑘 = 𝑤v𝑘. (16)

Using (15) and (16), the variances and covariance of these
errors are calculated as follows:

𝜎2ro ≡ 𝐸 [(𝑟o𝑘 − 𝑟t𝑘)2]
= �𝑡2E [𝑤2v𝑘] + E [𝑤2r𝑘] + 2�𝑡E [𝑤v𝑘𝑤r𝑘]
= �𝑡2𝜎2v + 𝜎2r ,

(17)

𝜎2vo ≡ E [(Vo𝑘 − Vt𝑘)2] = E [𝑤2v𝑘] = 𝜎2v , (18)

𝜎2𝑥vo ≡ E [(𝑟o𝑘 − 𝑟t𝑘) (Vo𝑘 − Vt𝑘)]
= −�𝑡E [𝑤2v𝑘] + 𝐸 [𝑤v𝑘𝑤r𝑘] = −�𝑡𝜎2v. (19)

3.2. Derivation of the Range Prediction Steady-State Error
Variance. 𝜎2p is defined as [8, 18]

𝜎2p ≡ lim
𝑘→∞

E [(𝑟cvt𝑘 − 𝑟p𝑘)2] , (20)

where 𝑟cvt𝑘 is the true range of a target moving at a constant
range-rate. Because the RRM-LFM filter assumes a constant
range-rate model, random errors due to sensor noise alone
are included in the predicted range of the target moving at
a constant range-rate. Thus, the true target motion for the
derivation of 𝜎2p is the constant range-rate motion.

𝜎2p of the RRM-LFMfilter is derived as follows. 𝑟cvt𝑘 can be
expressed as

𝑟cvt𝑘 = 𝑟cvt𝑘−1 + 𝑇Vcvt . (21)

With (6) and (21), the mean squared predicted error is
calculated as

E [(𝑟cvt𝑘 − 𝑟p𝑘)2]
= E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1)2]
+ 2𝑇E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1) (Vcvt − Vsk−1)]
+ E [(Vcvt − Vsk−1)2] .

(22)

Because we assume a steady-state (𝑘 → ∞), we can define
following smoothing error variance/covariance:

𝜎2rs ≡ E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1)2] = E [(𝑟cvt𝑘 − 𝑟s𝑘)2] , (23)

𝜎2rvs ≡ E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1) (Vcvt − Vs𝑘−1)]
= E [(𝑟cvt𝑘 − 𝑟s𝑘) (Vcvt − Vs𝑘)] , (24)

𝜎2vs ≡ E [(Vcvt − Vs𝑘−1)2] = E [(Vcvt − Vs𝑘)2] . (25)

With (20) and (22)–(25),

𝜎2p = 𝜎2xs + 2𝑇𝜎2xvs + 𝑇2𝜎2vs. (26)

Therefore, 𝜎2xs, 𝜎2xvs, and 𝜎2vs are then derived to calculate (26).
The true range and range-rate can be expressed similar to (8)
and (9) as

𝑟cvt𝑘 = 𝑟cvt𝑘 + 𝛼 (𝑟cvt𝑘 − 𝑟cvt𝑘 ) + 𝑇𝜂 (Vcvt − Vcvt ) , (27)

Vcvt = Vcvt + (𝛽𝑇) (𝑟cvt𝑘 − 𝑟cvt𝑘 ) + 𝜃 (Vcvt − Vcvt ) . (28)

The smoothing errors are calculated using (8), (9), (27), and
(28) as

𝑟cvt𝑘 − 𝑟s𝑘 = (1 − 𝛼) (𝑟cvt𝑘 − 𝑟p𝑘) + 𝛼 (𝑟cvt𝑘 − 𝑟o𝑘)
+ 𝑇𝜂 {(Vcvt − Vo𝑘) − (Vcvt − Vp𝑘)} , (29)

V𝑐V𝑡 − V𝑠𝑘 = (1 − 𝜃) (V𝑐V𝑡 − V𝑝𝑘) + 𝜃 (V𝑐V𝑡 − V𝑜𝑘)
+ (𝛽𝑇) {(𝑟𝑐V𝑡𝑘 − 𝑟𝑜𝑘) − (𝑟𝑐V𝑡𝑘 − 𝑟𝑝𝑘)} .

(30)

Substituting (6), (7), and (21) into (29) and (30),

𝑟cvt𝑘 − 𝑟s𝑘 = (1 − 𝛼) {(𝑟cvt𝑘−1 − 𝑟s𝑘−1) + 𝑇 (Vcvt − Vs𝑘−1)}
+ 𝛼 (𝑟cvt𝑘 − 𝑟o𝑘) + 𝑇𝜂 {(Vcvt − Vo𝑘) − (Vcvt − Vs𝑘−1)} , (31)

Vcvt − Vs𝑘 = (1 − 𝜃) (Vcvt − Vs𝑘−1) + 𝜃 (Vcvt − Vo𝑘)
+ (𝛽𝑇)
⋅ {(𝑟cvt𝑘 − 𝑟o𝑘) − (𝑟cvt𝑘−1 − 𝑟s𝑘−1) − 𝑇 (Vcvt − Vs𝑘−1)} .

(32)
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Using (31), the error variance of the smoothed range is
calculated as

E [(𝑟cvt𝑘 − 𝑟s𝑘)2] = (1 − 𝛼)2 {E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1)2]
+ 𝑇2E [(Vcvt − Vs𝑘−1)2]
+ 2𝑇E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1) (Vcvt − Vs𝑘−1)]}
+ 𝛼2E [(𝑟cvt𝑘 − 𝑟o𝑘)2] + 𝑇2𝜂2 {E [(Vcvt − Vo𝑘)2]
− E [(Vcvt − Vs𝑘−1)2]
− 2𝑇E [(Vcvt − Vo𝑘) (Vcvt − Vs𝑘−1)]} + 2𝛼 (1 − 𝛼)
⋅ {E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1) (𝑟cvt𝑘 − 𝑟o𝑘)]
+ 𝑇E [(Vcvt − Vs𝑘−1) (𝑟cvt𝑘 − 𝑟o𝑘)]}
+ 2𝑇𝛼𝜂 {E [(𝑟cvt𝑘 − 𝑟o𝑘) (Vcvt − Vo𝑘)]
− E [(𝑟cvt𝑘 − 𝑟o𝑘) (Vcvt − Vs𝑘−1)]} + 2𝑇𝜂 (1 − 𝛼)
⋅ {E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1) (Vcvt − Vo𝑘)]
− E [(𝑟cvt𝑘 − 𝑟s𝑘−1) (Vcvt − Vs𝑘−1)]
+ 𝑇E [(Vcvt − Vs𝑘−1) (Vcvt − Vo𝑘)]
− 𝑇E [(Vcvt − Vs𝑘−1)2]} .

(33)

The following relations are satisfied because the smoothed
parameters are a linear combination of the measured param-
eters:

E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1) (𝑟cvt𝑘 − 𝑟o𝑘)] = 0,
E [(Vcvt − Vo𝑘) (Vcvt − Vs𝑘−1)] = 0,

E [(Vcvt − Vs𝑘−1) (𝑟cvt𝑘 − 𝑟o𝑘)] = 0,
E [(𝑟cvt𝑘−1 − 𝑟s𝑘−1) (Vcvt − Vo𝑘)] = 0.

(34)

Substituting (17)–(19), (23)–(25), and (34) into (33), and
simplifying, we obtain a linear equation with respect to 𝜎2xs,𝜎2xvs, and 𝜎2vs as
𝛼 (2 − 𝛼) 𝜎2xs + 2 (1 − 𝛼) (𝛼 + 𝜂 − 1) 𝑇𝜎2xvs

− (𝛼 + 𝜂 − 1)2 𝑇2𝜎2vs = 𝛼2𝜎2r + (𝜂𝑇 − 𝛼�𝑡)2 𝜎2v .
(35)

Similar to the above calculation of E[(𝑟cvt𝑘 − 𝑟s𝑘)2] using (32),
we obtain another linear equation from the calculation of
E[(Vcvt − Vs𝑘)2] as

−𝛽2𝜎2xs + 2𝛽 (1 − 𝛽 − 𝜃) 𝑇𝜎2xvs
+ (2 − 𝛽 − 𝜃) (𝛽 + 𝜃) 𝑇2𝜎2vs

= 𝛽2𝜎2r + (𝜃𝑇 − 𝛽�𝑡)2 𝜎2v .
(36)

With the calculation of E[(𝑟cvt𝑘 − 𝑟s𝑘)(Vcvt − Vs𝑘)] using (29) and
(30), we also have

𝛽 (1 − 𝛼) 𝜎2xs + (𝛼 + 2𝛽 + 𝜃 − 𝛼𝜃 − 𝛽𝜂 − 2𝛼𝛽)𝑇𝜎2xvs
+ (𝛼 + 𝜂 − 1) (1 − 𝛽 − 𝜃) 𝑇2𝜎2vs

= 𝛼𝛽𝜎2r + (𝜂𝑇 − 𝛼�𝑡) (𝜃𝑇 − 𝛽�𝑡) 𝜎2v .
(37)

Substituting the solution (𝜎2xs, 𝜎2xvs, 𝜎2vs) of the linear
system composed of (35)–(37) into (26), we arrive at 𝜎2p as

𝜎2p = 𝑔2 (𝛼, 𝛽, 𝜂, 𝜃) 𝜎2r + {𝑇2𝑔3 (𝛼, 𝛽, 𝜂, 𝜃) + 2𝑇�𝑡𝑔4 (𝛼, 𝛽, 𝜂, 𝜃) + �𝑡2𝑔2 (𝛼, 𝛽, 𝜂, 𝜃)} 𝜎2v𝑔1 (𝛼, 𝛽, 𝜂, 𝜃) , (38)

where

𝑔1 (𝛼, 𝛽, 𝜂, 𝜃) = (𝛼 + 𝜃 + 𝛽𝜂 − 𝛼𝜃) (4 − 2𝛼 − 𝛽 − 2𝜃 + 𝛼𝜃 − 𝛽𝜂) , (39)

𝑔2 (𝛼, 𝛽, 𝜂, 𝜃) = 𝛼2𝜃2 − 𝛼𝜃2 − 2𝛼𝛽𝜂𝜃 + 𝛽𝜂𝜃 − 𝛼𝛽𝜃 − 𝛽𝜃 − 3𝛼2𝜃 + 2𝛼𝜃 + 𝛽2𝜂2 + 𝛽2𝜂 + 3𝛼𝛽𝜂 − 2𝛽𝜂 + 𝛼𝛽 + 2𝛽 + 2𝛼2, (40)

𝑔3 (𝛼, 𝛽, 𝜂, 𝜃) = (𝛼2𝜃3 − 𝜃3 − 𝛽𝜂𝜃2 + 2𝛼𝜂𝜃2 − 𝛼𝜃2 + 2𝜃2 − 2𝛽𝜂2𝜃 + 2𝛼𝜂2𝜃 + 2𝛽𝜂𝜃 − 2𝛽𝜂3 + 2𝛽𝜂2)
(𝛼𝜃 − 𝛽𝜂 + 𝛽) , (41)

𝑔4 (𝛼, 𝛽, 𝜂, 𝜃) = 𝜃2 + 𝛼𝜂𝜃 − 2𝜃 − 𝛽𝜂2 − 𝛽𝜂 − 2𝛼𝜂. (42)
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Note that, when �𝑡 = 0, 𝜎2p of (38) is equal to the steady-state
error variance of the predicted position in the conventional𝛼-𝛽-𝜂-𝜃 filter presented in [18], which does not consider
range-Doppler coupling.

3.3. Derivation of the RMS Index. The coefficient 𝐿 rp is
also required for deriving the RMS index. However, this is
equivalent to that of the conventional 𝛼-𝛽-𝜂-𝜃 filter. This is
because it is assumed that there are no random errors in

the derivation of 𝐿 rp [18], and the bias error due to �𝑡 is
completely compensated by Vo in this situation, as indicated
in (1). Thus, 𝐿 rp is (see Eq. (26) of [18])

𝐿 rp = 2 − 2𝜂 − 𝜃
2 (𝛼𝜃 − 𝛽𝜂 + 𝛽) . (43)

The RMS index of the RRM-LFM filter is derived by substi-
tuting (38) and (43) into (13) as

𝜀p = {𝑔2 (𝛼, 𝛽, 𝜂, 𝜃) 𝜎
2
r + {𝑇2𝑔3 (𝛼, 𝛽, 𝜂, 𝜃) + 2𝑇�𝑡𝑔4 (𝛼, 𝛽, 𝜂, 𝜃) + �𝑡2𝑔2 (𝛼, 𝛽, 𝜂, 𝜃)} 𝜎2v𝑔1 (𝛼, 𝛽, 𝜂, 𝜃)

+ ( 2 − 2𝜂 − 𝜃
2 (𝛼𝜃 − 𝛽𝜂 + 𝛽))

2 𝐴2max𝑇4}
1/2

.
(44)

Table 1 summarizes the features andRMS indices of the track-
ing filters, whose steady-state performances are analyzed in
Section 4.

3.4. Optimal Gain Calculation. The optimal gains are cal-
culated by minimizing the RMS index. Based on (44), an
evaluating function is defined as

𝜇 (𝛼, 𝛽, 𝜂, 𝜃, 𝑅rv, 𝑐RD, ΓD) ≡ 𝜀2p𝑇2𝜎2v
= 𝑔2 (𝛼, 𝛽, 𝜂, 𝜃) 𝑅rv + 𝑔3 (𝛼, 𝛽, 𝜂, 𝜃) + 2𝑐RD𝑔4 (𝛼, 𝛽, 𝜂, 𝜃) + 𝑐2RD𝑔2 (𝛼, 𝛽, 𝜂, 𝜃)𝑔1 (𝛼, 𝛽, 𝜂, 𝜃)
+ ( 2 − 2𝜂 − 𝜃

2 (𝛼𝜃 − 𝛽𝜂 + 𝛽))
2 𝑅rvΓ2D,

(45)

where

𝑅rv ≡ 𝜎2r(𝑇2𝜎2v) (46)

indicates the ratio of themeasurement accuracies in the range
and range-rate [18];

𝑐RD ≡ �𝑡𝑇 (47)

is the normalized coefficient of the range-Doppler coupling
[5]; and

ΓD ≡ 𝐴max𝑇2𝜎r (48)

is the deterministic tracking index defined in [10]. ΓD indi-
cates the degree of maneuvering of the target. The optimal
gains of the RRM-LFM filter are obtained by solving the
following problem:

arg min
𝛼,𝛽,𝜂,𝜃

𝜇 (𝛼, 𝛽, 𝜂, 𝜃, 𝑅rv, 𝑐RD, ΓD)
sub. to (1 − 𝜂) 𝛽 + 𝛼𝜃 > 0 and

4 − 2𝛼 − 𝛽 − 2𝜃 + 𝛼𝜃 − 𝛽𝜂 > 0 and
𝛼𝜃 − 𝛽𝜂 − 𝛼 − 𝜃 + 1 < 1,

(49)

where the constraints are the stability conditions of the 𝛼-𝛽-𝜂-𝜃 filter [18].
4. Performance Analysis

4.1. AnalysisMethod. Theminimum RMS index of the RRM-
LFM, conventional 𝛼-𝛽-𝜂-𝜃, and LFM 𝛼-𝛽 filters are evalu-
ated and compared by theoretical analyses. Theminimization
in (49) is solved by a simple gradient descent method, and the
minimum RMS index, 𝜀p,min, is obtained by substituting the
solutions of (49) into (44). 𝜀p,min of the other conventional
filters are similarly calculated, using their RMS indices (see
Table 1).We assume that 𝜎r and𝑇 are normalized to unity and𝐴max is known. Varying 𝑅rv, 𝑐RD, and ΓD, the performance



Mathematical Problems in Engineering 7

Table 1: Summary of the tracking filters considered in this paper.

Filter Measurement
parameter LFM waveform RMS index

LFM 𝛼-𝛽 Range Yes See Eq. (17) of [8]
Conventional 𝛼-𝛽-𝜂-𝜃 Range and range rate No Eq. (44), when �𝑡 = 0
Proposed RRM-LFM Yes Eq. (44)
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Figure 2: Relationship between 𝑅rv and 𝜀p,min for 𝑐RD = -0.5, 0, 0.5: (a) ΓD = 0.1. (b) ΓD = 1.

is analyzed to quantitatively investigate the effect of range-
Doppler coupling in the RRM system and the performance
improvement by the application of the measured range-rate
in LFM radar tracking.

4.2. Results and Discussion. Figure 2 shows the analysis
results of the relationship between 𝑅rv and 𝜀p,min for 𝑐RD = -
0.5 (down-chirp), 0 (conventional𝛼-𝛽-𝜂-𝜃 filterwithout LFM
waveforms), and 0.5 (up-chirp); ΓD = 0.1 and 1. As shown in
these results, a larger 𝑅rv improves the steady-state tracking
accuracy. On comparing the results for 𝑐RD= 0.5 and 0, the
improvement in the tracking accuracy by use of the up-chirp
is confirmed.Although this improvement is known for range-
only measured tracking systems [5], these results confirm a
similar improvement in theRRMsystem, aswell. As indicated
in Figure 2(b), the performance improvement by using the
up-chirp becomes considerable, when 𝑅rv is small and ΓD
= 1. This establishes that the use of the up-chirp achieves
accurate tracking, even when the target maneuvering is
relatively large and the measurement accuracy of the range-
rate is worse. In contrast, the performance deterioration due
to the use of the down-chirp is also confirmed. When 𝑅rv
becomes small, indicating that the accuracy of the range-
rate measurement is worse, the performance deterioration
for 𝑐RD = -0.5, compared to the results for 𝑐RD= 0, becomes
considerable. Moreover, by comparing the results in Figures
2(a) and 2(b), the deterioration of the tracking accuracy for

𝑐RD = -0.5 is relatively large for ΓD=1. These results indicate
that the down-chirp significantly deteriorates the tracking
accuracy, when the range-ratemeasurement is unreliable, and
the accelerating motion of the target is relatively large. In
contrast, as indicated by the results for a relatively large 𝑅rv,
the tracking accuracy depending on 𝑐RD becomes small. This
is because the compensation of the bias-error due to range-
Doppler coupling is correctly performed in (3) by using a
sufficiently accurate Vo (sufficiently small 𝜎v).

Figure 3 shows the analysis results of the relationship
between 𝑐RD and 𝜀p,min for the LFM𝛼-𝛽 and RRM-LFMfilters
with 𝑅rv = 0.1, 1, and 10 and ΓD = 0.1 and 1. The results for𝑅rv = 1 and 10 clearly indicate the enhancement of the steady-
state tracking accuracy by using range-rate measurements.
However, the results for 𝑅rv = 0.1 at 𝑐RD <0 and ΓD = 0.1
demonstrate that the performance of the RRM-LFM filter is
worse than that of the LFM 𝛼-𝛽 filter. This is because the
compensation of the bias error in (3) is not accurate due to the
poorer accuracy of the range-rate measurements. The LFM𝛼-𝛽 filter compensates such errors using the estimated range-
rate acquired in the filtering process, as indicated in (10) and
(11). Moreover, errors due to the down-chirp also occur for𝑐RD < 0, and these are also not sufficiently suppressed in the
RRM system. Furthermore, when ΓD is small, the effects of a
smaller 𝑅rv and 𝑐RD for the minimization of the RMS index
become considerable because the first term of (38) becomes
relatively large. Thus, there are cases where the performance
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Figure 3: Relationship between 𝑐𝑅𝐷 and 𝜀𝑝,𝑚𝑖𝑛 of the LFM 𝛼-𝛽 and RRM-LFM filters with 𝑅𝑟V = 0.1, 1, and 10: (a) ΓD = 0.1. (b) ΓD = 1.
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Figure 4: Relationship between ΓD and 𝜀p,min of the LFM 𝛼-𝛽 and RRM-LFM filters with 𝑅𝑟V = 0.1, 1, and 10: (a) 𝑐RD= 0.5. (b) 𝑐RD= -0.5.

of the RRM-LFM filter is worse than that of the range-only
measured LFM 𝛼-𝛽 filter. This is a notable result because
accuracy deterioration due to range-rate measurements does
not occur in the conventional 𝛼-𝛽-𝜂-𝜃 filter as proved in [18].

Figure 4 shows the analysis results of relationship
between ΓD and 𝜀p,min for 𝑅rv = 0.1, 1, and 10 and 𝑐RD =
-0.5 and 0.5. Although the errors in the LFM 𝛼-𝛽 filter
deteriorate the tracking accuracy with the increase in ΓD,
those in the RRM-LFM filter converge because the RRM
system effectively compensates the bias error using accurate
range-rate information, when𝑅rv is relatively large. However,
we can confirm that the tracking accuracy for 𝑅rv = 0.1 is
similar to that of the LFM 𝛼-𝛽 filter, when 𝑐RD = 0.5 because
the range-rate measurement accuracy is insufficient for
improving the tracking accuracy. On the other hand, the
RRM-LFM filter with 𝑅rv = 0.1 and 𝑐RD = -0.5 improves
the accuracy for a relatively large ΓD because the measured
range-rate (or velocity) information is effectively used to
compensate the bias errors due to target acceleration. It

is relatively difficult for a range-only measured system
to compensate the errors due to acceleration because
acceleration is the second-derivative of the range. In
addition, the performance of the RRM-LFM filter is worse
than that of the LFM 𝛼-𝛽 filter for relatively small ΓD, as
discussed in the previous paragraph.

The summary of the analyses results is as follows. All
the analysis results prove that the steady-state performance
improvement is significant on using an RRM system for
tracking with LFM waveforms, when the measurement
accuracy of the range-rate is sufficiently large. Even for𝑅rv=1, when the reliabilities of the range and range-rate
measurements are the same, the LFM tracking performance
is improved. Furthermore, the effects of range-Doppler
coupling and its compensation in the RRM system are
quantitatively clarified. It is also revealed that there are cases
where the performance of the RRM-LFM filter is worse than
that of the conventional range-only measured LFM 𝛼-𝛽 filter,
when down-chirp is used (𝑐RD < 0), and 𝑅rv and ΓD are
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both relatively small. However, for real applications of RRM-
LFM radars, this might not be a serious problem due to the
following reasons:

(i) For applications, assuming relatively small range
measurements, whose order is smaller than 10 m, such
as intelligent vehicles, moving robots, and indoor
surveillance systems, the sampling interval, T, is less
than order of 100ms. Thus, for such applications, 𝑅rv
becomes large, as indicated in (46).

(ii) For applications, assuming relatively large range mea-
surements, whose order is greater than 100m, such
as aircraft tracking, the assumed maximum target
acceleration, 𝐴max, and 𝑇 are large. Thus, ΓD becomes
large.

Therefore, the representative applications of LFM radars do
not consider a parameter setting, where ΓD and 𝑅rv are both
small.

5. Conclusions

A range tracking filter using LFM waveforms and an RRM
system was presented in this paper. The RMS index, which
is a performance index that expresses the steady-state range
prediction error, was analytically derived for the RRM-LFM
filter, and its optimal gain, which minimizes the RMS index,
was determined.The optimal steady-state performance of the
RRM-LFM filter and its relationship with the measurement
accuracy and range-Doppler coupling coefficient were theo-
retically analyzed. Performance comparison with the LFM 𝛼-𝛽 filter revealed the effectiveness of range-rate measurement
quantitatively. Furthermore, the comparison of the RRM-
LFM filter with the conventional 𝛼-𝛽-𝜂-𝜃 filter clarified the
effect of using LFM waveforms in an RRM system. Thus, it
was established that range-rate measurement with sufficient
accuracy significantly improves tracking accuracy with LFM
waveforms.
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