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A new method is used to solve the nonconvex optimization problem of the nonlinear model predictive control (NMPC) for
Hammerstein model. Using nonlinear models in MPC leads to a nonlinear and nonconvex optimization problem. Since control
performances depend essentially on the results of the optimization method, in this work, we propose to use the filled function as
a global optimization method to solve the nonconvex optimization problem. Using this method, the control law can be obtained
through two steps. The first step consists of determining a local minimum of the objective function. In the second step, a new
function is constructed using the local minimum of the objective function found in the first step. The new function is called the
filled function; the new constructed function allows us to obtain an initialization near the global minimum. Once this initialization
is determined, we can use a local optimization method to determine the global control sequence. The efficiency of the proposed
method is proved firstly through benchmark functions and then through the ball and beam system described by Hammerstein
model. The results obtained by the presented method are compared with those of the genetic algorithm (GA) and the particle
swarm optimization (PSO).

1. Introduction

Model predictive control (MPC) is a powerful control tool.
This control strategy is formulated as the repeated solution
of an open loop control problem [1]. At each sampling
time, a control sequence is determined where only the first
component is applied to the system and the optimization task
is repeated at the next sampling instant.

The MPC algorithm presents the major advantage to
efficiently handle constraints on input and output [2–4].MPC
is also able to control a wide variety of processes starting from
systems that present a simple behavior like linear process
[5] as well as those that exhibit more complex behavior like
nonlinear [6, 7] and multivariable process [8].

TheMPC theorywas successfully applied inmany areas of
application such as chemical, petrochemical, pulp and paper,
aerospace and defense, and food processing [9].

Firstly, MPC was well developed for linear models. Since
almost real processes have a nonlinear behavior, this fact
motivates the development of the NMPC strategy [4].

The NMPC is considered as a purely optimization-based
algorithm. In fact, the minimization problem of the NMPC

problem is nonlinear and nonconvex due to the nonlinear
nature of the model. The determination of the control
sequence, solution of the NMPC optimization problem,
should be done using a global optimization algorithm to
ensure good control performances. For this, a variety of
solutions were proposed in literature to solve this kind of
problem.Manyworks were focused on online linearization of
the nonlinearmodel [10–12]. A second solutionwas proposed
in some other works that consists of reversing the nonlinear
block to remove nonlinearity. This solution is only addressed
to block-oriented models [13] where the nonlinear block is
described by a polynomial. The two mentioned solutions
allow obtaining a quadratic cost function at each sampling
time where the global solution can be easily determined.

Since solving a nonlinear optimization problem at each
sampling time is a hard-computational task, [14] has pro-
posed to describe the nonlinear process by a set of uncertain
linear models to overcome the online computational com-
plexity of the NMPC. Since the used model in the NMPC is
nonlinear and since real process must operate under rigorous
conditions, the nonlinear characteristic of the model should
be kept without simplification during the online computation
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of the control sequence to get performances with sufficient
accuracy.

For this, genetic algorithm (GA) [15], particle swarm
optimization (PSO) [16], and neural network (NN) [17] were
used as global optimization methods to solve the nonlinear
optimization problem. Also, deterministic method such as
Generalized Geometric Programming (GGP) was used as
global optimization method for the NMPC [18, 19].

In this work, we will use the filled function as a global
deterministic optimization method to solve the NMPC opti-
mization problem. This method is based on the construction
of a new function starting from the first localminimum found
of the original function to be minimized and carry out the
search of the global minimum using a local optimization
method. This function allows determining the global mini-
mum by finding an appropriate initialization.

In this work, the NMPC strategy is based on Ham-
merstein model. The Hammerstein model belongs to block-
oriented models that is described by a nonlinear static block
followed by a linear dynamic one. The special structure of
the Hammerstein model was widely exploited to describe a
variety of processes such as heat exchanger [17], SOFC [20],
and pH neutralization process [21].

The rest of the paper is organized as follows. In Section 2,
we describe the Hammerstein model. The NMPC based on
Hammerstein model is presented in Section 3. In Section 4,
we outline the optimization method used to solve the NMPC
minimization problem. Simulation results on benchmark
functions based on the global optimization method are given
in Section 5. The efficiency of the proposed method for
NMPC is illustrated in Section 6.

2. Hammerstein Model

The Hammerstein model is composed of a static nonlinear
block followed by a linear dynamic one as depicted in Figure 1.

The outputs of the two blocks are given by the following
equation:

𝑆 : {{{
𝑠 (𝑘) = 𝑓 (𝑢 (𝑘))
A (𝑞−1) 𝑦 (𝑘) = 𝐵 (𝑞−1) 𝑠 (𝑘) (1)

The polynomials A(𝑞−1) and 𝐵(𝑞−1) are defined as

𝐴(𝑞−1) = 1 + 𝑎1𝑞−1 + 𝑎2𝑞−2 + . . . + 𝑎𝑛𝑎𝑞−𝑛𝑎 (2)

𝐵 (𝑞−1) = 𝑏1𝑞−1 + 𝑏2𝑞−2 + . . . + 𝑏𝑛𝑏𝑞−𝑛𝑏 (3)

where 𝑞−1 is the unit delay operator and 𝑛𝑎 and 𝑛𝑏 define
the order of polynomials A(𝑞−1) and B(𝑞−1).

Various types of nonlinearity can be used to describe the
nonlinear block of the Hammerstein model. In this work, the
polynomial form is chosen, and the function 𝑓 is defined as

𝑓 (𝑢 (𝑘)) = 𝑐1𝑢 (𝑘) + 𝑐2𝑢 (𝑘)2 + ⋅ ⋅ ⋅ + 𝑐𝑟1𝑢 (𝑘)𝑛𝑐 (4)

where 𝑛𝑐 is the order of the polynomial.

y(k)s(k)u(k)
f(u) B(q−1)

A(q−1)

Figure 1: Hammerstein model.

3. Nonlinear Model Predictive Control Design

The aim of the NMPC strategy is to compute the control
sequence𝑈 = [𝑢(𝑘), 𝑢(𝑘+1), . . . , 𝑢(𝑘+𝑁𝑢−1)] byminimizing
the criterion 𝐽 defined as the difference between the desired
trajectory 𝑦𝑠𝑝(𝑘 + 𝑗) and the model output 𝑦(𝑘 + 𝑗) over the
prediction horizon𝑁𝑝 and penalizing the control increments
over the control horizon𝑁𝑢

𝐽 = 𝑁𝑝∑
𝑖=1

(𝑦𝑠𝑝 (𝑘 + 𝑖) − 𝑦 (𝑘 + 𝑖))2

+ 𝜆𝑁𝑢−1∑
𝑖=0

Δ𝑢 (𝑘 + 𝑖)2
(5)

Δ𝑢min ≤ Δ𝑢 (𝑘 + 𝑗) ≤ Δ𝑢max, 𝑗 = 0, . . . , 𝑁𝑢 − 1
𝑢min ≤ 𝑢 (𝑘 + 𝑗) ≤ 𝑢max, 𝑗 = 0, . . . , 𝑁𝑢 − 1 (6)

where Δ𝑢(𝑘+ 𝑖) = 𝑢(𝑘+ 𝑖) −𝑢(𝑘+ 𝑖 − 1) and 𝜆 is a positive
weighting coefficient.

Based on the receding horizon principle, only the first
component will be applied to the system. Then the horizon
will be shifted one step forward and the whole procedure will
be repeated.

The predicted output of the Hammerstein model is
defined as

𝑦 (𝑘 + 𝑗) = − 𝑛𝑎∑
𝑖=1

𝑎𝑖𝑦 (𝑘 − 𝑖 + 𝑗) +
𝑛𝑏∑
𝑖=1

𝑏𝑖𝑠 (𝑘 − 𝑖 + 𝑗) (7)

𝑠(𝑘 + 𝑗) is the output of the nonlinear block defined as

𝑠 (𝑘 + 𝑗) = 𝑛𝑐∑
𝑙=1

𝑐𝑙𝑢 (𝑘 + 𝑗)𝑙 (8)

By using (7) and (8), the criterion expression (5) becomes

𝐽 (𝑘) = 𝑁𝑝∑
𝑗=1

(𝑦𝑠𝑝 (𝑘 + 𝑗)

+ 𝑛𝑎∑
𝑖=1

𝑎𝑖𝑦 (𝑘 − 𝑖 + 𝑗) −
𝑛𝑏∑
𝑖=1

𝑏𝑖
𝑛𝑐∑
𝑙=1

𝑐𝑙𝑢 (𝑘 − 𝑖 + 𝑗)𝑙)
2

+ 𝜆𝑁𝑢−1∑
𝑗=0

Δ𝑢 (𝑘 + 𝑗 | 𝑘)2
(9)

Due to the nonlinear nature of Hammerstein model, the
obtained objective function defined by (9) of the NMPC
problem is nonconvex.
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Solving the presented minimization problem using stan-
dard optimization methods will lead to suboptimal results in
control. Deterministic optimization methods have the major
benefit to offer the global solution. For this, we propose in this
work to use the filled function method to solve the NMPC
optimization problem. The present method was found to be
easier to implement and offer an accurate solution but suffer
from the high computation time.

4. Optimization Method

In this work, we will use the filled function method to solve
the NMPC optimization problem.

The concept of this global optimization method consists
of determining a good initialization to obtain the global
minimum. Therefore, the key of this method is to construct
a function “P” that allows moving from the local minimum
of the objective function to obtain a more promising initial-
ization point. This point presents a stationary point of the
function𝑃.The new initialization will allow finding easily the
global minimum.

Thus, we consider a function 𝑓(𝑥) to be minimized. The
principle of the filled functionmethod can be summarized as
follows [22].

Step 1. Use a local optimization method to find a local
minimum 𝑥1 of 𝑓(𝑥).
Step 2. Construct the filled function 𝑃(𝑥) at the local mini-
mum 𝑥1 of 𝑓(𝑥). Minimize the new function 𝑃 using a local
optimization method and so the minimum, 𝑡1, of the filled
function is found. The minimum 𝑡1of the filled function is
used as initialization to minimize again the function f, where
a new better minimum will be found. Many filled functions
are proposed in literature. Most of them are described
using some parameters that can be difficult to be adjusted
[23]. Other works minimize this number of parameters and
reduce the filled function into a mono adjustable parameter
function.

In this work, wewill use the nonparametric filled function
method proposed by [22] and defined as

𝑃 (t, 𝑥1) =
{{{{{{{
−∫𝑥
𝑥1

(𝑓 (t) − 𝑓 (𝑥1)) 𝑑𝑡 (𝑥 ≥ 𝑥1)
−∫𝑥1
𝑥
(𝑓 (t) − 𝑓 (𝑥1)) 𝑑𝑡 (𝑥 ≤ 𝑥1)

(10)

The nonparametric filled function 𝑃 should satisfy the
following properties.

Theorem 1. If 𝑥1is an isolated minimizer of 𝑓 : Ω ⊂ 𝑅 → 𝑅,
then 𝑥1must be a maximizer of 𝑃(𝑥, 𝑥1).
Theorem 2. If 𝑥1is an isolated minimizer of 𝑓 : Ω ⊂ 𝑅 → 𝑅,
then 𝑃(𝑥, 𝑥1) does not have any stationary point for 𝑓(𝑥) >𝑓(𝑥1).
Theorem 3. If 𝑥1is an isolated minimizer of 𝑓 : Ω ⊂ 𝑅 → 𝑅,
then 𝑃(𝑥, 𝑥1) must have a stationary point for 𝑓(𝑥) ≤ 𝑓(𝑥1).
The flowchart of the consideredmethod is given in Figure 2 that

Minimize the objective function
f and determine the local

end

no

yes

as initialization

no

yes

as initialization Determine the

Construct the filled function P
using (10)

xＧＣＨ < x0 < xＧ；Ｒ

Choose initialization x0

x0 = t1

Minimize P using x
0 = x1 + 

local minimum t1

xＧＣＨ < t1 < xＧ；Ｒ

xＧＣＨ < t1 < xＧ；Ｒ

Minimize P using x
0 = x1 − 

x
ＡＦ＜
ＧＣＨ = x1

minimum x1

Figure 2: Flowchart of the filled function algorithm.

details the different steps of the algorithm.The variable 𝛼 in the
algorithm presents a small step within the interval [0, 1].
5. Simulation Results on Benchmark Function

The efficiency of the filled function is demonstrated through
benchmark functions defined in Table 1. We consider 3
multimodal functions as depicted in Figures 3, 4, and 5. The
function 𝑓1 has a global minimum at x = 17.0392 and two
local minima at x = 5.3622 and x = 10.4535. The function 𝑓2
has a global minimum at x = 5.1994 and two local minima
at x = 3.4392 and x = 7.0678. The function 𝑓3 has a global
minimum at x = -1 and a local one x = 2. The minimization
is carried out using the filled function and the local method
illustrated by the “fmincon” function of the MATLAB
environment.

Consider the first function 𝑓1.
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Table 1: Benchmark functions.

Function Min Research interval

𝑓1 (𝑥) =
sin (𝑥) + sin(2𝑥3 ) 17.03 [0, 20]
𝑓2 (𝑥) = sin (𝑥) +
sin(10𝑥3 )+ln (𝑥)−0.84𝑥 5.36 [2.7, 7.5]
𝑓3 (𝑥) =𝑥4 − 3𝑥3 − 1.5𝑥2 + 10𝑥 -1 [-2, 3]

2

1

0

−1

−2
0 2 4 6 8 10 12 14 16 18 20

f1

x

Figure 3: Evolution of the function 𝑓1.

Iteration 1.

Step 1. The first step in the filled function optimization
method consists of using a local optimization method to
determine a local minimum of 𝑓. We choose as initialization𝑥0=2.

In this work, we use the gradient descent method to find
a local minimum 𝑥1 of 𝑓. Using 𝑥0=2 as initialization and
using the gradient we can get a local minimum, 𝑥1 =5.3622,
as indicated in Figure 6

Step 2. Using 𝑥1 we construct the filled function 𝑃(𝑡, 𝑥1)
using (10) as illustrated in Figure 6.

Step 3. Oncewe have P,we apply a local optimizationmethod
to determine a local minimum of P, and we set initialization
as 𝑡0 = 𝑥1 +𝛼, where 𝛼 is a small step real value.The obtained
minimum of 𝑃 is 𝑡1
Iteration 2. If 𝑡1 belongs to the interval of variation of the
manipulated variable, it will be used in the second iteration
as initialization for f.

Step 1. Since this condition is true in our case, 𝑡1 presents a
new initialization for 𝑓 as depicted in Figure 6.

The new initialization presents a promising point to get a
best minimum than that found in the first step.

The newminimum, 𝑥1, of 𝑓 found with initialization 𝑡1 is
shown in Figure 7.

Step 2. Using the new found minimum 𝑥1 indicated in
Figure 7 we construct the filled function 𝑃(𝑡, 𝑥1) using (10)
as illustrated in Figure 7. We can conclude from Figure 7 that𝑃 does not have a stationary point in the considered interval.
So, the global minimum of 𝑓1 is 𝑥1=17.0328.

0
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Figure 4: Evolution of the function 𝑓2.
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Figure 5: Evolution of the function 𝑓3.
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Figure 6: Evolution of 𝑓1 and 𝑃 in the first iteration.
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Figure 7: Evolution of𝑓1 and 𝑃 in the second iteration.

The minimization results for the considered function, 𝑓1,𝑓2, and 𝑓3, are illustrated, respectively, in Tables 1, 2, and
3

Based on results given by Tables 2, 3, and 4, we can note
that, for different initialization values, the convergence to
the global minimum using the local optimization method is
not always guaranteed. Contrariwise, we can conclude that
whatever the value of the initialization the minimization of
the considered function using the proposedmethod is always
guaranteed.
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Table 2: Minimization of 𝑓1using global and local optimization
method.

Initialization Reached min
(proposed method)

Reached min
(local method)

3 17.0328 5.3622
7 17.0328 5.3622
9 17.0328 10.4535
14 17.0328 17.0328

Table 3: Minimization of 𝑓2using global and local optimization
method.

Initialization Reached min
(proposed method)

Reached min
(local method)

4.5 5.1995 3.4392
6 5.2006 7.0678
6.5 5.1994 5.1998
7 5.1994 7.0697

Table 4: Minimization of 𝑓3using global and local optimization
method.

Initialization Reached min
(proposed method)

Reached min
(local method)

2.5 -1 -1
1.5 -1 2
-1.5 -1 -1

6. Simulation Results

The system under consideration is a ball and beam which
is composed of ball, ball position sensor, a center pivoted
beam on which the ball rolls on, beam angle sensor, and
the servomotor. The control objective is to fix the ball on a
desired position. The ball and beam system is described by a
Hammerstein model defined as [24]

𝑆 : {{{
𝑦 (𝑘) = −𝑎1𝑦 (𝑘 − 1) + 𝑏1𝑠 (𝑘 − 1)
𝑠 (𝑘) = 𝑐1𝑢 (𝑘) + 𝑐2𝑢 (𝑘)2 (11)

The different parameters of the linear and nonlinear
blocks are given by 𝑎1 = −0.62, 𝑏1 = 1, 𝑐1 = 0.396, and𝑐2 = −0.036.

The prediction and the control horizons are fixed to𝑁𝑝 =
2, 𝑁𝑢 = 1 and constraints on the manipulated variable 𝑢 are
fixed as −5 ≤ 𝑢(𝑘) ≤ 5.

First, the NMPC algorithm for the ball and beam system
is implemented using the filled function method to solve
the minimization problem. The desired trajectory is fixed
as -5 and 5 represented by three step changes. The NMPC
algorithm based on the proposed method is compared to a
local optimization method illustrated by “fmincon” function
of the MATLAB environment. The simulation results are
depicted in Figure 8.

We can note from Figure 8 that the NMPC performances
based on the filled function method are significantly better
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Figure 8: Output tracking using the proposed method and a local
method for 𝜆 = 0.1.

than those of the NMPC based on a local optimization
method. The good ability of the filled function method to
solve the optimization problem and offer the optimal control
quality is justified by the fact that the NMPC based on
the proposed method ensures the setpoint tracking with
zero steady state error. Also, we can note that the response
of the system based on the local optimization method is
characterized by a high overshoot compared to the results
given by the response of the system based on the filled
function method.

In the sequel, the NMPC based on the proposed method
is compared with the NMPC based on GA and PSO algo-
rithms.

To compare the performances of the different algorithms
we consider two performance indexes: the SSE and the SCV.

The SSE is defined as

𝑆𝑆𝐸 = 1𝑁
𝑁∑
𝑖=1

(𝑦𝑠𝑝 (𝑘) − 𝑦 (𝑘))2 (12)

Since our goal in control is to reach the desired trajectory
and ensure the good output tracking by determining the
optimal control sequence that gives the minimum dissipated
energy, we will consider the second performance index SCV
defined as

𝑆𝐶𝑉 = 1𝑁
𝑁∑
𝑘=1

𝑢 (𝑘)2 (13)

We can note from Figure 9 that the three algorithms
are able to reach the desired trajectory and ensure good
output tracking as proved by the SSE value. The significant
difference lays in the control quality. Based on Figure 9 we
can note than each algorithm reaches the desired trajectory
with a different control sequence. Table 5 shows that the best
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Figure 9: Output tracking using the GA, PSO, and the proposed method for 𝜆 = 0.1.

Table 5: The performance of the NMPC based on the three
algorithms for 𝜆 = 0.1.
Method Overshoot SCV SSE
Proposed
method 0.0142 1.635 3.114

GA 0.0178 10.729 3.120
PSO 0.0178 5.990 3.112

control quality is given by the proposedmethod since it offers
the small SCV. Also, we can remark that the filled function
method offers the less overshoot as illustrated by Table 5. We
can conclude that for the proposed method the setpoint is
reached with the best control quality and the less overshoot.
Although the results of setpoint tracking obtained by the
GA, PSO, and the proposed method are quite similar, it is
very clear that the control quality of GA and PSO is inferior
to the filled function method. In fact, setting parameters of
evolutionary algorithms as coding of individuals, population
size, crossover and mutation rates, and stopping criterion
has an important role in the determination of an accurate
solution [25].

To show the effectiveness of our proposed method with
different values of 𝜆 we suggest varying 𝜆 and carry out
simulation for 𝜆 = 0.2.

We can notice from Figure 10 and Tables 5 and 6 that the
increase of the weighting factor 𝜆 results in a high overshoot
value and slow system response. Based on Table 4 we can
conclude that the SCVoffered by the filled functionmethod is

Table 6: The performance of the NMPC based on the three
algorithms for 𝜆 = 0.2.
Method Overshoot SCV SSE
proposed
method 0.0494 1.646 3.114

GA 0.0594 5.994 3.123
PSO 0.0594 10.681 3.124

better than that given byGA and PSO.This confirms the good
ability of the filled function method to give the best control
quality.

Tables 5 and 6 give the performance of the different
algorithms for 𝜆 = 0.1 and 𝜆 = 0.2. We can note that for
different values of 𝜆 the less overshoot and SCV are given by
the filled function method.

7. Conclusion

In this work, a nonlinear model predictive control for Ham-
merstein model is presented. Using nonlinear model in the
MPC strategy complicates the solution of the optimization
problem and leads to computational difficulties. Conse-
quently, an efficient optimization algorithm should be used
to overcome these difficulties and ensure good control results.
The filled function, as a global optimization method, is used
in this work to solve the nonconvex minimization problem
of the NMPC. The proposed method proves its efficiency to
give good control performances through nonlinear process
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method for 𝜆 = 0.2.

described by a ball and beam system. It offers a good output
tracking and a less overshoot. The filled function method
is then compared with two heuristic global optimization
algorithms: GA and PSO.We can remark that the GA and the
PSO algorithms are quite similar. We can also conclude that
theNMPCwith the proposedmethod ismuch better than the
GA and PSO since it offers less overshoot and gives the best
control sequence at each sampling time.
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