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This study aimed at obtaining a semianalytical solution for nonlinear dynamic system of shallow arches. Taylormethod was applied
to find the analytical solution, and an investigation of their dynamic characteristic was carried out to verify the applicability of this
methodology for the shallow arches under step or periodic excitation. A polynomial solution can be obtained from this multistep
approachwith respect to time, and direct buckling aswell as indirect buckling of the shallow arches can be observed, also.The results
indicated that the dynamic buckling load level was higher with higher shape factor. Additionally, a change of attractor in phase
space was investigated. Coupling in symmetric mode as well as asymmetric mode was observed in case of indirect buckling, and
a sensitive response was also manifested during sinusoidal and beating excitation. These results of applying multistep Taylor series
for the investigation of displacement response and attractor change revealed that this analytical approach was valid in explaining
the dynamic buckling behavior of shallow arches under direct and indirect snapping.

1. Introduction

Large span roof structures are generally designed as arches
and spherical shells. In other words, the structural perfor-
mance of the arch depends on its shape.Thus, lighter, thinner,
and larger space can be made with less materials compared
to traditional flat structures. Shallow arches have received
considerable attention in the field of architecture because
of their beautiful shape and economic efficiency. However,
the response to transverse loading of the shallow arch is
quite different from that of the flat beam. The structural
design also requires dynamic behavior analysis under various
loads. Since a large roof can be treated separately from the
substructures, the arch’s boundary is usually designed by
hinge, and with shallow arch roofs the primary interest is
in the instability of vertical direction behavior. The dynamic
unstable behavior of shallow arches is generally complex
depending on the initial condition, e.g., geometrically imper-
fection, and shape of the arches. In particular, direct snapping
in symmetric mode and indirect snapping due to coupling

in asymmetric mode manifest very sensitive behavior and
progress to chaotic behavior, attracting deep interest from
many researchers.

Investigation of dynamic instability of shallow arches
has started with the fundamental study of Hoff and Bruce
[1] in the mid-1950s and was followed by many researches
afterwards in the beginning (Humphreys [2]; Lock [3]; Hsu
[4]; Ariaratnam and Sankar [5]; Sundararajan and Kumani
[6]; Donaldson and Plaut [7]; and Kounadis et al. [8]). These
early researches on shallow arches resulted in rebounding
studies of chaoticmotion or global dynamic behavior (Blair et
al. [9]; Levitas et al. [10]), accurate solution of free-vibration
(Tseng et al. [11]; De Rosa and Franciosi [12]), internal
resonance (Bi and Dai [13]; Lacarbonara and Rega [14]), and
buckling under boundary condition and moving load (Kong
et al. [15]; Chen and Lin [16, 17]). Recently, many investiga-
tions for design and construction of shallow arch roofs have
been conducted, including the identification and stability for
shallow arches (Ha et al. [18]), and sensitivity of shallow
arch (Virgin et al. [19]). On the other hand, the initially
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curved or buckled microbeams in mechanics (Farokhi and
Ghayesh [20]) have been studied in terms of nonlinearity,
geometrical imperfection, resonance, and chaotic behaviors.
Various numerical researches have been conducted on the
nonlinear behaviors of the microbeams and their application.
However, this buckled configuration of the microbeams is
due to some external effects such as temperature increase or
compressive forces, which are not associated with the arch
roof. Even though in the study of arch roofs the range of
arch shapes and sizes differs from that of microbeams, these
investigations are still useful for all engineering fields. The
evaluation of dynamic buckling of shallow arch roof generally
uses energy method or phase space of system approach
or direct approach (Lin and Chen [21]) of investigating
significant growth of displacement response (Budiansky and
Roth [22]) by obtaining dynamic response of the governing
equations in a wide range of parameters. This process of
dealing with dynamic loading requires numerical method
(Belytschko [23]; Argyris et al. [24]) or analytical techniques
for solving nonlinear differential equations, and the process
of formulating the equations differs by the methodology. One
of the direct purposes of dynamic analysis is finding out the
transient response to external force and ultimately attaining
the solution to motion equations. However, it is difficult to
obtain an analytical solution for dynamic system of shallow
arches under the various external forces.

The techniques to obtain an analytical solution to nonlin-
ear differential equations have been considerably investigated
in the past (Sadighi et al. [25]). Analytical or semianalytical
methods include the traditional Taylor’s power series method
(Barrio [26]; Barrio et al. [27]), Adomian decomposition
method (Adomian and Rach [28]; Adomian and Rach [29]),
homotopy analysis method (Liao [30]), and homotopy per-
turbation method (He [31]; He [32]; and Chowdhury et al.
[33]). Unlike numerical ones, these methods are limited in
their applicability and are heavily dependent on the influence
of their parameters. The Taylor series method, which has
the longest history, provides an accurate analytical solution
with excellent stability. Recently, Barrio et al. [27] explained
that the Taylor series method provides advantages including
easy formation with the method of using variable order and
step-size and usefulness in many dynamic systems requiring
a high-precision solution. In particular, when we need to
perform long-time numerical simulations and sometimes
to look for high precision solutions of differential systems,
the family of ordinary differential equation solvers that
can answer the requirements is the Taylor Series Method
(Barrio et al. [34]). Additionally, it has been reported that
appropriately adjusting the number of terms and error limit
is advantageous in computing the error limit and attaining
an accurate solution fairly easily (Barrio et al. [27]; Shon
et al. [35]). Traditional Taylor series method requires an
infinite series expansion for attaining periodic response of
a dynamic system and can be inappropriate for discrete
nonlinear governing equations. However, the Taylor series
method expanding inmultistep can compute a high precision
analytical solution with relatively less degree of differential
coefficients. Therefore, this study applied multistep Taylor
seriesmethod to compute an accurate semianalytical solution
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Figure 1: The shape of a pin-ended shallow sinusoidal arch under
distributed dynamic loading.

of a dynamic governing equation of motion for shallow
sinusoidal arches and examined their dynamic response and
attractor of phase space to determine its applicability. This
paper is organized as follows. Sections 2 and 3 describe the
formulation of nonlinear governing equation of motion for
shallow arches and theoretical analysis technique ofmultistep
Taylor series method, respectively. Section 4 computes a
multistep Taylor series solution for the nonlinear governing
equation of motion under symmetric mode and investigates
the dynamic behavior of shallow arches. Section 5 examines
the dynamic response and attractor in phase space of the
system for an indirect snapping model under asymmetric
mode and periodic excitation. Last, Section 6 concludes this
paper.

2. Nonlinear Equations of Motion

The governing equation of motion is expressed in the fol-
lowing equation when the shape and coordinate system of
the shallow arches are defined as in Figure 1 (Lin and Chen
[21]; Ha et al. [18]). In this figure, the two ends of the
arch are separated from each other by the distance 𝐿. The
original shape of the unloaded arch is denoted by 𝑦0(𝑥),
and the vertical and longitudinal deflections are expressed
as a function of 𝑦(𝑥, 𝑡) and 𝑢(𝑥, 𝑡), respectively. The arch
system is subjected to vertical loading 𝑝(𝑥, 𝑡)within the (𝑥, 𝑦)
coordinate system, and a dimensionless parameter, 𝜉 = 𝜋𝑥/𝐿,
is used. Besides, the constant parameters of the system are
density of mass 𝜌, Young’s modulus 𝐸, cross-sectional area𝐴(𝑥), and moment of inertia 𝐼(𝑥).

The kinetic energy of the shallow arches can be expressed
as follows:

𝑇 = 𝜌𝐴2 ∫𝐿
0
(𝜕𝑦𝜕𝑡 )

2 𝑑𝑥 (1)

The potential energy (strain energy) 𝑈 of the system consists
of two parts, as shown in (2), one (𝑈𝑎) due to the axial force
and one (𝑈𝑏) due to bending. The energy can be expressed as
follows:

𝑈 = 𝑈𝑎 + 𝑈𝑏 = 𝐸𝐴2 ∫𝐿
0
𝜀20𝑑𝑥 + 𝐸𝐼2 ∫𝐿

0
𝜅2𝑑𝑥, (2)

where axial strain 𝜀0 and curvature 𝜅 of the shallow arches
using Green’s strain tensor are as follows:

𝜀0 = 𝜕𝑢𝜕𝑥 + 𝜕𝑦0𝜕𝑥 𝜕𝑦𝜕𝑥 + 12 (𝜕𝑦𝜕𝑥)
2

(3)

𝜅 = 𝜕2𝑦𝜕𝑥2 (4)
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There are two types of external forces exerting on the arch:
excitation force 𝑝(𝑥, 𝑡) and the damping force. Dissipative
force, damping, is considered a uniformly distributed viscous
damping force only in the transversal direction. As such, the
external works by the external force and dissipative force are
as follows:

𝑊𝑛𝑐 = 𝑊𝑑 −𝑊𝑒𝑥𝑡 = −∫𝐿
0
𝑐𝜕𝑦𝜕𝑡 𝑦 𝑑𝑥 + ∫

𝐿

0
𝑝𝑦𝑑𝑥, (5)

where 𝑐 is the viscous damping coefficient. Now, consider that
axial force 𝑁 is constant (= 𝐸𝐴𝜀0), and 𝜕𝑁/𝜕𝑥 = 0 and the
boundary condition at 𝑥 = 0, 𝐿 is 𝑢(0) = 𝑢(𝐿) = 0. Then, the𝑁(𝑥) can be expressed as follows:

𝑁 = 𝐸𝐴2𝐿 ∫
𝐿

0
(2𝜕𝑦0𝜕𝑥 𝜕𝑦𝜕𝑥 + (𝜕𝑦𝜕𝑥)

2)𝑑𝑥 (6)

The variations of potential energy 𝑈, kinetic energy 𝑇, and
work𝑊𝑛𝑐 can be formulated as follows:

𝛿𝑇 = −𝜌𝐴∫𝐿
0

𝜕2𝑦𝜕𝑡2 𝛿𝑦 𝑑𝑥 (7)

𝛿 (𝑈𝑎 + 𝑈𝑏) = ∫𝐿
0
𝑁(𝜕2𝑦0𝜕𝑥2 + 𝜕

2𝑦𝜕𝑥2)𝛿𝑦𝑑𝑥
− ∫𝐿
0
𝐸𝐼𝜕4𝑦𝜕𝑥4 𝛿𝑦 𝑑𝑥

(8)

𝛿𝑊𝑛𝑐 = −∫𝐿
0
𝑐𝜕𝑦𝜕𝑡 𝛿𝑦 𝑑𝑥 + ∫

𝐿

0
𝑝𝛿𝑦𝑑𝑥 (9)

Equations (7)-(9) are substituted to extended Hamilton’s
principle given by

∫𝑡2
𝑡1

𝛿𝑇 − 𝛿 (𝑈𝑎 + 𝑈𝑏) + 𝛿𝑊𝑛𝑐𝑑𝑡 = 0, (10)

which yields the following nonlinear partial differential
equations governing the motion of the shallow arch system
(Ha et al. [18]):

𝐸𝐼𝜕4𝑦𝜕𝑥4 − [𝐸𝐴2𝐿 ∫
𝐿

0
{(𝜕𝑦𝜕𝑥)

2 + 2𝜕𝑦0𝜕𝑥 𝜕𝑦𝜕𝑥}𝑑𝑥]
⋅ (𝜕2𝑦0𝜕𝑥2 + 𝜕

2𝑦𝜕𝑥2) + 𝑐𝜕𝑦𝜕𝑡 + 𝜌𝐴𝜕
2𝑦𝜕𝑡2 − 𝑝 = 0

(11)

The following parameters are used to express the above
equation (11) with dimensionless variables. Here, 𝑘 represents
the radius of gyration of the cross-section.

𝜂0 = 𝑦0𝑘 ,
𝜂 = 𝑦𝑘 ,
𝑞 = 𝑝𝐸𝐼𝑘 (𝐿𝜋)

4 ,

𝜏 = 𝑤0𝑡,
𝑤0 = (𝜋𝐿)

2 ( 𝐸𝐼𝜌𝐴)
1/2 ,

𝛾 = 𝑐𝜌𝐴𝑤0
(12)

Thus, (11) above can be expressed as the following by using
dimensionless system 𝜉 of Figure 1.
𝜕4𝜂𝜕𝜉4
− [ 12𝜋 ∫

𝜋

0
{(𝜕𝜂𝜕𝜉)

2 + 2𝜕𝜂0𝜕𝜉 𝜕𝜂𝜕𝜉} 𝑑𝜉](𝜕
2𝜂0𝜕𝜉2 + 𝜕

2𝜂𝜕𝜉2)
+ 𝛾𝜕𝜂𝜕𝑡 + 𝜕

2𝜂𝜕𝑡2 − 𝑞 = 0

(13)

The initial shape, 𝜂0, deflection 𝜂, and transverse loading𝑞 of sinusoidal arches are defined as the following. The 𝜂
representing assumed deformed shape of the arch satisfies the
boundary condition (𝑦(0) = 𝑦(𝐿) = 0; 𝑦󸀠󸀠(0) = 𝑦󸀠󸀠(𝐿) = 0) of
a pin-ended arch.

𝜂0 = ℎ sin 𝜉,
𝜂 = 𝑁∑
𝑖=1

𝐷𝑖 sin (𝑖𝜉) ,
𝑞 = Λ sin 𝜉

(14)

Accordingly, substitution of the assumed shape, deflection,
and load to equation (13) results in nonlinear governing equa-
tions of motion for the coefficients 𝐷𝑛 of the dimensionless
deflection function.

𝐷̈𝑗 = Λ𝛿1𝑗 − 𝛾𝐷̇𝑗 − 𝑗4𝐷𝑗
− 14 (

𝑁∑
𝑖=1

𝑖2𝐷𝑖2 − 2ℎ𝐷1)(−ℎ𝛿1𝑗 + 𝑗2𝐷𝑗2) ,
𝑗 = 1, 2, . . . ,

(15)

where 𝛿𝑖𝑗 is Kronecker delta, and solving the above equation
can explain the dynamic behavior of the arch. Additionally,
since 𝐷1 and 𝐷2 are amplitudes of symmetric mode and
asymmetric mode, respectively, the indirect snapping phe-
nomenon can be explained by considering the 𝐷2 term.

3. Taylor Series Using Order and
Step Parameter

This chapter discusses the formulation of Taylor series ana-
lytical method and its governing equations. Equation (15)
is defined so as to explain the Taylor series method for
computing the solution to initial value problem of nonlinear
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Figure 2: Deflection modes of the shallow arches: (a) symmetric mode (1st mode) and (b) asymmetric mode (2nd mode).

governing equations and its approximate Taylor series solu-
tion.

̇
𝐷̈ = 𝑓 (𝑡, 𝐷̇,𝐷) , 𝑡 ∈ 𝐼, 𝐷 = 𝐷 (𝑡) ∈R

𝑛 (16)

𝐷 (𝑡0) = 𝐷0,
𝐷̇ (𝑡0) = 𝐷1 (17)

𝐼 represents an open interval including 𝑡0 and 𝑓 is a
sufficiently smooth function on 𝐼 × 𝑅𝑛 × 𝑅𝑛. Then, 𝐷(𝑡) is
an analytic function that can be expressed by the following
equation.

𝐷 (𝑡) = ∞∑
𝑛=0

𝐷
(𝑛) (𝑡0)𝑛! (𝑡 − 𝑡0)𝑛 (18)

𝐷 (𝑡) = 𝑛∑
𝑘=0

𝐷
(𝑘) (𝑡0)𝑘! (𝑡 − 𝑡0)𝑘 + 𝑅 (𝑛, 𝑡, 𝑡0) (19)

The remainder term 𝑅(𝑛, 𝑡, 𝑡0) for the analytical series solu-
tion up to n-degree term is explained and expressed as
the following equation, and 𝑐∗, which satisfies the equation
below, exists in the open interval. Moreover, the error is
defined as expressed in the following equation (21).

𝑅 (𝑛, 𝑡, 𝑡0) = 𝐷
(𝑛+1) (𝑐∗)
(𝑛 + 1)! (𝑡 − 𝑡0)𝑛+1 (20)

󵄨󵄨󵄨󵄨𝑅 (𝑛, 𝑡, 𝑡0)󵄨󵄨󵄨󵄨 ≤ 1(𝑛 + 1)! max
𝑡0≤𝑡≤𝑡0+𝑡ℎ

󵄨󵄨󵄨󵄨󵄨𝐷(𝑛+1) (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑡ℎ𝑛+1,
𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑡ℎ

(21)

The Taylor series method defines the solution to (15) as n-
degree series of (19) except for 𝑅 term, and each differential
coefficient, 𝐷(𝑘)(𝑡0), can be obtained from (15) to solve the
equation. The computed solution has the precision with the
error range of (21) in the defined interval of [𝑡0, 𝑡0 + 𝑡ℎ]. It
is very efficient to solve the equation in multistep with 𝑛
and 𝑡ℎ of (21) as the parameters. Adjusting for 𝑛 and 𝑡ℎ is
referred to variable order (VO) scheme and variable step-
size scheme, respectively. In particular, the two parameters𝑛 and 𝑡ℎ can determine the error limit, and the accuracy
and computational speed of the solution are determined by
them. This study defines the solution to (15) as finite Taylor
series expressed in (22), and multistep approach is used for
computing the solution.

𝐷𝑖 (𝑡) = 𝑛∑
𝑘=0

𝐷
(𝑘)
𝑖 (𝑡0𝑖)𝑘! (𝑡 − 𝑡0𝑖)𝑘 ,
(𝑡0𝑖 ≤ 𝑡 ≤ 𝑡0𝑖 + 𝑡ℎ) 𝑖 = 1, 2, . . . , 𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑒𝑝

(22)

The initial value of 𝑖 step in the above equation can be found
from previous step, and the differential coefficients, 𝐷(𝑘)(𝑡0),
can be obtained from (15). Accordingly, an approximate
analytical solution can be computed from the Taylor series
at each step, and the number of terms increases with higher
DOF (Degrees of Freedom) and higher order.This study used
sufficient order 𝑛 and step-size 𝑡ℎ to compute an accurate
solution, and the process of (21) is not further discussed in
this paper.

4. Dynamic Snapping Model under
Symmetric Mode

Generally, the initiation of snapping process of shallow arches
is differentiated by two different mechanisms. That is, one
is direct snapping under symmetric mode as illustrated in
Figure 2(a), and the other is indirect snapping under asym-
metric mode as illustrated in Figure 2(b). In the figure, 𝜂0 and𝜂𝑖 are dimensionless initial configuration and dimensionless
deflection from the initial configuration, respectively. First
of all, symmetric deformation under sinusoidal distributed
load is considered to deal with the solution for the case of
direct snapping, and the coupling under asymmetric mode
is discussed in the next chapter. Accordingly, when the 1st
mode of deflection function is considered, (15) is developed
into 2nd-order differential equation with respect to 𝐷1 as
expressed in the following equation.

𝐷̈1 + 𝛾𝐷̇1 + (1 + ℎ22 )𝐷1 − 34ℎ𝐷12 + 14𝐷13 − Λ = 0 (23)

When the dimensionless time parameter 𝜏 is denoted by 𝜏0
and the initial values are 𝐷1(𝜏0) = 𝐷0 and 𝐷̇1(𝜏0) = 𝐷̇0, the
first two terms of the right-hand side become𝐷0 and 𝐷̇0(𝜏 −𝜏0𝑖). Moreover, when the initial values are substituted into
(23), the remaining differential coefficients up to n-degree
term can be computed. The following equations show the
coefficients of 3rd and 4th terms.

𝐷1(2) (𝜏0) = −𝛾𝐷̇0 − (1 + ℎ22 )𝐷0 + 34ℎ𝐷02 − 14𝐷03
+ Λ

(24)

𝐷1(3) (𝜏0) = 𝛾2𝐷̇0 + 𝛾(1 + ℎ22 )𝐷0 − 34𝛾ℎ𝐷02

+ 14𝛾𝐷03 − 𝛾Λ − (1 + ℎ
2

2 ) 𝐷̇0
+ 32ℎ𝐷0𝐷̇0 − 34𝐷02𝐷̇0

(25)
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(a) (b)

Figure 3: Displacement response of the shallow arches subjected to step excitation: (a) multistep Taylor series method and (b) 4th-order
Runge-Kutta method (RK4).

Substituting these coefficients to (22) gives us the solution to
the polynomial with respect to time, and the number of terms
increases with degrees of freedom and order.

The appropriateness of the series solution to (23), which
is composed of differential coefficients for explaining the
dynamic snapping of shallow arches, is evaluated by applying
step excitation. The solution was obtained by applying order
n and step-size 𝑡ℎ of 7 and 0.1, respectively, to the multistep
Taylor series, and the time duration of the computation was
set to be 100𝜏.

Firstly, the analysis result with 𝛾 = 0 (undamped system)
is examined. Figure 3(a) shows the analysis result of step
excitation with shape parameter ℎ of 5, and it shows the
displacement response of the shallow arches with the load
level Λ increasing from 6 to 16 in increment of 2. Figures
3(a) and 3(b) are the results of the multistep Taylor series
method and of the 4th-order Runge-Kutta method (RK4),
respectively, for comparing the analysis results. In this case,
the time parameters of the Taylor series method and RK4
were set at the same 𝑡ℎ = 0.1. As shown in the figure, the
results of the Taylor series method agree with the results of
RK4. Besides, the figure shows that the nonlinear response
is clearly differentiated in two groups of load levels (one
group of Λ = 6.0, 8.0, and 10.0 and the other group ofΛ = 12.0, 14.0, and 16.0). The first group had the increase
in amplitude of the displacement and gradual lengthening of
the period with the increase in the load level, but the second
group exhibited conspicuous increase in displacement in
comparison with the first group as well as shortening of the
period. Moreover, the amplitude of the displacement did not
vary linearly with the increase in Λ, and this is the effect
of geometrical nonlinearity of the shallow arches. In other
words, the former group represents prebuckling load level,
and the latter group composes postbuckling load level.

Secondly, the maximum displacement response with ℎ =1, 3, 5, and 7was examined in order to evaluate the solution to
the dynamic behavior of the specimen in response to various

shape parameter values, and the result is shown in Figure 4.
In this figure, dynamic buckling load levels of ℎ = 3, 5, and
7 correspond to Λ = 3.20, 11.05, and 27.9, respectively. In
particular, the figure shows that dynamic buckling (snapping)
does not take place for the case of ℎ = 1, and the boundary
point for the occurrence of buckling is higher with higher ℎ.

The attractor in phase plan as shown in Figure 5 was
such that the orbit changed from the form of one drop of
water to the form of two drops of water linked together after
reaching dynamic snapping load level, and this well explains
the dynamic unstable phenomenon of the shallow arches.

To explain why snapping does not take place for the case
of ℎ = 1, there is a need to investigate the equilibrium points
of the shallow arch system, and their stability. Let𝐷1 = 𝑢 − ℎ
and 𝑢̇ = V. Equation (23) can then be written as the 1st-order
system, as shown in (26). For this system, the equilibrium
points are obtained by solving the system V = 0 and V̇ = 0,
and the stability of the points can be observed based on the
characteristic polynomial of the Jacobian matrix.

𝑢̇ = V

V̇ = −𝛾V − {14𝑢3 + (1 − ℎ
2

4 )𝑢 − ℎ − Λ}
(26)

In the case of this system, the equilibrium points and their
stability were studied by Ha et al. [18], and they can be
summarized as follows.

The problem of finding the equilibrium points can be
reduced to the investigation of the roots of the 3rd-order
polynomial equation as follows:

𝑢3 + (4 − ℎ2) 𝑢 = 4 (ℎ + Λ) (27)

Let 𝑓(𝑢) = 𝑢3 + (4 − ℎ2)𝑢 = 𝑢[𝑢2 + (4 − ℎ2)], and there
are two cases depending on ℎ. The first case is for |ℎ| ≤ 2.
The equation has only one real root, and the sign is equal to(ℎ + Λ). The second case is for |ℎ| > 2. Then 𝑓󸀠(𝑢0) = 0 for
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(a) (b)

(c) (d)

Figure 4: Maximum displacement curves under step excitation: (a) ℎ = 1; (b) ℎ = 3; (c) ℎ = 5; and (d) ℎ = 7.

𝑢0 = √(ℎ2 − 4)/3. The equation has a local maximum 𝑓(−𝑢0)
and minimum 𝑓(𝑢0), as shown in (28), and the number of
equilibria and their signs depend on (ℎ + Λ). For instance, it
has a positive root and two negative roots for 0 < 4(ℎ + Λ) <𝑓(−𝑢0).

𝑓 (∓u0) = ±2√39 (ℎ2 − 4)3/2 (28)

From analyzing the characteristic polynomial of the Jacobian
matrix, the stability of the equilibrium point (𝑢̂, 0), where 𝑢̂ is
a root of (26), can be defined as follows:

(i) Case |ℎ| ≤ 2: unique equilibrium (𝑢̂, 0) is asymptoti-
cally stable.

(ii) Case |ℎ| > 2: for 4|ℎ+Λ| > 𝑓(−𝑢0), equilibrium (𝑢̂, 0)
is asymptotically stable. For 4|ℎ + Λ| < 𝑓(−𝑢0), there

are two asymptotically stable points (𝑢̂, 0) satisfying|𝑢̂| > 𝑢0, and one unstable point (𝑢̂, 0) satisfying |𝑢̂| <𝑢0. For 4|ℎ + Λ| = 𝑓(−𝑢0), there are two equilibrium
points: stable point (−𝑢0, 0) and asymptotically stable
point (𝑢̂, 0) with 𝑢̂ > 𝑢0.

As regards the condition of ℎ > 0 and Λ ≤ 0, which means
acting on the negatively vertical direction, Figure 6 shows
the stability of the equilibrium points under this condition.
If ℎ ≤ 2 and Λ = 0, then the equilibrium point is the
unique root of 𝑓(𝑢) = 4ℎ and it is asymptotically stable. In
spite of the increase in the magnitude of |Λ|, the point is still
asymptotically stable (see Figure 6(a)). If ℎ > 2 andΛ = 0, the
stability depends on the relationship between 4ℎ and 𝑓(−𝑢0).
There are three cases: 2 < ℎ < 4, ℎ = 4, and ℎ > 4. For
the first case, the equilibrium point under excitation Λ = 0
started an asymptotically stable point (see Figure 6(b)). For
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(a) (b)

Figure 5: Phase diagram of the verticalmotion for shape parameter ℎ = 5: (a) trajectory of prebuckling load level,Λ = 11.0; and (b) trajectory
of postbuckling load level,Λ = 11.1.

the next case, a stable point and an asymptotically stable
point are observed (see Figure 6(c)). For the final case, two
asymptotically stable points and an unstable point are started
(see Figure 6(d)). As the |Λ| increased for these cases, the
stabilities are varied, as shown inFigures 6(b)–6(d). As shown
in Figure 6, the case of ℎ ≤ 2 has only a unique asymptotically
stable point, and it can be expected that snapping will not
take place. On the other hand, the case of ℎ > 4 started two
asymptotically stable points and one unstable point, and it can
be expected that the system is very sensitive.

Next, the result of considering the effect of damping
coefficient is shown in Figure 7, and it shows that the
displacement converges faster with greater 𝛾. The attraction
shown in Figure 7(b) deviates from the trajectory of the first
form of a drop of water and converges gradually to the water
drop at the opposite side. This indicates that the trajectory
becomes stable state asymptotically. In this model, the shape
parameter ℎ and load level Λ are 5 and 11.3, respectively, with
damping coefficients of 𝛾 = 0.0, 0.02, and 0.05.

As the arches may violently vibrate around critical buck-
ling level Λ and at low 𝛾, there is a need to investigate the
equilibrium values about (𝛾, Λ), which is plotted in Figure 8.
Figures 8(a) and 8(b) are for ℎ = 3 and ℎ = 5, respectively,
and the equilibrium values are computed. The boundaries of
this map are (𝛾, Λ) ∈ [−4.5, −2.5] × (0, 0.5] for ℎ = 3 and(𝛾, Λ) ∈ [−15, −10] × (0, 0.5] for ℎ = 5, respectively. In the
figures, the red points correspond to 𝑢 > 0, and the blue
points correspond to 𝑢 < 0.The figures show that the sign of 𝑢
is clearly separated along the critical values when 𝛾 > 0.1, and
there appears a mixed critical boundary around [−4, −3] ×(0, 0.1] for ℎ = 3 and around [−14, −11] × (0, 0.1] for ℎ = 5.
These results show that the lower damping coefficient 𝛾 is, the
more sensitive the variation around the critical boundary will
be.

Finally, consider the stability of the arches in accordance
with the different initial values. In particular, the equilibrium
values about (𝑢𝜏=0, V𝜏=0), which is plotted in Figure 9, are

investigated. (𝑢𝜏=0, V𝜏=0) is the initial value of the 1st-order
system, as shown in (26). The damping oscillation with 𝛾 =0.2 and Λ = 0 is analyzed, and the equilibrium values withℎ = 1, 3, 5, and 7 are computed. In the figure, plane element(𝑢𝜏=0, V𝜏=0) ∈ [−20, 20] × [−20, 20] is divided into 250 ×200 elements as the initial values on the lattice point of the
coordinate and time 𝜏 ∈ [0, 200].

As shown in Figure 6, the equilibrium points are distin-
guished by the range of ℎ. For ℎ < 4 and Λ = 0, there is a
unique stable point, and when the time increases from the
initial value (𝑢𝜏=0, V𝜏=0), 𝑢(𝜏) focuses on a single point, as
shown in Figures 9(a) and 9(b). For ℎ > 4 and Λ = 0, there
are two asymptotically stable points and an unstable point,
andwhen the time increases from the initial value (𝑢𝜏=0 , V𝜏=0),𝑢(𝜏) focuses on the two stable points, as shown in Figures
9(c) and 9(d). If the trajectory is attracted to the equilibrium
points, the lattice element of the initial value is drawn in red,
otherwise, in blue. For Figures 9(a) and 9(b), red is almost
equal to blue, but Figures 9(c) and 9(d) have different signs
and magnitudes.

For better understanding, the extended phase diagrams
are drawn in Figure 10. These results can be easily observed
from Figures 10(c) and 10(d). From the results of ℎ = 5 andℎ = 7, the boundary of the color becomes the boundary of
the attractor. In particular, a pair of insets can be clearly seen
through the equilibrium values, and these points are divided
into positive and negative values.

In conclusion, the analytical series solution converged
even when damping was considered, and it could well predict
the phenomenon and characteristics of the expected direct
snapping of shallow arches.

5. Dynamic Snapping Model under
Asymmetric Mode

This chapter describes indirect snapping model due to cou-
pling in symmetric mode and asymmetric mode. Since the
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Figure 6: Equilibrium points under the step excitations: (a) ℎ = 1; (b) ℎ = 3; (c) ℎ = 4; and (d) ℎ = 5.

influence of asymmetricmode as shown inFigure 2(b) should
consider both the first term 𝐷1 and second term 𝐷2 of
displacement function, the following 2nd-order differential
equations with respect to𝐷1 and 𝐷2 are derived from (15).

𝐷̈1 + 𝛾𝐷̇1 + (1 + 12𝐻2)𝐷1 − 34𝐻𝐷12 − 𝐻𝐷22

+ 𝐷1𝐷22 + 14𝐷13 − Λ = 0
𝐷̈2 + 𝛾𝐷̇2 + 16𝐷2 − 2𝐻𝐷1𝐷2 + 𝐷12𝐷2 + 4𝐷23 = 0

(29)

When 𝜏 = 𝜏0 and the initial values are set to be𝐷1(𝜏0) = 𝐷01,𝐷̇1(𝜏0) = 𝐷̇01, 𝐷2(𝜏0) = 𝐷02, and 𝐷̇2(𝜏0) = 𝐷̇02 as described in
the previous chapter, the first two terms of the power series
solution are 𝐷01 and 𝐷̇01(𝜏 − 𝜏0𝑖) for the case of 𝐷1 and 𝐷02
and 𝐷̇02(𝜏 − 𝜏0𝑖) for the case of 𝐷2. The remaining terms are
expressed in the following when the order 𝑛 is 4 as mentioned
in the previous chapter.

𝐷1(2) (𝜏0) = −𝛾𝐷̇01 − (1 + ℎ22 )𝐷01 + 34ℎ𝐷012 + ℎ𝐷022

− 𝐷01𝐷022 − 14𝐷013 − Λ
(30)
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(a) (b)

Figure 7: Results of the dynamic analysis in consideration of damping coefficient 𝛾 under step excitation Λ: (a) transient response of the
motion and (b) trajectory in phase plan.

(a) (b)

Figure 8: Equilibrium points and critical buckling boundary in accordance with the change in the damping coefficient: (a) ℎ = 3 and (b)ℎ = 5.

𝐷1(3) (𝜏0) = 𝛾2𝐷̇01 + 𝛾(1 + ℎ22 )𝐷01 − 34𝛾ℎ𝐷012

− 𝛾ℎ𝐷022 + 𝛾𝐷01𝐷022 + 14𝛾𝐷013 − 𝛾Λ

− (1 + ℎ22 ) 𝐷̇01 + 32ℎ𝐷01𝐷̇01 − 𝐷022𝐷̇01
− 34𝐷012𝐷̇01 + 2ℎ𝐷02𝐷̇02 − 2𝐷01𝐷02𝐷̇02

(31)

𝐷2(2) (𝜏0) = −𝛾𝐷̇02 − 16𝐷02 + 2ℎ𝐷01𝐷02 − 𝐷012𝐷02
− 4𝐷023

(32)

𝐷2(3) (𝜏0) = 𝛾2𝐷̇02 + 16𝛾𝐷02 − 2𝛾ℎ𝐷01𝐷02 + 𝛾𝐷012𝐷02
+ 4𝛾𝐷023 + 2ℎ𝐷02𝐷̇01 − 2𝐷01𝐷02𝐷̇01
− 16𝐷̇02 + 2ℎ𝐷01𝐷̇02 − 𝐷012𝐷̇02
− 12𝐷022𝐷̇02

(33)
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(a) (b)

(c) (d)

Figure 9: Attraction of the 1st-order system of arches under excitation level Λ = 0 and damping coefficient 𝛾 = 0.2: (a) ℎ = 1; (b) ℎ = 3; (c)ℎ = 5; and (d) ℎ = 7.

The analysis continued to investigate the result of the solution
to indirect snapping for the shape of ℎ with parameters of𝑛 = 7 and 𝑡ℎ = 0.1. In this analysis, 0.1% of h was applied
to account for the initial imperfection, and beating excitation
and step and periodic excitation was carried out.

Figure 11 is the displacement response to step excitation
for load level Λ = 18.5 and shape parameter ℎ = 7.
In case of Figure 11(a), imperfection is not considered,
but it is introduced by 𝐷2 = 0.001ℎ, i.e., 0.1% of ℎ, in
case of Figure 11(b). Figure 11(b) in consideration of initial

imperfection shows that displacement rapidly changes due to
the influence of coupling under asymmetric mode past the
time level of 10. This is also observed in Figure 12, showing
the change of attraction in the phase plan. Considering the
boundary of dynamic critical load level for direct snapping,Λ = 27.9, the result of Figure 11 indicates that the shallow arch
test specimens are very sensitive to initial condition.

To verify and compare with the analysis results by
multistep Taylor series method, the models in Figure 11
are recomputed using RK4, and the results are shown in
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(a) (b)

(c) (d)

Figure 10: Expended phase space of the 1st-order system of arches: (a) ℎ = 1; (b) ℎ = 3; (c) ℎ = 5; and (d) ℎ = 7.

(a) (b)

Figure 11: Transient response of shallow arches with initial imperfection (𝑡ℎ = 0.1) (MTSM): (a) perfection, 𝐷2 = 0.0; and (b) initial
imperfection𝐷2 = 0.001ℎ.
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(a) (b)

Figure 12: Phase diagram of the dynamic response of the analytical model with initial imperfection (ℎ = 7,Λ = 18.5) (MTSM): (a) trajectory
of𝐷2 = 0.0 and (b) trajectory of𝐷2 = 0.001ℎ.

(a) (b)

(c)

Figure 13: Transient response of the shallow arches with initial imperfection (RK4): (a) perfection𝐷2 = 0.0, 𝑡ℎ = 0.1; (b) initial imperfection𝐷2 = 0.001ℎ, 𝑡ℎ = 0.1; and (c) initial imperfection𝐷2 = 0.001ℎ, 𝑡ℎ = 0.001.

Figures 13 and 14. In the case of the perfect model, the time
parameters of the Taylor series method and RK4 were set at
the same 𝑡ℎ = 0.1. As shown in Figures 11(a) and 13(a), the
results of the Taylor series method agree with the results of
RK4. Besides, the trajectory in Figure 12(a) well matches the
trajectory in Figure 14(a).

Considering the imperfection model in Figure 11(b), the
results of RK4 corresponding to this imperfection model are
shown in Figures 13(b) and 13(c), which are for 𝑡ℎ = 0.1
and for 𝑡ℎ = 0.001, respectively. From the result shown in
Figure 13(b), the response pattern is similar, but it can be seen
that they do not coincide. On the other hand, Figure 13(c) is
more consistent than Figure 13(b). As the imperfection model

is more sensitive than the perfection model, a small time
internal 𝑡ℎ is required for RK4. Besides, the results pattern can
be easily observed from Figures 14(b) and 14(c). The results
shown in Figures 13 and 14 indicate that the shallow arches
are very sensitive to the initial condition, and higher accuracy
is required to analyze the sensitive model.

Multistep Taylor series were applied to the analysis results
of sinusoidal excitation and beating excitation as shown in
Figure 15. The periodic parameters 𝛼 and 𝛽 of 1.0 and 0.05,
respectively, were applied as shown in Figure 15.

Λ = Λ 0 ⋅ sin (𝛼𝑤0𝜏) (34)

Λ = Λ 0 ⋅ 0.5 {cos (𝛼𝑤0𝜏) − cos (𝛼 (1 − 𝛽)𝑤0𝜏)} (35)
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(a) (b)

(c)

Figure 14: Phase diagram of the dynamic response of the analytical model with initial imperfection (ℎ = 7, Λ = 18.5) (RK4): (a) perfection𝐷2 = 0.0, 𝑡ℎ = 0.1; (b) initial imperfection𝐷2 = 0.001ℎ, 𝑡ℎ = 0.1; and (c) initial imperfection𝐷2 = 0.001ℎ, 𝑡ℎ = 0.001.

Figure 15: Sinusoidal and beating excitations.

In (34) and (35), 𝑤0 is the first natural angular frequency of
the model, and the excitation is applied at the same period as
the natural frequency of the case of 𝛼 = 1.0.

This study considered the case of 𝛼 = 1.0 only.
Accordingly, since resonance was expected by excitation,
the analysis continued with lower level Λ 0 of 8.0 than the
buckling load level under step excitation. Figure 16 shows
the analysis result. In this example, the shape parameter and

load level of sinusoidal excitation are ℎ = 7 and Λ 0 = 8.0,
respectively. Imperfection is not considered in Figure 16(a),
but it is introduced by 𝐷2 = 0.001ℎ, i.e., 0.1% of ℎ in case of
Figure 16(b). After the time elapses to 20 as shown in figure
(b), the amplitude of symmetric mode𝐷1 is increased by the
perturbation of the asymmetricmode𝐷2 . It indicates that, for
the case of sinusoidal excitation without the consideration of
imperfection (Figure 16(a)), therewas no rapid increase in the
observed displacement. Nevertheless, the effect of coupling
was very great for the case of considering asymmetric mode
(Figure 16(b)). This result is manifested clearer with the
trajectory in phase plan as shown in Figure 17. In other words,
although there was no change of trajectory in the phase plan
as shown in Figure 17(a), Figure 17(b) shows that the𝐷1 curve
changes the form of trajectory after the elapse of a certain
time.

The analysis of beating excitation was carried out withℎ = 7 like the case of sinusoidal excitation, and Λ 0 of 8.0,
the same load level as for sinusoidal excitation, was applied.
Figure 18 shows the analysis result. After the time elapses
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(a) (b)

Figure 16: Transient response of shallow arches with initial imperfection under sinusoidal excitation (ℎ = 7, Λ 0 = 8.0): (a) perfection,𝐷2 = 0.0 and (b) initial imperfection,𝐷2 = 0.001ℎ.

(a) (b)

Figure 17: Phase diagram of the dynamic response of the analytical model with initial imperfection (ℎ = 7, Λ 0 = 8.0): (a) trajectory of𝐷2 = 0.0 and (b) trajectory of 𝐷2 = 0.001ℎ.

to 15 in Figure 18(a), the amplitude of symmetric mode 𝐷1
is increased by the perturbation of the asymmetric mode𝐷2. The result of transient response (Figure 18(a)) manifests
the effect of coupling under asymmetric mode very clearly.
Figure 18(b) shows that the attractor exhibits a very similar
change to the case of sinusoidal excitation.

Analyses of dynamic response to step, sinusoidal, and
beating excitation under indirect snapping condition and
the influence of asymmetric mode were carried out in order
to evaluate the effectiveness of the multistep Taylor series
method. Coupling under nonlinearity and symmetric and
asymmetric modes was well manifested in dynamic response
to these excitations. The dynamic response under periodic
excitation at the same period as the natural frequency 𝑤0 was
very reliable and verified.

6. Conclusion

This paper examined a dynamic analysis of nonlinear gov-
erning equations for such structures as shallow arches and
the computational method for their analytical solution. The
Taylormethodwas used to obtain a semianalytical solution to
a motion equation, and a solution composed of a polynomial

function with respect to time was formulated in multistep.
A dynamic analysis was conducted to evaluate the computed
solution for the behavior of shallow arches subjected to
step and periodic excitations. Besides, to verify the results
using the multistep Taylor series method, the 4th-order
Runge-Kutta method was used to compute the responses and
trajectories of the shallow arches under the excitation, and
the results are well matched. The analysis result for the arch
under symmetric mode revealed that the dynamic buckling
load level became higher with the higher shape parameter
value of the arch, and the phase diagram showed a change of
attraction at the load level of direct snapping compared to the
level prior to the occurrence of direct snapping. The stability
of the symmetric mode arches is also summarized, and the
equilibria according to ℎ are investigated. For ℎ ≤ 2, dynamic
snapping does not happen, and the arches system for ℎ > 4
are very sensitive. In particular, for ℎ > 4, it can be clearly
seen that the attractors are divided into positive and negative
values. For the case of indirect buckling, the similar attractor
and response, which manifested the coupling phenomenon
under symmetric and asymmetricmodes, were also obtained.
A response result sensitive to the initial imperfection was
observed in the tests of the sinusoidal and beating excitations,
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(a) (b)

Figure 18:Dynamic response of shallow arches under beating excitation (ℎ = 7,Λ 0 = 8.0): (a) transient response ofmotion and (b) trajectory;
initial imperfection,𝐷2 = 0.001ℎ.

and a change in the trajectory in the phase plan was also
observed. The multistep Taylor series solution as a result of
this study was valid in explaining the dynamic behavior of
the direct and indirect snapping of shallow arches based on
the observation of the time history response and phase plan
in this study.

Notations

𝑦0(𝑥): Initial shape of the arch𝑦∗(𝑥, 𝑡): Deflection from the initial configuration𝑦(𝑥, 𝑡): Vertical deflections𝑢(𝑥, 𝑡): Longitudinal deflection𝑝(𝑥, 𝑡): External load(𝑥, 𝑦): Coordinate system of the arch𝐿: Distance of the two ends of the arch from
each other𝜌: Density of mass𝐸: Young’s modulus𝐴(𝑥): Area of the arch’s section𝐼(𝑥): Moment of inertia𝑇: Kinetic energy of the arch𝑈: Potential (strain) energy of the arch(= 𝑈𝑎 + 𝑈𝑏)𝑈𝑎: Potential energy due to the axial force𝑈𝑏: Potential energy due to bending𝜀0: Axial strain on the natural axis𝜅: Curvature𝑁: Internal normal force (𝑁 = 𝐸𝐴𝜀0)𝑀: Bending moment (𝑀 = 𝐸𝐼𝜅)𝑊𝑛𝑐: Work by nonconservative system𝑊𝑑: Work by dissipative force𝑊𝑒𝑥𝑡: Work by external force 𝑝(𝑥, 𝑡)𝜉: Dimensionless parameter (= 𝜋𝑥/𝐿)𝑘: Radius of gyration of the cross-section𝜂0: Dimensionless initial shape configuration(= 𝑦0/𝑘)

𝜂: Dimensionless deflection configuration(= 𝑦/𝑘)𝐷𝑛: Coefficient of the dimensionless deflection
functionℎ: Coefficient of the dimensionless initial shape
functionΛ: Coefficient of the dimensionless excitation
function𝛾: Damping coefficient of the arch𝑢: Dimensionless displacement of the
symmetric mode (= 𝐷1 − ℎ)

V: Dimensionless velocity of the symmetric
mode (= 𝑢̇)𝛿𝑖𝑗: Kronecker delta𝑡ℎ: Time step-size𝜏: Time parameter

𝑅(𝑛, 𝑡, 𝑡0): Remainder term of Taylor series𝑢̂: Equilibrium points of the first-order arch
system𝑢0: Local minimum (or maximum) points of the
1st-order arch system𝛼, 𝛽: Periodic parameter of the excitation function𝑤0: Natural angular frequency.

Additional Points

Highlight. Application of higher order multistep Taylor
method to obtain a semianalytical solution for shallow arches.
Investigation of dynamic snapping for the verification of the
applicability of the multistep Taylor method. Investigation of
the sensitivity of shallow arches under step, sinusoidal, and
beating excitation.
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