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The paper is concerned with the design requirements that relax the existing conditions reported in the previous literature for
continuous-time linear positive systems, reformulating the linear programming approach by the linearmatrix inequalities principle.
Incorporating an associated structure of linearmatrix inequalities, combinedwith the Lyapunov inequality guaranteeing asymptotic
stability of positive system structures, the conditions are presented, with which the state-feedback controllers and the system state
observers can be designed. A numerical example illustrates the proposed conditions.

1. Introduction

Positive systems are often found in the modeling and control
of engineering and industrial processes, whose state variables
represent quantities that do not have meaning unless they
are nonnegative [1]. The mathematical theory of Metzler
matrices has a close relationship to the theory of positive
linear continuous-time dynamical systems, since in the state-
space description form the system dynamics matrix of a
positive systems is Metzler and the system input and output
matrices are nonnegativematrices. In abbreviated terms, such
continuous-time linear systems are denoted in the following
as Metzlerian systems. Stability and stabilization of such sys-
tems are reported, e.g., in [2–6] and various methods based
on linear programming (LP) and linear matrix inequalities
(LMI) are considered for positive stabilization and observer
designs, as it is further elaborated in subsequent paragraphs.

The task of the state observer design for positive linear
system is solved in [7] using the coordinates transformation.
If the coordinate transform matrix is a solution of the
specified Silvester equation and its inverse is nonnegative,
the positive observer is constructed only for transformed
state coordinates. Another proposed way is to transform
system into controllable and uncontrollable parts to obtain
a reduced order realization, suitable for positive observer

design. The second group of methods represents [8], where
LMI conditions to state observer design for positive linear
systems are presented, but the observer is not of Luenberger
type since the standard observer gain matrix does not specify
the observer dynamics and an additive matrix is used to
define the observer stability.

The most similar idea to the one presented in this
paper is the approach given in [9, 10], using formulation
based on the set of LMIs. These approaches are considered
for both positive and nonpositive systems. However, since
nondiagonal matrix variables are exploited, they do not in
general guarantee diagonally dominant Metzler structure of
the closed-loop system matrix. The approach of the present
paper makes it possible to achieve this additional constraint,
if required.

The linear programming approach was effectively used
for static output feedback design of positive systems in [11,
12], and [13, 14] consider both positive observer and control
design with bounded control constraint.

The main motivation of this paper is to give design
conditions for stabilization of linear positive continuous-time
systems by the state-feedback, as well as the conditions for
Lunberger state observers design in the same systems struc-
tures, using the formulation based on strict LMIs. Analyzing
structures of the closed-loop systemmatrix, and the observer
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systemmatrix, the resulting algebraic constraints, which lead
to strictly Metzler matrices, are formulated as a set of LMIs
with diagonal matrix variables. This set is extended by an
LMI, reflecting the Lyapunov stability condition [15]. Since
the stability is posed as an LMI, constraints implying from the
strictly Metzler matrix structure in the form of LMIs results
also in the LMI formulation [16]. Advantages may also be
added to the fact that these conditions can be adapted to the
synthesis of nonnegative gain matrices of the regulator or
estimator, as well as for the synthesis resulting in a Metzler
matrix structure, if the conditions for its zero nondiagonal
elements are satisfied. Preferring LMI structure, the proofs
are of standard way in the sense of Lyapunov principle and
reflect the facts when optimization in positive systems has
LMIs representation.

The paper is organized as follows. After the Introduction,
Section 2 presents some preliminaries, including the char-
acterization of positive systems. A newly introduced set of
LMIs, describing the design conditions for strictlyMetzlerian
SISO systems, is theoretically substantiated and proven in
Section 3 and, subsequently, the design conditions for strictly
Metzlerian MIMO systems are generalized in Section 4. An
example is provided to demonstrate the proposed approach
in Section 5, while Section 6 draws some conclusions.

Used notations are conventional so that 𝑥𝑇, 𝑋𝑇 denote
transpose of the vector 𝑥 and matrix 𝑋, respectively, 𝑦 ∈
R
𝑝
+, 𝑌 ∈ R

𝑝×𝑞
+ denote nonnegative vector and nonnegative

matrix, 𝑋 = 𝑋𝑇 ≻ 0 means that 𝑋 is symmetric positive
definite matrix, 𝜌(∗) indicates the eigenvalue spectrum of
a square matrix, the symbol 𝐼𝑛 marks the 𝑛-th order unit
matrix, diag[⋅] enters up a diagonal matrix, R𝑛, R𝑛×𝑟 refer to
the set of all 𝑛-dimensional real vectors and 𝑛×𝑟 realmatrices,
respectively, andR𝑛𝑛,R

𝑛×𝑟
+ refer to the set of all 𝑛-dimensional

real nonnegative vectors and 𝑛 × 𝑟 real nonnegative matrices,
respectively.

2. System Description

In the following theMetzlerian class of positive linear dynam-
ical systems is considered where state-space description is

�̇� (𝑡) = 𝐴𝑞 (𝑡) + 𝐵𝑢 (𝑡) , (1)

𝑦 (𝑡) = 𝐶𝑞 (𝑡) , (2)

where 𝑞(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑟, 𝑦(𝑡) ∈ R𝑚 stand for state,
control input, and measurable output, 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑟,
𝐶 ∈ R𝑚×𝑛.

Definition 1 ([17], positive linear system). The linear system
(1), (2) is said to be positive if and only if for every nonnegative
initial state and for every nonnegative input its state and
output are nonnegative.

Definition 2. A matrix 𝑌 ∈ R
𝑝×𝑞
+ and a vector 𝑦 ∈ R

𝑝
+ are

nonnegative if all its entries are nonnegative and at least one
is positive.

Definition 3 (see [18–20]). A square matrix 𝐴 ∈ R𝑛×𝑛 is
Metzler matrix if its off-diagonal elements are nonnegative.

A Metzler matrix 𝐴 is called strictly Metzler if its diagonal
elements are negative and its off-diagonal elements are
positive. A Metzler matrix is stable if it is strictly Metzler and
Hurwitz.

Proposition 4 (see [21]). AMetzler matrix𝐴 ∈ R𝑛×𝑛 is stable
if and only if all principal minors of the matrix −𝐴 are positive.
Proposition 5 (see [22, 23]). A square matrix 𝐴 ∈ R𝑛×𝑛 is
said to be strictly diagonally dominant if

𝑎𝑖𝑖 > ∑
𝑗 ̸=𝑖

𝑎𝑖𝑗 ∀𝑖 ∈ ⟨1, 𝑛⟩ , (3)

where 𝑎𝑖𝑗 denotes the entry in the 𝑖th row and 𝑗th column.
If the matrix is strictly diagonally dominant and all its

diagonal elements are negative, then the real parts of all its
eigenvalues are negative. A strictly Metzler matrix is stable if
it is strictly diagonally dominant.

To highlight some features of positive systems, presented
exposition is placed within the framework introduced by the
monograph [17], p. 8 and 41.

Proposition 6 (see [17]). A solution 𝑞(𝑡) of (1) for 𝑡 ≥ 0 is
asymptotically stable and positive if𝐴 is stable Metzler matrix,
𝐵 ∈ R𝑛×𝑟+ is nonnegative matrix and 𝑞(𝑡) ∈ R𝑛+ for given 𝑢(𝑡) ∈
R𝑟+ and 𝑞(0) ∈ R+. The linear system (1), (2) is asymptotically
stable and positive if𝐴 is stable Metzler matrix, 𝐵 ∈ R𝑛×𝑟+ , 𝐶 ∈
R𝑚×𝑛+ are nonnegative matrices and 𝑦(𝑡) ∈ R𝑚+ for all 𝑢(𝑡) ∈
R𝑟+ and 𝑞(0) ∈ R+. The linear system (1), (2) is asymptotically
stable and externally positive if 𝐴 is stable Metzler matrix and
𝐵 ∈ R𝑛×𝑟+ , 𝐶 ∈ R𝑚×𝑛+ are nonnegative matrices.

In process control, (2) defines the measurement sub-
system on the plant and 𝑦(𝑖) defines the output variables,
whose values must be complied. If the𝐶matrix would be not
nonnegative, some of the output variables could be negative.
Thus, considering the nonnegative state variables and 𝐶 ∈
R𝑚×𝑛+ , the output variables are also nonnegative.

Proposition 7 ([24], Lyapunov inequalities). Autonomous
system (1) is asymptotically stable if there exist symmetric
positive definite matrices 𝑃,𝑄 ∈ R𝑛×𝑛 or 𝑉,𝑈 ∈ R𝑛×𝑛 such
that

𝑃 = 𝑃𝑇 ≻ 0,
𝑄 = 𝑄𝑇 ≻ 0,

𝐴𝑃 + 𝑃𝐴𝑇 +𝑄 ≺ 0,
(4)

𝑉 = 𝑉𝑇 ≻ 0,
𝑈 = 𝑈𝑇 ≻ 0,

𝑉𝐴 + 𝐴𝑇𝑉 +𝑈 ≺ 0.
(5)

Note that the equivalent statements (4) and (5) are given
to circumvent formulations with inverse matrices in the
following sections, since direct use (4) leads to bilinearmatrix
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inequality in the design of the observer, and direct use (5)
leads to bilinear matrix inequality in the synthesis of the
regulator. It is easily verifiable that premultiplying the left side
and postmultiplying the right side by the matrix𝑃 = 𝑉−1 and
setting𝑄 = 𝑉−1𝑈𝑉−1; then (5) implies (4).

Lemma 8. If𝑋 ∈ R𝑛×𝑛 is a symmetric positive definite matrix,
it yields the following relation:

𝑋 = 𝑋𝑇 ≻ 0 ⇐⇒
12𝑋 + 12𝑋𝑇 = 12𝑋 + (∗) ≻ 0, (6)

where ∗ denotes the symmetric item (1/2)𝑋𝑇 to (1/2)𝑋.
Proof. Since it yields

𝑋 = 𝑋𝑇 ≻ 0, (7)

𝑋 = 12𝑋 + 12𝑋 = 12𝑋 + 12𝑋𝑇 ≻ 0, (8)

(7) and (8) imply (6). This concludes the proof.

Definition 9 ([25], congruent modulo 𝑛). Let 𝑛 be a fixed
positive integer. Two integers 𝑖 and ℎ are congruent modulo𝑛 if they differ by an integral multiple of the integer 𝑛 (they
leave the same remainder when divided by 𝑛). If 𝑖 and ℎ are
congruent modulo 𝑛, the expression (𝑖 = ℎ)mod 𝑛 is called a
congruence, and the number 𝑛 is called the modulus of the
congruence.

Note that the statement (𝑖 = ℎ)mod 𝑛 is equivalent to the
statement “(𝑖 − ℎ) is divisible by 𝑛” or to the statement “there
is an integer𝑚 for which 𝑖 − ℎ = 𝑚𝑛” and the word “modulo”
generally means “to the modulus”.

Definition 10 (see [26]). Let 𝑆 = {0, 1, 2, . . . , 𝑛 − 1} be
the complete set of residues for any positive integer 𝑛. The
addition modulo 𝑛 on 𝑆 is (ℎ + 𝑘)mod 𝑛 = 𝑟, where 𝑟 is the
element of 𝑆 to which the result of the usual sum of integersℎ and 𝑘 is congruent modulo 𝑛.
Corollary 11. The problem of indexing in this paper is that the
rows and columns of a square matrix of dimension 𝑛 × 𝑛 are
generally denoted from 1 to 𝑛 and not from 0 to 𝑛−1. From this
reason let 𝑆 = {0, 1, 2, . . . , 𝑛} be the complete set of residues for
any positive integer 𝑛 + 1. Then the addition modulo 𝑛 + 1 on 𝑆
is in the following defined as (𝑖+ℎ)mod 𝑛+1 = 𝑟+1, where 𝑟 is the
element of 𝑆 to which the result of the usual sum of integers ℎ
and 𝑘 is congruentmodulo 𝑛+1.The used shorthand symbolical
notation for (1 + ℎ)mod 𝑛+1 = 𝑟 + 1 is so (𝑖 + ℎ)(1←→𝑛)/𝑛 = 𝑟 + 1.

3. SISO Strictly Metzlerian Systems

The systems under consideration in this section are linear
single-input, single-output (SISO) continuous-time dynamic
systems represented in state-space form as

�̇� (𝑡) = 𝐴𝑞 (𝑡) + 𝑏𝑢 (𝑡) , (9)

𝑦 (𝑡) = 𝑐𝑇𝑞 (𝑡) , (10)

where 𝑞(𝑡) ∈ R𝑛 is the vector of the system state variables,𝑢(𝑡) ∈ R, 𝑦(𝑡) ∈ R are the input and output variables,
𝐴 ∈ R𝑛×𝑛 is Metzler matrix, 𝑏 ∈ R𝑛+, 𝑐 ∈ R𝑛𝑐 are nonnegative
vectors, the pair (𝐴, 𝑏) is controllable, and the pair (𝐴, 𝑐𝑇) is
observable.

Note that if 𝐴 ∈ R𝑛×𝑛 is Metzler matrix, and 𝑏 ∈ R𝑛+,
𝑐 ∈ R𝑛+ are nonnegative vectors, (9) and (10) are Metzlerian
system.

3.1. State Controller Design. Considering system (9), (10), the
full state control law is defined as

𝑢 (𝑡) = −𝑘𝑇𝑞 (𝑡) , (11)

where 𝑘 ∈ R𝑛+ is the gain vector. Thus, using (9), (11), it yields

�̇� (𝑡) = (𝐴 − 𝑏𝑘𝑇) 𝑞 (𝑡) = 𝐴𝑐𝑞 (𝑡) , (12)

𝑦 (𝑡) = 𝑐𝑇𝑞 (𝑡) , (13)

where

𝐴𝑐 = 𝐴 − 𝑏𝑘𝑇 (14)

is the closed-loop system dynamics matrix.
Note that the controller has to be designed not only to

stabilize the system, but also to render the stable closed-loop
system matrix strictly Metzlerian.

The following theorem defines the LMI conditions to
obtain a strictlyMetzlermatrix𝐴𝑐 but does not guarantee that
𝐴𝑐 is stable strictly Metzler matrix.

Theorem 12. The closed-loop system (12), (13) is strictly
Metzlerian if system (9), (10) is strictly Metzlerian and there
exists a positive definite diagonal matrix 𝐾 ∈ R𝑛×𝑛 such that
for ℎ = 1, 2, . . . 𝑛 − 1,

12 (𝐴 (𝑖, 𝑖)(1←→𝑛) − 𝐵𝑑𝐾) + (∗) ≺ 0, (15)

12 (𝑇ℎ𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝑇ℎ𝐵𝑑𝑇ℎ𝑇𝐾) + (∗)
≻ 0, (16)

𝐾 = diag [𝑘1 𝑘2 ⋅ ⋅ ⋅ 𝑘𝑛] ≻ 0, (17)
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where

𝑇 = [[[[[
[

0 0 ⋅ ⋅ ⋅ 0 1
1 0 ⋅ ⋅ ⋅ 0 0

d

0 0 ⋅ ⋅ ⋅ 1 0

]]]]]
]

,

𝑇
−1 = 𝑇𝑇,

(18)

𝑏
𝑇 = [𝑏1 𝑏2 ⋅ ⋅ ⋅ 𝑏𝑛] , (19)

𝐵𝑑 = diag [𝑏1 𝑏2 ⋅ ⋅ ⋅ 𝑏𝑛] = diag [{𝑏𝑖}𝑖=1,...,𝑛] , (20)

𝐴 (𝑖, 𝑖)1←→𝑛 = diag [𝑎11 𝑎22 ⋅ ⋅ ⋅ 𝑎𝑛𝑛]
= diag [{𝑎𝑖𝑖}𝑖=1,...,𝑛] , (21)

𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛
= diag [𝑎1,1+ℎ 𝑎2,2+ℎ ⋅ ⋅ ⋅ 𝑎𝑛−ℎ,𝑛 𝑎𝑛−ℎ+1,1 ⋅ ⋅ ⋅ 𝑎𝑛,ℎ] , (22)

while 𝐴(𝑖, 𝑖)1←→𝑛,𝐴(𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛, 𝑇,𝐵𝑑,𝐾 ∈ R𝑛×𝑛.
Hereafter, ∗ denotes the symmetric item in a symmetric

matrix.

Proof. Writing the closed-loop dynamics matrix 𝐴𝑐 as fol-
lows:

[[[[[
[

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛
d

𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]]]]]
]

−
[[[[[[
[

𝑏1𝑏2...
𝑏𝑛

]]]]]]
]

[𝑘1 𝑘2 ⋅ ⋅ ⋅ 𝑘𝑛] ≺ 0, (23)

it is evident that𝐴𝑐 is a strictlyMetzlermatrix if all of its main
diagonal elements are negative, i.e.,

𝑎𝑖𝑖 − 𝑏𝑖𝑘𝑖 < 0 ∀𝑖 = 1, 2, . . . , 𝑛 (24)

and all its of diagonal elements are positive, i.e.,

𝑎𝑖𝑗 − 𝑏𝑖𝑘𝑗 > 0 ∀𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗. (25)

To solve by an LMI solver, LMIs have to be symmetric,
and so (24) can be rewritten in the following diagonal matrix
structure:

[[[[[
[

𝑎11 𝑎22
d

𝑎𝑛𝑛

]]]]]
]

− [[[[[
[

𝑏1 𝑏2
d

𝑏𝑛

]]]]]
]

[[[[[
[

𝑘1 𝑘2
d

𝑘𝑛

]]]]]
]

≺ 0,
(26)

𝐴 (𝑖, 𝑖)(1←→𝑛) − 𝐵𝑑𝐾 ≺ 0, (27)

respectively, where 𝐾 = diag[{𝑘𝑖}𝑖=1,...,𝑛] is the diagonal
matrix variable.

Moreover, (26) implies

[[[[[
[

𝑎11 𝑎22
d

𝑎𝑛𝑛

]]]]]
]

− [[[[[
[

𝑘1 𝑘2
d

𝑘𝑛

]]]]]
]

[[[[[
[

𝑏1 𝑏2
d

𝑏𝑛

]]]]]
]

≺ 0,
(28)

That is, (27) is a symmetric matrix. Thus, exploiting (6), then
(27) can be written as (15) using the notations (17) and (20),
(21).

Rewriting (23) as

[[[[[[
[

𝑎12 𝑎13 ⋅ ⋅ ⋅ 𝑎1𝑛 𝑎11𝑎22 𝑎23 ⋅ ⋅ ⋅ 𝑎2𝑛 𝑎21...
𝑎𝑛2 𝑎𝑛3 ⋅ ⋅ ⋅ 𝑎𝑛𝑛 𝑎𝑛1

]]]]]]
]

−
[[[[[[
[

𝑏1𝑏2...
𝑏𝑛

]]]]]]
]

[𝑘2 𝑘3 ⋅ ⋅ ⋅ 𝑘𝑛 𝑘1] ,

(29)

it can set for the diagonal elements of (29)

[[[[[
[

𝑎12 𝑎23
d

𝑎𝑛1

]]]]]
]

− [[[[[
[

𝑏1 𝑏2
d

𝑏𝑛

]]]]]
]

[[[[[
[

𝑘2 𝑘3
d

𝑘1

]]]]]
]

≻ 0,
(30)

which leads to

𝐴 (𝑖, 𝑖 + 1)(1←→𝑛)/𝑛 − 𝐵𝑑𝐾𝑐1 ≻ 0, (31)

where𝐾𝑐1 is the diagonal matrix𝐾with one circular shift of
its diagonal elements. It is evident that (31) is also a symmetric
matrix.
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Repeating this procedure ℎ-times, it can be obtained from
(23) that

[[[[[[
[

𝑎1,1+ℎ ⋅ ⋅ ⋅ 𝑎1,𝑛 𝑎1,1 ⋅ ⋅ ⋅ 𝑎1,ℎ𝑎2,𝑖+ℎ ⋅ ⋅ ⋅ 𝑎2,𝑛 𝑎2,1 ⋅ ⋅ ⋅ 𝑎2,ℎ... d
... ... d

...
𝑎𝑛,𝑖+ℎ ⋅ ⋅ ⋅ 𝑎𝑛,𝑛 𝑎𝑛,1 ⋅ ⋅ ⋅ 𝑎𝑛,ℎ

]]]]]]
]

−
[[[[[[
[

𝑏1𝑏2...
𝑏𝑛

]]]]]]
]

[𝑘1+ℎ 𝑘2+ℎ ⋅ ⋅ ⋅ 𝑘ℎ] ,

(32)

and, consequently,

[[[[[
[

𝑎1,1+ℎ 𝑎2,2+ℎ
d

𝑎𝑛,ℎ

]]]]]
]

− [[[[[
[

𝑏1 𝑏2
d

𝑏𝑛

]]]]]
]

[[[[[
[

𝑘1+ℎ 𝑘2+ℎ
d

𝑘ℎ

]]]]]
]

≻ 0,
(33)

which gives the symmetric matrix inequality

𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 − 𝐵𝑑𝐾𝑐,ℎ ≻ 0, (34)

where 𝐾𝑐ℎ is the diagonal matrix 𝐾 with ℎ circular shifts of
its diagonal elements.

Using the permutationmatrix𝑇 of the structure (58) [22]
it can be easily verified that for ℎ = 1, 2, . . . 𝑛 − 1 it yields

𝐾 = 𝑇ℎ𝐾𝑐,ℎ𝑇−ℎ = 𝑇ℎ𝐾𝑐,ℎ𝑇ℎ𝑇. (35)

Thus, premultiplying the right side by 𝑇ℎ𝑇 and postmultiply-
ing the left side by 𝑇ℎ then (34) leads to

𝑇
ℎ
𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝑇ℎ𝐵𝑑𝑇ℎ𝑇𝑇ℎ𝐾𝑐,ℎ𝑇ℎ𝑇 ≻ 0, (36)

𝑇
ℎ
𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝑇ℎ𝐵𝑑𝑇ℎ𝑇𝐾 ≻ 0, (37)

respectively, and using (6), then (37) implies (16). This
concludes the proof.

Theorem 13. The closed-loop system (12), (13) is stable strictly
Metzlerian if system (9), (10) is strictly Metzlerian and there

exist positive definite diagonal matrices 𝑃,𝑅,𝑄 ∈ R𝑛×𝑛 such
that for ℎ = 1, 2, . . . 𝑛 − 1,
𝐴𝑃 + 𝑃𝐴𝑇 − 𝑏𝑟𝑇 − 𝑟𝑏𝑇 +𝑄 ≺ 0, (38)

12 (𝐴 (𝑖, 𝑖)(1←→𝑛) 𝑃 − 𝐵𝑑𝑅) + (∗) ≺ 0, (39)

12 (𝑇ℎ𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇𝑃 − 𝑇ℎ𝐵𝑑𝑇ℎ𝑇𝑅) + (∗)
≻ 0, (40)

𝑃 = diag [𝑝1 𝑝2 ⋅ ⋅ ⋅ 𝑝𝑛] ≻ 0, (41)

𝑄 = diag [𝑞1 𝑞2 ⋅ ⋅ ⋅ 𝑞𝑛] ≻ 0, (42)

𝑅 = diag [𝑟1 𝑟2 ⋅ ⋅ ⋅ 𝑟𝑛] ≻ 0, (43)

𝑟
𝑇 = [𝑟1 𝑟2 ⋅ ⋅ ⋅ 𝑟𝑛] = 𝑙𝑇𝑅, 𝑙 = [1 1 ⋅ ⋅ ⋅ 1]𝑇 , (44)

where the parameters are given in (18)–(22).
When the above conditions hold, the control law gain vector
𝑘𝑇 is given as

𝐾 = 𝑅𝑃−1, 𝑘𝑇 = 𝑙𝑇𝐾. (45)

Proof. Inserting (14) into (4) gives

(𝐴 − 𝑏𝑘𝑇)𝑃 + 𝑃 (𝐴 − 𝑏𝑘𝑇)𝑇 +𝑄 ≺ 0. (46)

Since with a positive diagonal matrix 𝑃 it also yields

𝐴𝑃 + 𝑃𝐴𝑇 − 𝑏𝑘𝑇𝑃 − 𝑃𝑘𝑏𝑇 +𝑄 ≺ 0, (47)

using the notation

𝑟
𝑇 = 𝑘𝑇𝑃 (48)

(47) implies (38).
Multiplying the right side of (27) by 𝑃 gives

𝐴 (𝑖, 𝑖)(1←→𝑛) 𝑃 − 𝐵𝑑𝐾𝑃 ≺ 0, (49)

and with the notation

𝑅 = 𝐾𝑃 (50)

(49) implies (39).
Multiplying the right side of (37) by 𝑃 gives

𝑇
ℎ
𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇𝑃 − 𝑇ℎ𝐵𝑑𝑇ℎ𝑇𝐾𝑃 ≻ 0 (51)

and with the notation (50) then (51) implies (40). This
concludes the proof.

Note that conditions (38)-(43) are all LMIs; that is, they
are convex in the defined matrix variables.

Remark 14. It can be noted that the necessary diagonalmatrix
variable structure of 𝐾, presented in Theorem 12, directly
implies the diagonal matrix variable structures of 𝑃, 𝑅 in
Theorem 13. Since, in the terms of the Krasovskii theorem
[27], the matrices𝑄,𝑈 in Proposition 7 can be zero matrices,
this way can be also applied in (38), and in the inequalities we
exploited the proposition properties in the following parts of
the paper.
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3.2. Luenberger Observer Design. Considering the observable
system (9), (10), the Luenberger observer is given as

�̇�𝑒 (𝑡) = 𝐴𝑞𝑒 (𝑡) + 𝑏𝑢 (𝑡) + 𝑗 (𝑦 (𝑡) − 𝑦𝑒 (𝑡)) , (52)

𝑦𝑒 (𝑡) = 𝑐𝑇𝑞𝑒 (𝑡) (53)

and using (9), (10) and (52), (53) it yields

�̇� (𝑡) = (𝐴 − 𝑗𝑐𝑇) 𝑒 (𝑡) = 𝐴𝑒𝑒 (𝑡) , (54)

where
𝑒 (𝑡) = 𝑞 (𝑡) − 𝑞𝑒 (𝑡) ,
𝐴𝑒 = 𝐴 − 𝑗𝑐𝑇, (55)

𝑞𝑒(𝑡) ∈ R𝑛 is the vector of the system state estimate, 𝑦𝑒(𝑡) ∈
R𝑚 is the output variable estimate, and 𝑗 ∈ R𝑛 is the observer
gain vector.

Note that the observer has to be designed not only to be
stable, but also to render the observer system matrix stable
strictly Metzlerian.

Theorem 15. The Luenberger observer (52), (53) is strictly
Metzlerian if system (9), (10) is strictly Metzlerian and there
exists a positive definite diagonal matrix 𝐽 ∈ R𝑛×𝑛 such that
for ℎ = 1, 2, . . . 𝑛 − 1

12 (𝐴 (𝑖, 𝑖)(1←→𝑛) − 𝐽𝐶𝑑) + (∗) ≺ 0, (56)

12 (𝑇ℎ𝐴 (𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝐽𝑇ℎ𝐶𝑑𝑇ℎ𝑇) + (∗)
≻ 0, (57)

𝐽 = diag [𝑗1 𝑗2 ⋅ ⋅ ⋅ 𝑗𝑛] ≻ 0, (58)

where 𝑇 is defined in (18),

𝑐
𝑇 = [𝑐1 𝑐2 ⋅ ⋅ ⋅ 𝑐𝑛] , (59)

𝐶𝑑 = diag [𝑐1 𝑐2 ⋅ ⋅ ⋅ 𝑐𝑛] = diag [{𝑐𝑖}𝑖=1,...,𝑛] , (60)

𝐴 (𝑖, 𝑖)1←→𝑛 = diag [𝑎11 𝑎22 ⋅ ⋅ ⋅ 𝑎𝑛𝑛]
= diag [{𝑎𝑖𝑖}𝑖=1,...,𝑛] , (61)

𝐴 (𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛
= diag [𝑎1+ℎ,1 𝑎2+ℎ,2 ⋅ ⋅ ⋅ 𝑎𝑛,𝑛−ℎ 𝑎1,𝑛−ℎ+1 ⋅ ⋅ ⋅ 𝑎ℎ,𝑛] , (62)

while 𝐴(𝑖, 𝑖)1←→𝑛,𝐴(𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛, 𝑇,𝐶𝑑, 𝐽 ∈ R𝑛×𝑛.

Proof. Since the duality principle has to be applied on the
structure (23), to avoid some misinterpretation the proof is
given in partly full dual sense.

Noting down the observer matrix 𝐴𝑒 structure (55) as

[[[[[
[

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛
d

𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]]]]]
]

−
[[[[[[
[

𝑗1𝑗2...
𝑗𝑛

]]]]]]
]

[𝑐1 𝑐2 ⋅ ⋅ ⋅ 𝑐𝑛] ≺ 0, (63)

it is evident that 𝐴𝑒 is a strictly Metzler matrix if

𝑎𝑖𝑖 − 𝑗𝑖𝑐𝑖 < 0 ∀𝑖 = 1, 2, . . . , 𝑛, (64)

𝑎𝑖𝑗 − 𝑗𝑖𝑐𝑗 > 0 ∀𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗. (65)

Writing (64) in the diagonal matrix structure

[[[[[
[

𝑎11 𝑎22
d

𝑎𝑛𝑛

]]]]]
]

− [[[[[
[

𝑗1 𝑗2
d

𝑗𝑛

]]]]]
]

[[[[[
[

𝑐1 𝑐2
d

𝑐𝑛

]]]]]
]

≺ 0,
(66)

𝐴 (𝑖, 𝑖)(1←→𝑛) − 𝐽𝐶𝑑 ≺ 0, (67)

respectively, where 𝐽 = diag[{𝑗𝑖}𝑖=1,...,𝑛] is the diagonal matrix
variable, it is evident that such structure is symmetric and
(67) can be written as (56) using notations (60), (61).

Overwriting inequality (63) as

[[[[[[[[[
[

𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛𝑎31 𝑎32 ⋅ ⋅ ⋅ 𝑎3𝑛...
𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛

]]]]]]]]]
]

−
[[[[[[[[[
[

𝑗2𝑗3...
𝑗𝑛𝑗1

]]]]]]]]]
]

[𝑐1 𝑐2 ⋅ ⋅ ⋅ 𝑐𝑛] , (68)

it has to be for the diagonal elements of (68)

[[[[[
[

𝑎21 𝑎32
d

𝑎1𝑛

]]]]]
]

− [[[[[
[

𝑗2 𝑗3
d

𝑗1

]]]]]
]

[[[[[
[

𝑐1 𝑐2
d

𝑐𝑛

]]]]]
]

≻ 0,
(69)

which leads to the symmetric inequality

𝐴 (𝑖 + 1, 𝑖)(1←→𝑛)/𝑛 − 𝐽𝑐1𝐶𝑑 ≻ 0, (70)

where 𝐽𝑐1 is the diagonal matrix 𝐽 with one circular shift of
its diagonal elements.
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Repeating this procedure ℎ-times, it can obtain the
following:

[[[[[[[[[[[[[
[

𝑎1+ℎ,1 𝑎1+ℎ,2 ⋅ ⋅ ⋅ 𝑎1+ℎ,𝑛...
𝑎𝑛,1 𝑎𝑛,2 ⋅ ⋅ ⋅ 𝑎𝑛,𝑛𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛...
𝑎ℎ,1 𝑎ℎ,2 ⋅ ⋅ ⋅ 𝑎ℎ,𝑛

]]]]]]]]]]]]]
]

−

[[[[[[[[[[[[[
[

𝑗1+ℎ...
𝑗𝑛𝑗1...
𝑗ℎ

]]]]]]]]]]]]]
]

[𝑐1 𝑐2 ⋅ ⋅ ⋅ 𝑐𝑛] , (71)

[[[[[
[

𝑎1+ℎ,1 𝑎2+ℎ,2
d

𝑎ℎ,𝑛

]]]]]
]

− [[[[[
[

𝑗1+ℎ 𝑗2+ℎ
d

𝑗ℎ

]]]]]
]

[[[[[
[

𝑐1 𝑐2
d

𝑐𝑛

]]]]]
]

≻ 0,
(72)

respectively. Thus, analogously, (72) results in

𝐴 (𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛 − 𝐽𝑐,ℎ𝐶𝑑 ≻ 0. (73)

Using the permutation matrix 𝑇 of the structure (58) it
yields for ℎ = 1, 2, . . . 𝑛 − 1 that

𝐽 = 𝑇ℎ𝐽𝑐,ℎ𝑇−ℎ = 𝑇ℎ𝐽𝑐,ℎ𝑇ℎ𝑇 (74)

and premultiplying the left side by 𝑇ℎ and postmultiplying
the right side by 𝑇ℎ𝑇 then the symmetric structure (73)

𝑇
ℎ
𝐴 (𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝑇ℎ𝐽𝑐,ℎ𝑇ℎ𝑇𝑇ℎ𝐶𝑑𝑇ℎ𝑇 ≻ 0, (75)

𝑇
ℎ
𝐴 (𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝐽𝑇ℎ𝐶𝑑𝑇ℎ𝑇 ≻ 0, (76)

respectively, and using (6), then (76) implies (57). This
concludes the proof.

Theorem 16. The Luenberger observer (52), (53) is stable
strictly Metzlerian if system (9), (10) is strictly Metzlerian and

there exist positive definite diagonal matrices 𝑈,𝑉,𝑊 ∈ R𝑛×𝑛

such that for ℎ = 1, 2, . . . 𝑛 − 1
𝑉𝐴 + 𝐴𝑇𝑉 − 𝑤𝑐𝑇 − 𝑐𝑤𝑇 +𝑈 ≺ 0, (77)

12 (𝑉𝐴 (𝑖, 𝑖)(1←→𝑛) −𝑊𝐶𝑑) + (∗) ≺ 0, (78)

12 (𝑉𝑇ℎ𝐴 (𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛 𝑇ℎ𝑇 −𝑊𝑇ℎ𝐶𝑑𝑇ℎ𝑇) + (∗)
≻ 0, (79)

𝑉 = diag [V1 V2 ⋅ ⋅ ⋅ V𝑛] ≻ 0, (80)

𝑊 = diag [𝑤1 𝑤2 ⋅ ⋅ ⋅ 𝑤𝑛] ≻ 0, (81)

𝑈 = diag [𝑢1 𝑢2 ⋅ ⋅ ⋅ 𝑢𝑛] ≻ 0, (82)

𝑤
𝑇 = [𝑤1 𝑤2 ⋅ ⋅ ⋅ 𝑤𝑛] = 𝑙𝑇𝑊, 𝑙 = [1 1 ⋅ ⋅ ⋅ 1]𝑇 , (83)

where the parameters are given in (18), (59)–(62).
When the above conditions hold, the observer gain vector 𝑗

is given as

𝐽 = 𝑉−1𝑊, 𝑗 = 𝐽𝑙. (84)

Proof. Inserting (55) into (5) gives for a positive definite
diagonal matrix 𝑉 that

𝑉 (𝐴 − 𝑗𝑐𝑇) + (𝐴 − 𝑗𝑐𝑇)𝑇𝑉 +𝑈 ≺ 0, (85)

𝑉𝐴 + 𝐴𝑇𝑉 −𝑉𝑗𝑐𝑇 − 𝑐𝑗𝑇𝑉 +𝑈 ≺ 0, (86)

respectively. Therefore, using the notation

𝑤
𝑇 = 𝑗𝑇𝑉, (87)

(86) implies (77).
Multiplying the left side of (67) by 𝑉 gives

𝑉𝐴 (𝑖, 𝑖)(1←→𝑛) −𝑉𝐽𝐶𝑑 ≺ 0, (88)

and with the notation

𝑊 = 𝑉𝐽 (89)

(88) implies (78).
Multiplying the left side of (76) by 𝑉 gives

𝑉𝑇
ℎ
𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇 −𝑉𝐽𝑇ℎ𝐶𝑑𝑇ℎ𝑇 ≻ 0 (90)

and with the notation (89) then (90) implies (79). This
concludes the proof.

Also conditions (77)-(82) are all LMIs that is they are
convex in the defined matrix variables.
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3.3. Supporting Matrix Structures. To simplify obtaining
𝐴(𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 or 𝐴(𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛, it is possible to
construct the following matrices:

𝐴
∘ = [𝐴 𝐴]

=
[[[[[[
[

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛 𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛 𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛... d
... d

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛 𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛

]]]]]]
]

, (91)

𝐴
⬦ = [𝐴
𝐴
] =

[[[[[[[[[[[[[[[[[[[
[

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛... d

𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛... d

𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]]]]]]]]]]]]]]]]]]]
]

, (92)

respectively.
Then, using the set of 𝑛 − 1 upper subdiagonals of

dimension of 𝑛, the matrices 𝐴(𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 can be
sequentially constructed for ℎ = 1, 2, . . . 𝑛 − 1 from (91) and,
exploiting the set of 𝑛 − 1 lower subdiagonals of dimension
of 𝑛, the matrices 𝐴(𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛 can be sequentially
constructed for ℎ = 1, 2, . . . 𝑛 − 1 reflecting (92).
4. MIMO Strictly Metzlerian Systems

Linearmultiple-input, multiple-output (MIMO) continuous-
time closed-loop dynamical systems obtained from the con-
trollable system (1), (2) by using the state control law

𝑢 (𝑡) = −𝐾𝑞 (𝑡) , 𝐾 ∈ R
𝑟×𝑛, (93)

are described by the state-space equations

�̇� (𝑡) = (𝐴 − 𝐵𝐾) 𝑞 (𝑡) = 𝐴𝑐𝑞 (𝑡) , (94)

𝑦 (𝑡) = 𝐶𝑞 (𝑡) , (95)

where

𝐴𝑐 = 𝐴 − 𝐵𝐾. (96)

The MIMO Luenberger observer, associated with the
observable system (1), (2), is given as

�̇�𝑒 (𝑡) = 𝐴𝑞𝑒 (𝑡) + 𝐵𝑢 (𝑡) + 𝐽 (𝑦 (𝑡) − 𝑦𝑒 (𝑡)) , (97)

𝑦𝑒 (𝑡) = 𝐶𝑞𝑒 (𝑡) , (98)

�̇� (𝑡) = (𝐴 − 𝐽𝐶) 𝑒 (𝑡) = 𝐴𝑒𝑒 (𝑡) , (99)

where

𝑒 (𝑡) = 𝑞 (𝑡) − 𝑞𝑒 (𝑡) ,
𝐴𝑒 = 𝐴 − 𝐽𝐶. (100)

Naturally, if 𝐴 ∈ R𝑛×𝑛 is Metzler matrix, and 𝐵 ∈
R𝑛×𝑟+ , 𝐶 ∈ R𝑚×𝑛+ are nonnegative matrices, system (1), (2) is
Metzlerian system. Thus, it is necessary to render the closed-
loop system matrix 𝐴𝑐 and observer system matrix 𝐴𝑒 as
stable strictly Metzler ones.

Theorem 17. The closed-loop system (94), (95) is strictly
Metzlerian if system (1), (2) is strictlyMetzlerian and there exist
positive definite diagonal matrices 𝐾𝑘 ∈ R𝑛×𝑛 such that forℎ = 1, 2, . . . 𝑛 − 1, 𝑘 = 1, 2 . . . , 𝑟,

12 (𝐴 (𝑖, 𝑖)1←→𝑛 − 𝑟∑
𝑘=1

𝐵𝑑𝑘𝐾𝑘) + (∗) ≺ 0, (101)

12 (𝑇ℎ𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝑟∑
𝑘=1

𝑇
ℎ
𝐵𝑑𝑘𝑇
ℎ𝑇
𝐾𝑘)

+ (∗) ≻ 0,
(102)

𝐾𝑘 = diag [𝑘𝑘1 𝑘𝑘2 ⋅ ⋅ ⋅ 𝑘𝑘𝑛] ≻ 0, (103)

where 𝑇 is defined in (18) and 𝐴(𝑖, 𝑖)1←→𝑛, 𝐴(𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛
are introduced in (21), (22), respectively,

𝐵 =
[[[[[[
[

𝑏11 𝑏12 ⋅ ⋅ ⋅ 𝑏1𝑟𝑏21 𝑏22 ⋅ ⋅ ⋅ 𝑏2𝑟...
𝑏𝑛1 𝑏𝑛2 ⋅ ⋅ ⋅ 𝑏𝑛𝑟

]]]]]]
]

, (104)

𝐵𝑑𝑘 = diag [𝑏1𝑘 𝑏2𝑘 ⋅ ⋅ ⋅ 𝑏𝑛𝑘] = diag [{𝑏𝑖𝑘}𝑖=1,...,𝑛] , (105)

while 𝐵𝑑𝑘,𝐾𝑘 ∈ R𝑛×𝑛.

Proof. In analogy with (24) it is evident that 𝐴𝑐 is Metzler
matrix if all of its main diagonal elements satisfy the condi-
tions

𝑎𝑖𝑖 − 𝑟∑
𝑘=1

𝑏𝑘𝑖𝑘𝑘𝑖 < 0 ∀𝑖 = 1, 2, . . . , 𝑛 (106)

and all its of diagonal elements satisfy the inequalities

𝑎𝑖𝑗 − 𝑟∑
𝑘=1

𝑏𝑘𝑖𝑘𝑘𝑗 > 0 ∀𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗. (107)

Thus, using the above notations and (103), (105), then (106)
implies

𝐴 (𝑖, 𝑖)(1←→𝑛) − 𝑟∑
𝑘=1

𝐵𝑑𝑘𝐾𝑘 ≻ 0 (108)

and, consequently, (108) implies (101).
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In the same way, (107) can be interpreted as

𝑇
ℎ
𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝑟∑

𝑘=1

𝑇
ℎ
𝐵𝑑𝑘𝑇
ℎ𝑇
𝐾𝑘 ≻ 0 (109)

and (109) implies (102). This concludes the proof.

Theorem 18. The closed-loop system (12), (13) is stable strictly
Metzlerian if system (1), (2) is strictlyMetzlerian and there exist
positive definite diagonal matrices 𝑃,𝑅𝑘,𝑄 ∈ R𝑛×𝑛 such that
for ℎ = 1, 2, . . . 𝑛 − 1, 𝑘 = 1, 2, . . . 𝑟,
𝐴𝑃 + 𝑃𝐴𝑇 − 𝑟∑

𝑘=1

(𝑏𝑘𝑟𝑇𝑘 + 𝑟𝑘𝑏𝑇𝑘 ) +𝑄 ≺ 0, (110)

12 (𝐴 (𝑖, 𝑖)(1←→𝑛) 𝑃 − 𝑟∑
𝑘=1

𝐵𝑑𝑘𝑅𝑘) + (∗) ≺ 0, (111)

12 (𝑇ℎ𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇𝑃 − 𝑟∑
𝑘=1

𝑇
ℎ
𝐵𝑑𝑘𝑇
ℎ𝑇
𝑅𝑘)

+ (∗) ≻ 0,
(112)

𝑃 = diag [𝑝1 𝑝2 ⋅ ⋅ ⋅ 𝑝𝑛] ≻ 0, (113)

𝑄 = diag [𝑞1 𝑞2 ⋅ ⋅ ⋅ 𝑞𝑛] ≻ 0, (114)

𝑅𝑘 = diag [𝑟𝑘1 𝑟𝑘2 ⋅ ⋅ ⋅ 𝑟𝑘𝑛] ≻ 0, (115)

𝑟
𝑇
𝑘 = [𝑟𝑘1 𝑟𝑘2 ⋅ ⋅ ⋅ 𝑟𝑘𝑛] = 𝑙𝑇𝑅𝑘, 𝑙 = [1 1 ⋅ ⋅ ⋅ 1]𝑇 , (116)

where 𝑏𝑇𝑘 = 𝑙𝑇𝐵𝑑𝑘 and the remaining parameters are given in
(18), (21), and (22).

When the above conditions hold, the control gain matrix𝐾
is given as

𝐾𝑘 = 𝑅𝑘𝑃−1,
𝑘
𝑇
𝑘 = 𝑙𝑇𝐾𝑘,

𝐾 = [[[[
[

𝑘𝑇1...
𝑘𝑇𝑟

]]]]
]

.
(117)

Proof. Inserting (96) into (4) gives

(𝐴 − 𝐵𝐾)𝑃 + 𝑃 (𝐴 − 𝐵𝐾)𝑇 +𝑄 ≺ 0. (118)

(𝐴 − 𝑟∑
𝑘=1

𝑏𝑘𝑘
𝑇
𝑘)𝑃 + 𝑃(𝐴 − 𝑟∑

𝑘=1

𝑏𝑘𝑘
𝑇)𝑇 +𝑄 ≺ 0. (119)

respectively, and using the notation

𝑟
𝑇
𝑘 = 𝑘𝑇𝑘𝑃, (120)

(119) implies (110).

Since multiplying the right side of (108), (109) by 𝑃 leads
to

𝐴 (𝑖, 𝑖)(1←→𝑛) 𝑃 − 𝑟∑
𝑘=1

𝐵𝑑𝑘𝐾𝑘𝑃 ≺ 0, (121)

𝑇
ℎ
𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇𝑃 − 𝑟∑

𝑘=1

𝑇
ℎ
𝐵𝑑𝑘𝑇
ℎ𝑇
𝐾𝑘𝑃 ≻ 0, (122)

then, with the notation

𝑅𝑘 = 𝐾𝑘𝑃, (123)

(121) and (122) imply (111), (112), respectively. This concludes
the proof.

Remark 19. Thepointwas finding conditions for the synthesis
of the state control law to stabilize positive systems that
would be sufficiently general. The stabilizability is bound to a
particular system pair (𝐴,𝐵) and the strictly Metzler matrix
𝐴 does not a priori generate any boundaries on elements of
the nonnegative matrix 𝐵 to obtain that the matrix of closed-
loop dynamics 𝐴𝑐 = 𝐴 − 𝐵𝐾 is (strictly) Metzler matrix if𝐾
is positive matrix.

If the Metzler matrix element 𝑎𝑖𝑗 = 0, 𝑖 ̸= 𝑗 it follows for
given 𝑖 from condition (107) that all elements of row 𝑖 of the
matrix𝐵must be zero.With such a boundary on the structure
of the matrix 𝐵, the positive gain matrix 𝐾, if exists, can be
designed according toTheorem 18.

The second way is to design𝐾 as nonnegative matrix. In
this case, if 𝑎𝑖𝑗 = 0, 𝑖 ̸= 𝑗, it is necessary to define the diagonal
matrices 𝑅𝑘 in (115) as structured matrix variables, whose 𝑟𝑘𝑗
elements are zero for given 𝑗, and then the nonnegative gain
matrix𝐾, if exists, can be designed according toTheorem 18.
Potentially, both ways can be combined.

Analogously the above-mentioned approaches can be
applied in Luenberger observer synthesis for Metzlerian
systems.

Theorem 20. The Luenberger observer (97), (98) is strictly
Metzlerian if system (1), (2) is strictly Metzlerian and there
exist positive definite diagonal matrices 𝐽𝑘 ∈ R𝑛×𝑛 such that
for ℎ = 1, 2, . . . 𝑛 − 1, 𝑘 = 1, 2, . . . 𝑚,

12 (𝐴 (𝑖, 𝑖)1←→𝑛 − 𝑚∑
𝑘=1

𝐽𝑘𝐶𝑑𝑘) + (∗) ≺ 0, (124)

12 (𝑇ℎ𝐴 (𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝑚∑
𝑘=1

𝐽𝑘𝑇
ℎ
𝐶𝑘𝑇
ℎ𝑇)

+ (∗) ≻ 0,
(125)

𝐽𝑘 = diag [𝑗1𝑘 𝑗2𝑘 ⋅ ⋅ ⋅ 𝑗𝑛𝑘] ≻ 0, (126)
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where 𝑇 is defined in (18), 𝐴(𝑖, 𝑖)1←→𝑛, 𝐴(𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛 is
introduced in (61), (62), respectively,

𝐶 =
[[[[[[
[

𝑐11 𝑐12 ⋅ ⋅ ⋅ 𝑐1𝑛𝑐21 𝑐22 ⋅ ⋅ ⋅ 𝑐2𝑛...
𝑐𝑚1 𝑐𝑚2 ⋅ ⋅ ⋅ 𝑐𝑚𝑛

]]]]]]
]

, (127)

𝐶𝑑𝑘 = diag [𝑐𝑘1 𝑐𝑘2 ⋅ ⋅ ⋅ 𝑐𝑘𝑛] , 𝑘 = 1, 2 . . . , 𝑚, (128)

while 𝐶𝑑𝑘 ∈ R𝑛×𝑛.

Proof. In analogy with (63) it is evident that 𝐴𝑒 is Metzler
matrix if

𝑎𝑖𝑖 − 𝑚∑
𝑘=1

𝑗𝑘𝑖𝑐𝑘𝑖 < 0 ∀𝑖 = 1, 2, . . . , 𝑛, (129)

𝑎𝑖𝑗 − 𝑚∑
𝑘=1

𝑗𝑘𝑖𝑐𝑘𝑗 > 0 ∀𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗. (130)

Thus, using the above notations and (126), (127) then (129)
implies

𝐴 (𝑖, 𝑖)(1←→𝑛) − 𝑚∑
𝑘=1

𝐽𝑘𝐶𝑑𝑘 ≻ 0 (131)

and, consequently, (131) implies (124).
In the same way, (130) can be interpreted as

𝑇
ℎ
𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝑚∑

𝑘=1

𝐽𝑘𝑇
ℎ
𝐶𝑑𝑘𝑇
ℎ𝑇 ≻ 0 (132)

and (132) implies (125). This concludes the proof.

Theorem 21. The Luenberger observer (97), (98) is stable
strictly Metzlerian if system (1), (2) is strictly Metzlerian and

there exists a positive definite diagonal matrices 𝑈,𝑉,𝑊𝑘 ∈
R𝑛×𝑛 such that for ℎ = 1, 2, . . . 𝑛 − 1, 𝑘 = 1, 2, . . . 𝑚,

𝑉𝐴 + 𝐴𝑇𝑉 − 𝑚∑
𝑘=1

(𝑤𝑘𝑐𝑇𝑘 + 𝑐𝑘𝑤𝑇𝑘 ) +𝑈 ≺ 0, (133)

12 (𝑉𝐴 (𝑖, 𝑖)(1←→𝑛) − 𝑚∑
𝑘=1

𝑊𝑘𝐶𝑑𝑘) + (∗) ≺ 0, (134)

12 (𝑉𝑇ℎ𝐴 (𝑖 + ℎ, 𝑖)(1←→𝑛)/𝑛 𝑇ℎ𝑇

− 𝑚∑
𝑘=1

𝑊𝑘𝑇
ℎ
𝐶𝑑𝑘𝑇
ℎ𝑇) + (∗) ≻ 0,

(135)

𝑉 = diag [V1 V2 ⋅ ⋅ ⋅ V𝑛] ≻ 0, (136)

𝑈 = diag [𝑢1 𝑢2 ⋅ ⋅ ⋅ 𝑢𝑛] ≻ 0, (137)

𝑊𝑘 = diag [𝑤𝑘1 𝑤𝑘2 ⋅ ⋅ ⋅ 𝑤𝑘𝑛] ≻ 0, (138)

𝑤
𝑇
𝑘 = [𝑤𝑘1 𝑤𝑘2 ⋅ ⋅ ⋅ 𝑤𝑘𝑛] = 𝑙𝑇𝑊𝑘,

𝑙 = [1 1 ⋅ ⋅ ⋅ 1]𝑇 , (139)

where 𝑐𝑇𝑘 = 𝑙𝑇𝐶𝑑𝑘 and the remaining parameters are given in
(18), (61), and (62).

When the above conditions hold, the observer gain matrix
𝐽 is given as

𝐽𝑘 = 𝑉−1𝑊𝑘,
𝑗𝑘 = 𝐽𝑘𝑙,
𝐽 = [𝑗1 ⋅ ⋅ ⋅ 𝑗𝑚] .

(140)

Proof. Inserting (100) into (5) gives

𝑉 (𝐴 − 𝐽𝐶) + (𝐴 − 𝐽𝐶)𝑇𝑉 +𝑈 ≺ 0, (141)

𝑉(𝐴 − 𝑚∑
𝑘=1

𝑗𝑘𝑐
𝑇
𝑘) + (𝐴 − 𝑚∑

𝑘=1

𝑗𝑘𝑐
𝑇
𝑘)
𝑇

𝑉 +𝑈 ≺ 0, (142)

respectively. Therefore, using the notation

𝑤
𝑇
𝑘 = 𝑗𝑇𝑘𝑉, (143)

(142) implies (133).
Multiplying the left side of (131) and (132) by 𝑉 gives

𝑉𝐴 (𝑖, 𝑖)(1←→𝑛) − 𝑚∑
𝑘=1

𝑉𝐽𝑘𝐶𝑑𝑘 ≺ 0, (144)

𝑉𝑇
ℎ
𝐴 (𝑖, 𝑖 + ℎ)(1←→𝑛)/𝑛 𝑇ℎ𝑇 − 𝑚∑

𝑘=1

𝑉𝐽𝑘𝑇
ℎ
𝐶𝑑𝑘𝑇
ℎ𝑇 ≻ 0, (145)
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respectively, and with the notation

𝑊𝑘 = 𝑉𝐽𝑘 (146)

(144), (145) imply (134), (135), respectively.This concludes the
proof.

Remark 22. If the boundary conditions can be formulated
as quadratic boundaries (e.g., LQ constraints on state and
inputs, 𝐻∞-norm, 𝐷-stability circle area, etc.), they can be
included in the presented design conditions for positive
systems because they only modify the structure of the LMIs
(110), (133), forcing the system stability or add new LMSs.

5. Illustrative Example

The considered strictly Metzlerian system is represented by
the model (1), (2) with the parameters

𝐴 = [[[[[
[

−3.3800 0.2080 6.7150 5.6760
0.5810 −4.2900 2.0500 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 2.2730 1.3430 −2.1040

]]]]]
]

,

𝐵 = [[[[[
[

0.0400 0.0189
0.0568 0.0203
0.0114 0.0315
0.0114 0.0170

]]]]]
]

,

𝐶 = [4 0 1 0
0 0 0 1] .

(147)

It is possible to verify that theMetzlermatrix𝐴 is unstable
with the eigenvalue spectrum

𝜌 (𝐴) = {1.9761, −9.4392, −4.4824 ± 1.2499i} . (148)

To solve the stabilization task, the auxiliary parameters
are constructed as

𝑇 = [[[[[
[

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

]]]]]
]

,

𝐴 (𝑖, 𝑖)(1←→4)

= [[[[[
[

−3.3800
−4.2900

−6.6540
−2.1040

]]]]]
]

𝐴 (𝑖, 𝑖 + 1)(1←→4)/4

= [[[[[
[

0.2080
2.0500

5.8930
0.0480

]]]]]
]

,

𝐴 (𝑖, 𝑖 + 2)(1←→4)/4

= [[[[[
[

6.7150
0.6750

1.0670
2.2730

]]]]]
]

,

𝐴 (𝑖, 𝑖 + 3)(1←→4)/4

= [[[[[
[

5.6760
0.5810

4.2730
1.3430

]]]]]
]

.

(149)

Using the SeDuMi package [28] to solve the given set of
LMIs (110)–(116) the LMI variables are

𝑃 = diag [0.7015 0.0570 0.1416 0.0521] ,
𝑄 = diag [0.1937 0.0262 0.0795 0.0094] ,
𝑅1 = diag [1.5314 0.0853 2.9122 0.0469] ,
𝑅2 = diag [0.5444 0.3043 5.2296 1.3593] .

(150)

The control law gain matrix is computed by using (117) as

𝑘
𝑇
1 = [2.1831 1.4967 20.5689 0.9003] ,
𝑘
𝑇
2 = [0.7761 5.3383 36.9371 26.0694] ,
𝐾 = [2.1831 1.4967 20.5689 0.9003

0.7761 5.3383 36.9371 26.0694] ,
(151)

which imply the stable strictly Metzler matrix of closed-loop
dynamics (96)

𝐴𝑐 =
[[[[[
[

−3.4820 0.0473 5.1949 5.1478
0.4413 −4.4834 0.1321 0.0947
1.0178 4.0881 −8.0497 5.0626
0.0100 2.1652 0.4810 −2.5577

]]]]]
]

, (152)
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Figure 1: The system state variable responses.
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Figure 2: The system output variable responses.

with the eigenvalue spectrum

𝜌 (𝐴𝑐) = {−0.5008, −9.1379, −4.4670 ± 1.2281i} . (153)

Analyzing the numerical results, it is evident that in
this case the stabilization of the unstable strictly Metzlerian
system principally changes the value of the unstable mode,
while stable modes are modified very little. It is also obvious
that the strictly Metzler matrix𝐴𝑐 is stable but not diagonally
dominant.

The obtained results are illustrated in Figures 1 and 2,
where the state variables vector 𝑞(𝑡) as well as the output
variables vector𝑦(𝑡) are positivewhen the input of the closed-
loop system is 𝑢(𝑡) = −𝐾𝑞(𝑡) + 𝑤(𝑡) with the positive forced
vector 𝑤𝑇(𝑡) = [0.5 0.3].

One can verify that these results are perfectly comparable
with the ones obtained by the methodology constructed
for the discrete-time positive LTI systems for the associated
continuous-time and discrete-time system models [29].

To design the strictly Metzlerian observer, the auxiliary
parameters are constructed as

𝐴 (𝑖 + 1, 𝑖)(1←→4)/4

= [[[[[
[

0.5810
4.2730

1.3430
5.6760

]]]]]
]

,

𝐴 (𝑖 + 2, 𝑖)(1←→4)/4

= [[[[[
[

1.0670
2.2730

6.7150
0.6750

]]]]]
]

,

𝐴 (𝑖 + 3, 𝑖)(1←→4)/4

= [[[[[
[

0.0480
0.2080

2.0500
5.8930

]]]]]
]

.

(154)

Therefore, the set of LMIs (133)–(139) is satisfiedwith the LMI
variables

𝑉 = diag [0.1869 0.5680 0.3436 0.3567] ,
𝑈 = diag [0.2032 0.5450 0.3678 0.5954] ,
𝑊1 = diag [0.0294 0.0583 0.0676 0.0016] ,
𝑊2 = diag [0.8587 0.2377 1.6965 0.9121] .

(155)

The observer gain matrix is computed by using (140) as

𝑗1 =
[[[[[
[

0.1573
0.1026
0.1967
0.0046

]]]]]
]

,

𝑗2 =
[[[[[
[

4.5958
0.4186
4.9373
2.5572

]]]]]
]

,

𝐽 = [[[[[
[

0.1573 4.5958
0.1026 0.4186
0.1967 4.9373
0.1967 2.5572

]]]]]
]

,

(156)
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Figure 3: The system state variable estimates.

which leads to the stable strictly Metzler matrix of the
observer dynamics (100)

𝐴𝑒 =
[[[[[
[

−4.0092 0.0507 6.5577 1.0802
0.1706 −4.3926 1.9474 0.2564
0.2802 4.0763 −6.8507 0.9557
0.0026 2.2684 1.3384 −4.6612

]]]]]
]

, (157)

with the eigenvalue spectrum

𝜌 (𝐴𝑒) = {−1.3666, −4.6855, −4.9957 −8.8659} . (158)

Analyzing the results, it is evident that the stable strictly
Metzlerian observer is designed to the unstable strictly
Metzlerian system that is the observer system matrix 𝐴𝑒 is
stable strictly Metzler, but not diagonally dominant.

In Figure 3, the response of the strictly Metzlerian
observer in estimating the closed-loop system state variable
is presented, acting under the same simulation conditions
as the above presented for the closed-loop system. Since the
state variable estimation errors can be practically neglected,
no other responses of this stable Metzlerian observer are
presented.

In addition, the example illustrates that at the large
positive values of some elements outside the diagonal of the
strictly Metzler matrix of the system 𝐴, neither the closed-
loop system matrix 𝐴𝑐 nor the observer system matrix 𝐴𝑒 is
diagonally dominant, although they are stable strictlyMetzler
matrices. However, the results of our other simulations show
that if the system matrix 𝐴 is diagonally dominant strictly
Metzler matrix, even the matrices 𝐴𝑐 and 𝐴𝑒 are diagonally
dominant to the strictly Metzler matrix.

6. Concluding Remarks

A novel approach is presented in the paper to address the
problem of effectively computing a state-feedback control
law gain that makes the strictly Metzlerian system in closed-
loop to be positive and stable, as well as of recounting the

observer gain that establish the stable strictly Metzlerian
structures of Luenberger observers. Based on a stable strictly
Metzler matrix, algebraic constraints implying from linear
programming approach are reformulated as a set of LMIs
and replenished by the Lyapunov matrix inequality in the
sense of the second Lyapunov method. It is derived that all
matrix variables associated with this LMIs ensemble have
to be positive definite and diagonal. The proposed approach
provides a numerically reliable computational framework,
as illustrated using the numerical example, and might be
extended to other particular cases.

The example also illustrates that at the large positive
values of some elements outside the diagonal of the strictly
Metzler matrix of the system 𝐴, neither the closed-loop
system matrix 𝐴𝑐 nor the observer system matrix 𝐴𝑒 is
diagonally dominant, although they are stable strictlyMetzler
matrices. The results of our other simulations show that if
the system matrix 𝐴 is diagonally dominant strictly Metzler
matrix, the matrices 𝐴𝑐 and 𝐴𝑒 are diagonally dominant
strictly Metzler matrix. Further research topics include this
problem as well as the problems of forced mode in positive
systems, discrete-time linear positive structures, and nonlin-
ear positive systems.
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