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The adaptive fuzzy output feedback control problem for a class of pure feedback systems with partial state constraints is addressed
in this paper. The fuzzy state observers are designed to estimate the unmeasured state while the fuzzy logic systems are used to
approximate the unknown nonlinear functions. The proposed adaptive fuzzy output feedback controller can guarantee that the
partial state constraints are not violated, and all closed-loop signals remain bounded by use of Barrier Lyapunov Functions (BLFs).
A numerical example is presented to illustrate the effectiveness of the results in this paper.

1. Introduction

During the last decades, control design of nonlinear sys-
tems has attracted increasing interests. All kinds of control
techniques have been proposed for both theoretical analysis
and practical applications [1–6]. Many practical systems are
inherently nonlinear and subject tomany forms of constraints
such as saturation and physical stoppages. Violation of the
constraints may degrade the control performance and even
make the system unstable. Therefore, the constraints han-
dling in control design has attracted considerable attention
[6–15]. There exist various techniques to tackle the con-
straints for nonlinear systems like nonlinear reference gov-
ernor [7], invariance control [9], nonlinear model predictive
control [11], etc.

Backstepping methodology is more effective in synthesis
of robust and adaptive nonlinear controllers for various
systems with parametric or dynamic nonlinearities and
uncertainties [16–22].Thework in [20] constructs an adaptive
tracking controller by introducing an auxiliary integrator
subsystem and using the improved backstepping method
such that the closed-loop system has a unique solution that
is globally bounded in probability. The concept of Barrier
Lyapunov Function (BLF), which is developed via Con-
trol Lyapunov Function (CLF) [23] in backstepping design

method, was first proposed in [24]. The characteristic of
BLF is that it will approach infinity whenever its arguments
approach some limits. Transgression of constraints can be
prevented through keeping BLF bounded in the closed-loop
system. BLF-based backstepping control has been applied
to many constrained nonlinear systems control synthesis
[25–29]. Therein, [24, 30, 31] have solved the BLF-based
control problem of strict feedback nonlinear systems. The
work [27] investigates the output tracking control problem
of constrained nonlinear switch systems.The work [29] deals
with the problem of adaptive dynamic surface control of
nonlinear systems with unknown dead zone in pure feedback
form. And the problem with respect to full state constraints
is solved in [32, 33].

As we all know, the adaptive fuzzy control has an
automatic learning capability which can adjust the adap-
tive parameters to deal with the uncertainty. Using the
approximation property, fuzzy logic systems (FLSs) have
been employed to tackle unknown nonlinear systems [26,
28, 34–36]. A control for nonlinear sampled systems with
the guaranteed suboptimal performance achieved robust
tracking by using fuzzy disturbance observer approach
[26]. The work [34] studied an adaptive fuzzy dynamic
surface control for nonlinear systems with fuzzy dead
zone, unmodeled dynamics, dynamical disturbances, and
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unknown control gain functions. And the unknown system
functions are approximated by the Takagi-Sugeno-type fuzzy
logic systems. The work [36] addressed the adaptive control
problem for nonlinear pure feedback systems based on
fuzzy backstepping approach.Moreover, [28] constructed the
approximation-based adaptive fuzzy tracking controller for
non-strict-feedback stochastic nonlinear time-delay systems.
As for the adaptive fuzzy observer design, to the best of the
authors’ knowledge, the existing results consider only the
influence of full state constraints, and there is no further
discussion about partial state constraints. There is seldom
adaptive control method subject to partial state constraints
and unmeasured state.

In this paper, we present an adaptive fuzzy backstepping
tracking controller for a class of pure feedback nonlinear sys-
tems subject to unmeasured states and unknown nonlinear
function. Firstly, the fuzzy state observers are designed to
estimate the unmeasured state while the fuzzy logic systems
are used to approximate the unknown nonlinear functions.
Secondly, the proposed adaptive fuzzy output feedback con-
troller can guarantee that the partial state constraints are not
exceeded, and all closed-loop signals remain bounded with
the using of BLF while the adaptive law for the estimations
on uncertain parameters is constructed. A new coordinate
transform is introduced during the process. Finally, a numer-
ical example is given to validate our results presented in this
paper.

The paper is organized as follows. Section 2 presents
the problem formulation and some preliminaries. The main
results are proposed in Section 3. Section 4 illustrates the
effectiveness of the results by a numerical example.

2. Problem Statement and Preliminaries

2.1. Systems Description. Consider the following nonlinear
pure feedback systems:

𝑥̇𝑖 = 𝑥𝑖+1 + 𝑓𝑖 (𝑥𝑖, 𝑥𝑖+1) ,
𝑥̇𝑛 = 𝑢 + 𝑓𝑛 (𝑥𝑛, 𝑢) ,
𝑦 = 𝑥1,

(1)

where 𝑥𝑖 = [𝑥1, 𝑥2, . . . , 𝑥𝑖]T ∈ R𝑖, 𝑖 = 1, 2, . . . , 𝑛, are the
state vectors of the systems, 𝑢 and 𝑦 are the input and output,
respectively. The partition of the full states is constrained,
i.e., constrained states 𝑥𝑠 = [𝑥1, 𝑥2, . . . , 𝑥𝑛𝑠]T and free states𝑥𝑟 = [𝑥𝑛𝑠+1 , 𝑥𝑛𝑠+2 , . . . , 𝑥𝑛]T. And the number sequences,{1, 2, . . . , 𝑛𝑠} and {𝑛𝑠+1, 𝑛𝑠+2, . . . , 𝑛}, are both ascending. The
states 𝑥𝑖(𝑡), 𝑖 = 1, . . . , 𝑛𝑠 are required to remain in the
set |𝑥𝑖| < 𝑘𝑐𝑖 with 𝑘𝑐𝑖 being positive constant, ∀𝑡 ≥ 0.
The nonlinear functions 𝑓𝑖(𝑥𝑖, 𝑥𝑖+1), 𝑖 = 1, 2, . . . , 𝑛 − 1
and 𝑓𝑛(𝑥𝑛, 𝑢) are unknown nonlinear smooth functions,
supposing that only the output signal is measured and other
states are unmeasurable.

This paper is concerned with the problem of adaptive
fuzzy output feedback control for system (1). Because of
the existing unknown nonlinear functions, the fuzzy logic
systems are employed to approximate the unknownnonlinear

functions, and the fuzzy state observers are designed to
handle the unmeasurable states. The following lemmas and
assumptions related to backstepping design are given which
will be used in the further analysis in the sequel.

Lemma 1 (see [24]). For any positive constants 𝑘𝑏𝑖 , let Z :=
{𝑧 ∈ R𝑙 : |𝑧𝑖| < 𝑘𝑏𝑖 , 𝑖 = 1, 2, . . . , 𝑛} ⊂ R𝑛 andN := R𝑙 × Z ⊂
R𝑛+𝑙 be open sets. Consider the system

̇𝜂 = ℎ (𝑡, 𝜂) , (2)

where 𝜂 := [𝑤, 𝑧]T ∈ N is the state, and the function ℎ : R+ ×
N 󳨀→ R𝑛+𝑙 is piecewise continuous in 𝑡 and locally Lipschitz
in 𝜂, uniformly in 𝑡, on R+ × N. Let Z𝑖 := {𝑧𝑖 ∈ R : |𝑧𝑖| <𝑘𝑏𝑖} ⊂ R. Suppose that there exist positive definite functions𝑈 :
R𝑙 󳨀→ R+ and 𝑉𝑖 : Z𝑖 󳨀→ R+ (𝑖 = 1, 2, . . . , 𝑛), both of which
are also continuously differentiable on R𝑙 andZ𝑖, respectively,
such that

𝑉𝑖 (𝑧𝑖) 󳨀→ ∞ 𝑎𝑠 𝑧𝑖 󳨀→ ±𝑘𝑏𝑖 . (3)

Let𝑉(𝜂) := ∑𝑛𝑖=1 𝑉𝑖(𝑧𝑖) +𝑈(𝑤) and 𝑧(0) ∈ Z. If the inequality

𝑉̇ = 𝜕𝑉𝜕𝜂 ℎ ≤ −𝜌𝑉 + 𝑐, (4)

with constants 𝜌 > 0, 𝑐 > 0, holds in the set 𝑧 ∈ Z, then𝑧(𝑡) ∈ Z, ∀𝑡 ∈ [0,∞).
Lemma 2 (see [30]). For any positive constants 𝑘𝑏, positive
integer 𝑝, and any 𝑧 ∈ R satisfying |𝑧| < 𝑘𝑏, one has

log
𝑘2𝑝
𝑏𝑘2𝑝

𝑏
− 𝑧2𝑝 ≤ 𝑧2𝑝

𝑘2𝑝
𝑏

− 𝑧2𝑝 . (5)

Proof. We define

𝑞 = 𝑧2𝑝
𝑘2𝑝
𝑏

− 𝑧2𝑝 − log
𝑘2𝑝
𝑏𝑘2𝑝

𝑏
− 𝑧2𝑝

= 𝑧2𝑝
𝑘2𝑝
𝑏

− 𝑧2𝑝 − log(1 − 𝑧2𝑝
𝑘2𝑝
𝑏

− 𝑧2𝑝) .
(6)

As |𝑧| < 𝑘𝑏, we have |𝑧|2𝑝 < 𝑘2𝑝
𝑏
. Then, we can get the

inequalities 0 ≤ 𝑧2𝑝/(𝑘2𝑝
𝑏

− 𝑧2𝑝) < 𝑘2𝑝
𝑏

/(𝑘2𝑝
𝑏

− 𝑧2𝑝) =1 − 𝑧2𝑝/(𝑘2𝑝
𝑏

− 𝑧2𝑝) and 0 ≤ 𝑧2𝑝/(𝑘2𝑝
𝑏

− 𝑧2𝑝) < 1/2. Let𝜍 = 𝑧2𝑝/(𝑘2𝑝
𝑏

−𝑧2𝑝) and then 𝑞 = − log(1−𝜍)+𝜍.The derivative
of 𝑞 is given as ̇𝑞 = (2 − 𝜍)/(1 − 𝜍) > 0. It shows that 𝑞 is
continuously increasing and the minimum of 𝑞 is 𝑞min = 0.
Thus, we get log(𝑘2𝑝

𝑏
/(𝑘2𝑝

𝑏
− 𝑧2𝑝)) ≤ 𝑧2𝑝/(𝑘2𝑝

𝑏
− 𝑧2𝑝), and

log(𝑘2𝑝
𝑏

/(𝑘2𝑝
𝑏

−𝑧2𝑝)) = 𝑧2𝑝/(𝑘2𝑝
𝑏

−𝑧2𝑝) if and only if 𝑧 = 0.
Lemma3 (see [37]). Let𝑓(𝑥) be a continuous function defined
on a compact set Ω, and, for any constant 𝜀 > 0, there exists
fuzzy logic system (12) such as

𝑓 (𝑥) = 𝑓 (𝑥 | 𝜃) + 𝜀 (𝑥) , |𝜀 (𝑥)| ≤ 𝜀. (7)
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Lemma 4 (see [31]). For any 𝛽 ∈ R𝑛 and 𝜗 > 0, the following
inequality holds:

0 < 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨 − 𝛽 tanh(𝛽𝜗) ≤ 𝜇𝜗, 𝜇 = 0.2785. (8)

Assumption 5 (see [24]). For any 𝑘𝑐1 > 0, there exist positive
constants 𝐴0, 𝑌1, 𝑌2, . . . , 𝑌𝑛 such that the desired trajectory𝑦𝑑(𝑡) and its time derivatives satisfy |𝑦𝑑(𝑡)| ≤ 𝐴0 < 𝑘𝑐1 and|𝑦(𝑖)
𝑑
(𝑡)| < 𝑌𝑖, 𝑖 = 1, 2, . . . , 𝑛, for all 𝑡 ≥ 0.

Assumption 6. There exist known constants𝑚𝑖 > 0 such that󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥1) − 𝑓𝑖 (𝑥2)󵄨󵄨󵄨󵄨 ≤ 𝑚𝑖 󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩 , 𝑖 = 1, 2, . . . , 𝑛. (9)
Rewrite (1) as

𝑥̇𝑖 = 𝑥𝑖+1 + 𝑓𝑖 (𝑥̂𝑖, 𝑥𝑖+1,𝑓) + 󳵻𝑓𝑖,
𝑥̇𝑛 = 𝑢 + 𝑓𝑛 (𝑥̂𝑛, 𝑢𝑓) + 󳵻𝑓𝑛,
𝑦 = 𝑥1,

(10)

where 󳵻𝑓𝑖 = 𝑓𝑖(𝑥𝑖, 𝑥𝑖+1) − 𝑓𝑖(𝑥̂𝑖, 𝑥𝑖+1,𝑓), 𝑖 = 1, 2, . . . , 𝑛 −
1, 󳵻𝑓𝑛 = 𝑓𝑛(𝑥𝑛, 𝑢) − 𝑓𝑛(𝑥̂𝑛, 𝑢𝑓). 𝑥̂𝑖 are the estimates of𝑥𝑖, which will be obtained by the state observer designed
later; 𝑥𝑖+1,𝑓 and 𝑢𝑓 are the filtered signals for 𝑥𝑖+1 and 𝑢,
respectively. There exist known constants 𝜏𝑖, 𝑖 = 1, 2, . . . , 𝑛,
such that |𝑥𝑖+1 − 𝑥𝑖+1,𝑓| ≤ 𝜏i+1 (𝜏1 = 0). The filtered signals
are defined as follows: 𝑥𝑖,𝑓 = 𝐻𝐿 (𝑠) 𝑥𝑖,

𝑢𝑓 = 𝐻𝐿 (𝑠) 𝑢, (11)

where𝐻𝐿(𝑠) is a Butterworth low-pass filter (LPF) [26, 36, 38]
with the cutoff frequency 𝜔𝑐 = 1 rad/s for different values of𝑛.
Remark 7. The filtered signals 𝑥𝑖+1,𝑓 and 𝑢𝑓 are employed to
avoid the so-called algebraic loop problem existing in [29, 39]
and to design the state observer and controller for nonlinear
pure feedback systems.

Remark 8. Based on the statements in [26, 36, 38], most
actuators have low-pass property and the replacements 𝑥𝑖,𝑓 ≈𝑥𝑖 and 𝑢𝑓 ≈ 𝑢 are reasonable in the controller design.
Therefore, assume that |𝑥𝑖 − 𝑥𝑖,𝑓| ≤ 𝜏𝑖 with 𝜏𝑖 being known
constants.

Then (10) can be further rewritten into the following state
space form:

𝑥̇ = 𝐴𝑥 + 𝐾𝑦 + 𝑛−1∑
𝑖=1

𝐵𝑖 (𝑓𝑖 (𝑥̂𝑖, 𝑥̂𝑖+1,𝑓) + 󳵻𝑓𝑖)
+ 𝐵𝑛 (𝑓𝑛 (𝑥̂𝑛, 𝑢𝑓) + 󳵻𝑓𝑛 + 𝑢) ,

(12)

where 𝑥 = [ 𝑥1...
𝑥𝑛

] , 𝐴 = [ −𝑘1... 𝐼
−𝑘𝑛 0 ⋅⋅⋅ 0

] ,𝐾 = [ 𝑘1...
𝑘𝑛

] , 𝐵𝑖 =
[[
[

0
...
1
...
0

]]
]

, 𝐵𝑛 = [ 0...
1

] .The vector𝐾 is chosen tomakematrix𝐴 to

be a strict Hurwitz matrix; i.e., for given a matrix𝑄 = 𝑄T > 0
there exists a matrix 𝑃 = 𝑃T > 0 satisfying

𝐴T𝑃 + 𝑃𝐴 = −2𝑄. (13)

2.2. Design of FLSs and State Observer. To tackle the
unknown nonlinear functions, the fuzzy logic systems are
introduced as follows.

Rule 𝑗: if 𝑥1 is 𝑁𝑗1 , and 𝑥2 is 𝑁𝑗2 and ⋅ ⋅ ⋅ and 𝑥𝑛 is 𝑁𝑗𝑛 ,
then

𝑦 (𝑥) is 𝑀𝑗, 𝑗 = 1, 2, . . . , 𝑚, (14)

where 𝑦 is the output of the system,𝑁𝑗1 and𝑀𝑗 denote fuzzy
sets, and𝑚 represents the number of fuzzy rules.

By using the singleton fuzzifier, center average defuzzifi-
cation and product inference [25, 28], the final output can be
expressed as follows:

𝑦 (𝑥) = ∑𝑚𝑗=1 𝑦𝑗∏𝑛
𝑙=1𝜇𝑁𝑗1 (𝑥𝑙)∑𝑚𝑗=1∏𝑛
𝑙=1𝜇𝑁𝑗1 (𝑥𝑙) , (15)

where 𝑦𝑗 = max𝑦∈𝑅𝜇𝑀𝑗(𝑦); 𝜇𝑁𝑗1 (𝑥𝑙) and 𝜇𝑀𝑗(𝑦) stand for
membership functions with respect to fuzzy sets𝑁𝑗1 and𝑀𝑗,
respectively.

Define

𝜑 (𝑥) = ∏𝑛
𝑙=1𝜇𝑁𝑗1 (𝑥𝑙)∑𝑚𝑗=1∏𝑛
𝑙=1𝜇𝑁𝑗1 (𝑥𝑙) (16)

as the basis function vector. The ideal constant weight
vector is = [𝑦1, 𝑦2, . . . , 𝑦𝑚]T = [𝜃1, 𝜃2, . . . , 𝜃𝑚]T, 𝜑(𝑥) =[𝜑1(𝑥), 𝜑2(𝑥), . . . , 𝜑𝑚(𝑥)]T, and 𝜑𝑖(𝑥) is chosen as Gaussian
function; i.e., for 𝑖 = 1, 2, . . . , 𝑚,

𝜑𝑖 (𝑥) = exp[− (𝑥 − 𝜇𝑖)T (𝑥 − 𝜇𝑖)𝜂2𝑖 ] , (17)

where 𝜇𝑖 = [𝜇𝑖1 , 𝜇𝑖2 , . . . , 𝜇𝑖𝑛]T is the center vector, and 𝜂𝑖 is the
width of the Gaussian function.

Then, the fuzzy output 𝑦 in (15) is described as

𝑦 (𝑥) = 𝜃T𝜑 (𝑥) . (18)

Accordingly, assume that the unknown nonlinear func-
tions in (1) are approximated by the following fuzzy logic
systems:

𝑓𝑖 (𝑥̂𝑖, 𝑥𝑖+1,𝑓 | 𝜃𝑖) = 𝜃T𝑖 𝜑𝑖 (𝑥̂𝑖, 𝑥𝑖+1,𝑓) , 1 ≤ 𝑖 ≤ 𝑛, (19)

where 𝑥𝑛+1,𝑓 = 𝑢𝑓.The optimal weight vector 𝜃∗𝑖 is defined as
𝜃∗𝑖 = arg min

𝜃𝑖∈Ω𝑖

[
[

sup
(𝑥̂𝑖 ,𝑥𝑖+1,𝑓)∈𝑈𝑖1×𝑈𝑖2

[𝑓𝑖 (𝑥̂𝑖, 𝑥𝑖+1,𝑓 | 𝜃𝑖)

− 𝑓𝑖 (𝑥̂𝑖, 𝑥𝑖+1,𝑓 | 𝜃∗𝑖 )]]]
,

(20)
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where Ω𝑖 and 𝑈𝑖1 × 𝑈𝑖2 are compact regions for 𝜃𝑖 and(𝑥̂𝑖, 𝑥𝑖+1,𝑓), respectively.
Define

𝑓𝑖 (𝑥) = 𝜃∗𝑇𝑖 𝜑𝑖 (𝑥) + 𝜀𝑖 (𝑥) = 𝜃𝑇𝑖 𝜑𝑖 (𝑥) + 𝛿𝑖 (𝑥) , (21)

where 𝜀∗𝑖 and 𝛿∗𝑖 (𝑖 = 1, 2, . . . , 𝑛) are known constants
satisfying |𝜀𝑖| ≤ 𝜀∗𝑖 and |𝛿𝑖| ≤ 𝛿∗𝑖 . Letting 𝑤𝑖 = 𝜀𝑖 − 𝛿𝑖, 𝑖 =1, 2, . . . , 𝑛, it is clear that there is an unknown constant𝑤∗𝑖 > 0
such that |𝑤𝑖| ≤ 𝑤∗𝑖 = 𝜀∗𝑖 + 𝛿∗𝑖 .

Based on (12), design a fuzzy state observer as

̇̂𝑥𝑖 = 𝑥𝑖+1 + 𝑓𝑖 (𝑥̂𝑖, 𝑥𝑖+1,𝑓) + 𝑘𝑖 (𝑦 − 𝑥1) ,
̇̂𝑥𝑛 = 𝑢 + 𝑓𝑛 (𝑥̂𝑛, 𝑢𝑓) + 𝑘𝑛 (𝑦 − 𝑥1) ,
𝑦 = 𝑥1.

(22)

Let 𝑒𝑖 = 𝑥𝑖 − 𝑥𝑖 be an observer error vector. Then from (12)
and (22), we have

̇𝑒 = 𝐴𝑒 + 𝛿 + 󳵻𝐹, (23)

where 𝛿 = [𝛿1, 𝛿2, . . . , 𝛿𝑛]T and 󳵻𝐹 = [󳵻𝑓1, 󳵻𝑓2, . . . , 󳵻𝑓𝑛]T.
Substituting (23) into (22), we have

̇𝑒𝑖 = 𝐴𝑒 + 𝛿 + 󳵻𝐹,
̇̂𝑥𝑖 = 𝑥𝑖+1 + 𝑓𝑖 (𝑥̂𝑖, 𝑥𝑖+1,𝑓) + 𝑘𝑖𝑒1,
̇̂𝑥𝑛 = 𝑢 + 𝑓𝑛 (𝑥̂𝑛, 𝑢𝑓) + 𝑘𝑛𝑒1,
𝑦 = 𝑥1.

(24)

Consider the following Lyapunov function candidate:

𝑉0 = 12𝑒T𝑃𝑒. (25)

Computing the time derivative of 𝑉0, one has
𝑉̇0 = 𝑒T𝑃 ̇𝑒 = 𝑒T𝑃 (𝐴𝑒 + 𝛿 + 󳵻𝐹) . (26)

According to Assumption 6, we get

󳵻𝑓𝑖 = 󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥𝑖, 𝑥𝑖+1) − 𝑓𝑖 (𝑥̂𝑖, 𝑥𝑖+1,𝑓)󵄨󵄨󵄨󵄨󵄨
≤ 𝑚𝑖 ‖𝑒‖2 + 𝑚𝑖 󵄨󵄨󵄨󵄨󵄨𝑥𝑖+1 − 𝑥𝑖+1,𝑓󵄨󵄨󵄨󵄨󵄨 ≤ 𝑚𝑖 ‖𝑒‖2 + 𝑚𝑖𝜏𝑖+1
= 𝑚𝑖 ‖𝑒‖2 + 𝜏󸀠𝑖+1,

(27)

where 𝜏󸀠𝑖+1 = 𝑚𝑖𝜏𝑖+1. It is clear that

‖󳵻𝐹‖2 ≤ 𝑛𝑚2 ‖𝑒‖2 + (𝑛+1∑
𝑖=2

𝜏󸀠𝑖)
2

,
𝑒T𝑃󳵻𝐹 ≤ 𝜂 ‖𝑃‖2 ‖𝑒‖2 + 14𝜂𝑛𝑚2 ‖𝑒‖2 + 𝜂 ‖𝑃‖2 ‖𝑒‖2

+ 14𝜂 (𝑛+1∑
𝑖=2

𝜏󸀠𝑖)
2

≤ 2𝜂 ‖𝑃‖2 ‖𝑒‖2 + 14𝜂𝑛𝑚2 ‖𝑒‖2

+ 14𝜂 (𝑛+1∑
𝑖=2

𝜏󸀠𝑖)
2

.

(28)

Using Young’s inequality and (28), we get

𝑉̇0 ≤ −𝜆min (𝑄) ‖𝑒‖2 + 𝜉 ‖𝑃‖2 ‖𝑒‖2 + 14𝜉 󵄩󵄩󵄩󵄩𝛿∗󵄩󵄩󵄩󵄩2

+ 2𝜂 ‖𝑃‖2 ‖𝑒‖2 + 14𝜂𝑛𝑚2 ‖𝑒‖2 + 14𝜂 (𝑛+1∑
𝑖=2

𝜏󸀠𝑖)
2

.
(29)

To simplify the notation, let 𝑉̇0 ≜ −𝑝0‖𝑒‖2 + 𝐸0, where −𝑝0 =−𝜆min(𝑄)+ 𝜉‖𝑃‖2 +2𝜂‖𝑃‖2 + (1/4𝜂)𝑛𝑚2, 𝐸0 = (1/4𝜉)‖𝛿∗‖2 +(1/4𝜂)(∑𝑛+1𝑖=2 𝜏󸀠𝑖 )2.
3. Main Results

In this section, we propose a generalised design to deal with
partial state constraint and the adaptive fuzzy output feed-
back controller which based on the backstepping technique
and fuzzy state observer will be proposed. To guarantee the
system performance, the virtual control signals and adaptive
laws are designed.Anewdesign procedure is presentedwhich
may cover some results related to the full state constraint
[37]. To ensure that 𝑥𝑖 remains in the constrained region,
we give the feasibility conditions with respect to the design
parameters and an initial state region, i.e.,𝑥(0) ∈ Ω𝑥(0), whereΩ𝑥(0) := {𝑥 ∈ R𝑛 : −𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖, 𝑖 = 1, 2, . . . , 𝑛} with 𝑎𝑖 < 𝑘𝑐𝑖
and 𝑏𝑖 < 𝑘𝑐𝑖 .

Let the tracking error

𝑧1 = 𝑦 − 𝑦𝑑 (30)

and the variables

𝑧𝑖 = 𝑥𝑖 − 𝛼𝑖−1, 𝑖 = 2, . . . , 𝑛, (31)

where 𝛼𝑖−1 is a virtual controller to be designed in Step 𝑖.
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Define𝐾𝑧𝑖 = 𝑧𝑖/(𝑘2𝑏𝑖 −𝑧2𝑖 ), 𝑘𝑏1 = 𝑘𝑐1 −𝑌0 andΩ𝑧𝑖 = {|𝑧𝑖| <𝑘𝑏𝑖 , 𝑖 = 1, 2, . . . , 𝑛}. Consider the BLF candidate combined
with quadratic Lyapunov function as

𝑉𝑛 = 𝑉0 +
𝑛𝑠∑
𝑖=1

12 log
𝑘2𝑏𝑖𝑘2
𝑏𝑖
− 𝑧2𝑖 + 𝑛∑

𝑖=1

12𝛾𝑖 𝜃T𝑖 𝜃𝑖 +
12𝛾1 𝜀21

+ 𝑛∑
𝑖=2

12𝛾𝑖𝑤2𝑖 + 𝑈,
(32)

where 𝑈 = ∑𝑛𝑗=𝑛𝑠+1(1/2)𝑧2𝑗 , 𝑗 = 𝑛𝑠 + 1, . . . , 𝑛, and log(∗)
stands for the natural logarithm of ∗. 𝛾1, 𝛾𝑖, 𝛾1, and 𝛾𝑖 are
positive constants. It can be proved that 𝑉𝑛 is continuously
differentiable and positive definite onΩ𝑧𝑖 .

The detailed design procedures are given below.

Step 1. According to (19), (21), (24), and (30), the derivative of𝑧1 is calculated as follows:

𝑧̇1 = ̇𝑦 − ̇𝑦𝑑 = 𝑧2 + 𝛼1 + 𝜃∗1𝜑1 + 𝜀1 (𝑥) + 󳵻𝐹1 − ̇𝑦𝑑. (33)

The Lyapunov function is defined as

𝑉1 = 𝑉0 + 12 log
𝑘2𝑏1𝑘2
𝑏1

− 𝑧21 + 12𝛾1 𝜃T1 𝜃1 +
12𝛾1 𝜀

2
1 . (34)

Then, substituting (33) into (34), one can have

𝑉̇1 = 𝑉̇0 + 𝑧1𝑧̇1𝑘2
𝑏1

− 𝑧21 − 1𝛾1 𝜃T1
̇̂𝜃1 − 1𝛾1 𝜀1 ̇̂𝜀1

= 𝑉̇0 + 𝐾𝑧1 (𝑧2 + 𝛼1 + 𝜃∗T1 𝜑1 + 𝜀1 (𝑥) + 󳵻𝐹1 − ̇𝑦𝑑)
− 1𝛾1 𝜃T1

̇̂𝜃1 − 1𝛾1 𝜀1 ̇̂𝜀1.
(35)

Design a virtual controller 𝛼1, adaptive law ̇̂𝜃1, and ̇̂𝜀1 as

𝛼1 = −𝜆1𝑧1 − 𝜃T1𝜑1 + ̇𝑦𝑑 − 𝜀1 tanh(𝐾𝑧1𝑘 ) − 12𝐾𝑧1 ,
̇̂𝜃1 = −𝜎1𝜃1 + 𝛾1𝐾𝑧1𝜑1,
̇̂𝜀1 = −𝜎1𝜀1 + 𝛾1𝐾𝑧1 tanh(𝐾𝑧1𝑘 ) ,

(36)

where 𝜃1 is the estimation of 𝜃∗1 and 𝜃𝑗 = 𝜃∗𝑗 − 𝜃𝑗, 𝜀1 =𝜀∗1 −𝜀1, 𝜎1, 𝜎1, and 𝑘 are the positive constants to be designed,
respectively. Substituting (36) into (35), it yields

𝑉̇1 = 𝑉̇0 + 𝐾𝑧1 (𝑧2 + 𝛼1 + 𝜃∗𝑇1 𝜑1 + 𝜀1 (𝑥) + 󳵻𝐹1 − ̇𝑦𝑑)
− 1𝛾1 𝜃T1 (−𝜎1𝜃1 + 𝛾1𝐾𝑧1𝜑1)
− 1𝛾1 𝜀1 (−𝜎1𝜀1 + 𝛾1𝐾𝑧1 tanh(𝐾𝑧1𝑘 ))

= 𝑉̇0 + 𝐾𝑧1 (𝑧2 − 𝜆1𝑧1 − 12𝐾𝑧1 + 󳵻𝐹1)
+ 𝜀1 (𝑥)𝐾𝑧1 − 𝜀∗1𝐾𝑧1 tanh(𝐾𝑧1𝑘 ) + 𝜎1𝛾1 𝜃T1 𝜃1
+ 𝜎1𝛾1 𝜀1𝜀1

≤ 𝑉̇0 + 𝐾𝑧1 (𝑧2 − 𝜆1𝑧1 − 12𝐾𝑧1 + 󳵻𝐹1)
+ 0.2785𝑘𝜀∗1 + 𝜎1𝛾1 𝜃T1 𝜃1 +

𝜎1𝛾1 𝜀1𝜀1.

(37)

𝑆𝑡𝑒𝑝 𝑖 (𝑖 = 2, 3, . . . , 𝑛𝑠). The derivative of 𝑧𝑖 is calculated as
follows:

𝑧̇𝑖 = ̇̂𝑥𝑖 − 𝛼̇𝑖−1
= 𝑧𝑖+1 + 𝛼𝑖 + 𝜃∗𝑖 𝜑𝑖 + 𝑤𝑖 (𝑥) + 𝑘𝑖𝑒1 − 𝛼̇𝑖−1. (38)

Choose the following Lyapunov function candidates:

𝑉𝑖 = 𝑉𝑖−1 + 12 log
𝑘2𝑏𝑖𝑘2
𝑏𝑖
− 𝑧2𝑖 + 12𝛾𝑖 𝜃T𝑖 𝜃𝑖 +

12𝛾𝑖𝑤
2
𝑖 , (39)

where 𝑤𝑖 = 𝑤∗𝑖 − 𝑤𝑖. Similar to (35), one can have

𝑉̇𝑖 = 𝑉̇𝑖−1 + 𝑧𝑖𝑧̇𝑖𝑘2
𝑏𝑖
− 𝑧2𝑖 − 1𝛾𝑖 𝜃T𝑖

̇̂𝜃𝑖 − 1𝛾𝑖𝑤𝑖 ̇̂𝑤𝑖
= 𝑉̇𝑖−1 − 1𝛾𝑖 𝜃T𝑖

̇̂𝜃𝑖 − 1𝛾𝑖𝑤𝑖 ̇̂𝑤𝑖
+ 𝐾𝑧𝑖 (𝑧𝑖+1 + 𝛼𝑖 + 𝜃∗𝑖 𝜑𝑖 + 𝑤𝑖 (𝑥) + 𝑘𝑖𝑒1 − 𝛼̇𝑖−1) .

(40)

The virtual controller 𝛼𝑖, adaptive law ̇̂𝜃𝑖, and ̇̂𝜀𝑖 are designed
as

𝛼𝑖 = −𝜆𝑖𝑧𝑖 − 𝜃T𝑖 𝜑𝑖 − 𝑘𝑖𝑒1 + 𝛼̇𝑖−1 − 𝑤𝑖 tanh(𝐾𝑧𝑖𝑘 )
− 𝐾𝑧𝑖−1𝑧𝑖𝐾𝑧𝑖 ,

̇̂𝜃𝑖 = −𝜎𝑖𝜃𝑖 + 𝛾𝑖𝐾𝑧𝑖𝜑𝑖,
̇̂𝑤𝑖 = −𝜎𝑖𝑤𝑖 + 𝛾𝑖𝐾𝑧𝑖 tanh(𝐾𝑧𝑖𝑘 ) ,

(41)
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where 𝜎𝑖 and 𝜎𝑖 are positive constants. Substituting (41) into
(40), the following inequality can be obtained:

𝑉̇𝑖 = 𝑉̇𝑖−1 − 1𝛾𝑖𝑤𝑖 (−𝜎𝑖𝑤𝑖 + 𝛾𝑖𝐾𝑧𝑖 tanh(𝐾𝑧𝑖𝑘 ))
+ 𝐾𝑧𝑖 (𝑧𝑖+1 + 𝛼𝑖 + 𝜃∗𝑖 𝜑𝑖 + 𝑤𝑖 (𝑥) + 𝑘𝑖𝑒1 − 𝛼̇𝑖−1)
− 1𝛾𝑖 𝜃T𝑖 (−𝜎𝑖𝜃𝑖 + 𝛾𝑖𝐾𝑧𝑖𝜑𝑖)

≤ 𝑉̇0 + 𝐾𝑧𝑖𝑧𝑖+1 −
𝑖∑
𝑟=1

𝜆𝑟𝐾𝑧𝑟𝑧𝑟 + 12󳵻𝐹21 + 0.2785𝑘𝜀∗1
+ 0.2785𝑘 𝑖∑

𝑟=2

𝑤∗𝑟 + 𝑖∑
𝑟=1

𝜎𝑟𝛾𝑟 𝜃T𝑟 𝜃𝑟 +
𝜎1𝛾1 𝜀1𝜀1

+ 𝑖∑
𝑟=2

𝜎𝑟𝛾𝑟𝑤𝑟𝑤𝑟.

(42)

Step 𝑛𝑠 + 1. The derivative of 𝑧𝑛𝑠+1 is calculated as follows:

𝑧̇𝑛𝑠+1 = ̇̂𝑥𝑛𝑠+1 − 𝛼̇𝑛𝑠
= 𝑧𝑛𝑠+2 + 𝛼𝑛𝑠+1 + 𝜃∗𝑛𝑠+1𝜑𝑛𝑠+1 + 𝑤𝑛𝑠+1 (𝑥)

+ 𝑘𝑛𝑠+1𝑒1 − 𝛼̇𝑛𝑠 .
(43)

The Lyapunov function is chosen as

𝑉𝑛𝑠+1 = 𝑉𝑛𝑠 + 12𝑧2𝑛𝑠+1 + 12𝛾𝑛𝑠+1 𝜃
T
𝑛𝑠+1

𝜃𝑛𝑠+1
+ 12𝛾𝑛𝑠+1𝑤

2
𝑛𝑠+1

.
(44)

Then, we have

𝑉̇𝑛𝑠+1 = 𝑉̇𝑛𝑠 + 𝑧𝑛𝑠+1𝑧̇𝑛𝑠+1 − 1𝛾𝑛𝑠+1 𝜃
T
𝑛𝑠+1

̇̂𝜃𝑛𝑠+1 − 1𝛾𝑛𝑠+1
⋅ 𝑤𝑛𝑠+1 ̇̂𝑤𝑛𝑠+1 = 𝑉̇𝑛𝑠 + 𝑧𝑛𝑠+1 (𝑧𝑛𝑠+2 + 𝛼𝑛𝑠+1
+ 𝜃∗𝑛𝑠+1𝜑𝑛𝑠+1 + 𝑤𝑛𝑠+1 (𝑥) + 𝑘𝑛𝑠+1𝑒1 − 𝛼̇𝑛𝑠) − 1𝛾𝑛𝑠+1
⋅ 𝜃T𝑛𝑠+1 ̇̂𝜃𝑛𝑠+1 − 1𝛾𝑛𝑠+1𝑤𝑛𝑠+1 ̇̂𝑤𝑛𝑠+1.

(45)

Design a virtual controller 𝛼𝑛𝑠+1, adaptive law ̇̂𝜃𝑛𝑠+1, and ̇̂𝜀𝑛𝑠+1
as

𝛼𝑛𝑠+1 = −𝜆𝑛𝑠+1𝑧𝑛𝑠+1 − 𝜃T𝑛𝑠+1𝜑𝑛𝑠+1 − 𝑘𝑛𝑠+1𝑒1 + 𝛼̇𝑛𝑠
− 𝑤𝑛𝑠+1 tanh(𝑧𝑛𝑠+1𝑘 ) − 𝐾𝑧𝑛𝑠 ,

̇̂𝜃𝑛𝑠+1 = −𝜎𝑛𝑠+1𝜃𝑛𝑠+1 + 𝛾𝑛𝑠+1𝑧𝑛𝑠+1𝜑𝑛𝑠+1,
̇̂𝑤𝑛𝑠+1 = −𝜎𝑛𝑠+1𝑤𝑛𝑠+1 + 𝛾𝑛𝑠+1𝑧𝑛𝑠+1tanh(𝑧𝑛𝑠+1𝑘 ) .

(46)

Substituting (46) into (45), the following inequality is
obtained:

𝑉̇𝑛𝑠+1 = 𝑉̇𝑛𝑠 + 𝑧𝑛𝑠+1 (𝑧𝑛𝑠+2 + 𝛼𝑛𝑠+1 + 𝜃∗𝑛𝑠+1𝜑𝑛𝑠+1
+ 𝑤𝑛𝑠+1 (𝑥) + 𝑘𝑛𝑠+1𝑒1 − 𝛼̇𝑛𝑠) − 1𝛾𝑛𝑠+1
⋅ 𝑤𝑛𝑠+1 (−𝜎𝑛𝑠+1𝑤𝑛𝑠+1 + 𝛾𝑛𝑠+1𝑧𝑛𝑠+1tanh(𝑧𝑛𝑠+1𝑘 ))
− 1𝛾𝑛𝑠+1 𝜃

T
𝑛𝑠+1

(−𝜎𝑛𝑠+1𝜃𝑛𝑠+1 + 𝛾𝑛𝑠+1𝑧𝑛𝑠+1𝜑𝑛𝑠+1) ≤ 𝑉̇0
+ 𝑧𝑛𝑠+1𝑧𝑛𝑠+2 −

𝑛𝑠∑
𝑟=1

𝜆𝑟𝐾𝑧𝑟𝑧𝑟 − 𝜆𝑛𝑠+1𝑧2𝑛𝑠+1 + 12󳵻𝐹21
+ 0.2785𝑘𝜀∗1 + 0.2785𝑘𝑛𝑠+1∑

𝑟=2

𝑤∗𝑟 + 𝑛𝑠+1∑
𝑟=1

𝜎𝑟𝛾𝑟 𝜃T𝑟 𝜃𝑟 +
𝜎1𝛾1

⋅ 𝜀1𝜀1 +
𝑛𝑠+1∑
𝑟=2

𝜎𝑟𝛾𝑟𝑤𝑟𝑤𝑟.

(47)

𝑆𝑡𝑒𝑝 j (𝑗 = 𝑛𝑠 +2, . . . , 𝑛 − 1).The derivative of 𝑧𝑗 is calculated
as follows:

𝑧̇𝑗 = ̇̂𝑥𝑗 − 𝛼̇𝑗−1
= 𝑧𝑗+1 + 𝛼𝑗 + 𝜃∗𝑗 𝜑𝑗 + 𝑤𝑗 (𝑥) + 𝑘𝑗𝑒1 − 𝛼̇𝑗−1. (48)

The Lyapunov function is defined as

𝑉𝑗 = 𝑉𝑗−1 + 12𝑧2𝑗 + 12𝛾𝑗 𝜃T𝑗 𝜃𝑗 +
12𝛾𝑗𝑤

2
𝑗 . (49)

Then, one can have

𝑉̇𝑗 = 𝑉̇𝑗−1 + 𝑧𝑗𝑧̇𝑗 − 1𝛾𝑗 𝜃T𝑗
̇̂𝜃𝑗 − 1𝛾𝑗𝑤𝑗 ̇̂𝑤𝑗

= 𝑉̇𝑗−1 − 1𝛾𝑗 𝜃T𝑗
̇̂𝜃𝑗 − 1𝛾𝑗𝑤𝑗 ̇̂𝑤𝑗

+ 𝑧𝑗 (𝑧𝑗+1 + 𝛼𝑗 + 𝜃∗𝑗 𝜑𝑗 + 𝑤𝑗 (𝑥) + 𝑘𝑗𝑒1 − 𝛼̇𝑗−1) .
(50)

Design a virtual controller 𝛼𝑠+1, adaptive law ̇̂𝜃𝑠+1, and ̇̂𝜀𝑠+1 as
𝛼𝑗 = −𝜆𝑗𝑧𝑗 − 𝜃T𝑗 𝜑𝑗 − 𝑘𝑗𝑒1 + 𝛼̇𝑗−1 − 𝑤𝑗 tanh(𝑧𝑗𝑘 )

− 𝑧𝑗−1,
̇̂𝜃𝑗 = −𝜎𝑗𝜃𝑗 + 𝛾𝑗𝑧𝑗𝜑𝑗,
̇̂𝑤𝑗 = −𝜎𝑗𝑤𝑗 + 𝛾𝑗𝑧𝑗tanh(𝑧𝑛𝑗𝑘 ) .

(51)
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Substituting (51) into (50), the following inequality can be
obtained:

𝑉̇𝑗 = 𝑉̇𝑗−1 − 1𝛾𝑗 𝜃T𝑗 (−𝜎𝑗𝜃𝑗 + 𝛾𝑗𝑧𝑗𝜑𝑗)
+ 𝑧𝑗 (𝑧𝑗+1 + 𝛼𝑗 + 𝜃∗𝑗 𝜑𝑗 + 𝑤𝑗 (𝑥) + 𝑘𝑗𝑒1 − 𝛼̇𝑗−1)
− 1𝛾𝑗𝑤𝑗 (−𝜎𝑗𝑤𝑗 + 𝛾𝑗𝑧𝑗tanh(𝑧𝑗𝑘 ))

≤ 𝑉̇0 + 𝑧𝑗𝑧𝑗+1 −
𝑛𝑠∑
𝑟=1

𝜆𝑟𝐾𝑧𝑟𝑧𝑟 −
𝑗∑

𝑟=𝑛𝑠+1

𝜆𝑟𝑧2𝑟 + 12󳵻𝐹21

+ 0.2785𝑘𝜀∗1 + 0.2785𝑘 𝑗∑
𝑟=2

𝑤∗𝑟 + 𝑗∑
𝑟=1

𝜎𝑟𝛾𝑟 𝜃T𝑟 𝜃𝑟

+ 𝜎1𝛾1 𝜀1𝜀1 +
𝑗∑
𝑟=2

𝜎𝑟𝛾𝑟𝑤𝑟𝑤𝑟.

(52)

Step 𝑛.The derivative of 𝑧𝑛 is calculated as follows:

𝑧̇𝑛 = ̇̂𝑥𝑛 − 𝛼̇𝑛−1 = 𝑢 + 𝜃∗𝑛𝜑𝑛 + 𝑤𝑛 (𝑥) + 𝑘𝑛𝑒1 − 𝛼̇𝑛−1. (53)

Define the Lyapunov function as

𝑉𝑛 = 𝑉𝑛−1 + 12𝑧2𝑛 + 12𝛾𝑛 𝜃T𝑛 𝜃𝑛 +
12𝛾𝑛𝑤

2
𝑛. (54)

Then, one can have

𝑉̇𝑛 = 𝑉̇𝑛−1 + 𝑧𝑛𝑧̇𝑛 − 1𝛾𝑛 𝜃T𝑛
̇̂𝜃𝑛 − 1𝛾𝑛𝑤𝑛 ̇̂𝑤𝑛

= 𝑉̇𝑛−1 + 𝑧𝑛 (𝑢 + 𝜃∗𝑛𝜑𝑛 + 𝑤𝑛 (𝑥) + 𝑘𝑛𝑒1 − 𝛼̇𝑛−1)
− 1𝛾𝑛 𝜃T𝑛

̇̂𝜃𝑛 − 1𝛾𝑛𝑤𝑛 ̇̂𝑤𝑛.
(55)

We choose the control law and the adaptive laws as

𝑢 = −𝜆𝑛𝑧𝑛 − 𝜃T𝑛𝜑𝑛 − 𝑘𝑛𝑒1 + 𝛼̇𝑛−1 − 𝑤𝑛 tanh(𝑧𝑛𝑘 )
− 𝑧𝑛−1,

̇̂𝜃𝑛 = −𝜎𝑛𝜃𝑛 + 𝛾𝑛𝑧𝑛𝜑𝑛,
̇̂𝑤𝑛 = −𝜎𝑛𝑤𝑛 + 𝛾𝑛𝑧𝑛 tanh(𝑧𝑛𝑘 ) .

(56)

Substituting (56) into (55), the following equality can be
obtained:

𝑉̇𝑛 = 𝑉̇𝑛−1 + 𝑧𝑛 (𝑢 + 𝜃∗𝑛𝜑𝑛 + 𝑤𝑛 (𝑥) + 𝑘𝑛𝑒1 − 𝛼̇𝑛−1)
− 1𝛾𝑛𝑤𝑛 (−𝜎𝑛𝑤𝑛 + 𝛾𝑛𝑧𝑛 tanh(𝑧𝑛𝑘 ))
− 1𝛾𝑛 𝜃T𝑛 (−𝜎𝑛𝜃𝑛 + 𝛾𝑛𝑧𝑛𝜑𝑛)

≤ 𝑉̇0 −
𝑛𝑠∑
𝑟=1

𝜆𝑟𝐾𝑧𝑟𝑧𝑟 −
𝑛∑

𝑟=𝑛𝑠+1

𝜆𝑟𝑧2𝑟 + 12󳵻𝐹21
+ 0.2785𝑘𝜀∗1 + 0.2785𝑘 𝑛∑

𝑟=2

𝑤∗𝑟 + 𝑛∑
𝑟=1

𝜎𝑟𝛾𝑟 𝜃T𝑟 𝜃𝑟
+ 𝜎1𝛾1 𝜀1𝜀1 +

𝑛∑
𝑟=2

𝜎𝑟𝛾𝑟𝑤𝑟𝑤𝑟.

(57)

According to Young’s inequality, we have
𝜎𝑖𝛾𝑖 𝜃T𝑖 𝜃𝑖 =

𝜎𝑖𝛾𝑖 𝜃T𝑖 (𝜃∗𝑖 − 𝜃𝑖) ≤ 𝜎𝑖2𝛾𝑖 (𝜃∗𝑇𝑖 𝜃∗𝑖 − 𝜃T𝑖 𝜃𝑖) . (58)

Then, the derivative of 𝑉𝑛 is given by

𝑉̇𝑛 ≤ 𝑉̇0 −
𝑛𝑠∑
𝑟=1

𝜆𝑟𝐾𝑧𝑟𝑧𝑟 −
𝑛∑

𝑟=𝑛𝑠+1

𝜆𝑟𝑧2𝑟 + 12󳵻𝐹21
+ 0.2785𝑘𝜀∗1 + 0.2785𝑘 𝑛∑

𝑟=2

𝑤∗𝑟
+ 𝑛∑
𝑟=1

𝜎𝑟2𝛾𝑟 (𝜃∗
T

𝑟 𝜃∗𝑟 − 𝜃T𝑟 𝜃𝑟) + 𝜎12𝛾1 (𝜀∗T1 𝜀∗1 − 𝜀T1 𝜀1)

+ 𝑛∑
𝑟=2

𝜎𝑟2𝛾𝑟 (𝑤
∗T

𝑟 𝑤∗𝑟 − 𝑤T
𝑟 𝑤𝑟) .

(59)

Combined with the above analysis, we have come to the
following conclusions.

Theorem 9. Consider system (1). Assumptions 5 and 6 hold
on the setsΩ𝑧𝑖 . For the virtual controller 𝛼𝑖, 𝑖 = 1, 2, . . . , 𝑛 − 1,
in (36), (41), and (51) and the actual controller 𝑢 in (56) and
the adaptive laws in (36), (41), (51), and (56), the following
properties hold:

(i) The proposed adaptive control scheme can guarantee
that the tracking error converges to a bounded compact setΩ𝐷 = {|𝑧1| < 𝐷}.

(ii) All the signals in the closed-loop systems are bounded.
(iii) The partial state constraints are not violated.

Proof. (i) From Lemma 1, (59) can be rearranged into the
form

𝑉̇ ≤ −𝜌𝑉 + 𝑐, (60)

where 𝜌 = min{(4𝜂 + (1/𝜂)‖𝑃‖2)/8(𝜆min(𝑄) − (𝜉 + 2𝜂)‖𝑃‖2 −(1/4𝜂)𝑛𝑚2 − (1/2)𝑚21), 1/2𝜆𝑖, 1/𝜎𝑗, 1/𝜎1, 1/𝜎𝑗}, 𝑐 = 𝐸𝑛 +
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∑𝑛𝑗=1(𝜎𝑗/𝛾𝑗)𝜃∗𝑇𝑗 𝜃∗𝑗 + (𝜎1/𝛾1)𝜀∗21 +∑𝑛𝑗=2(𝜎𝑗/𝛾𝑗)𝑤∗2𝑗 , 𝐸𝑛 = 𝐸0 +(1/2)𝜏󸀠22 + 𝑘󸀠𝜀∗1 + ∑𝑛𝑗=1 𝑘󸀠𝑤∗2𝑗 , and 𝑘󸀠 = 0.2785𝑘. Adding 𝑒𝜌𝑡
to both sides of the above inequality and integrating it over[0, 𝑡], it has

𝑉 (𝑡) ≤ [𝑉 (0) − 𝑐𝜌] 𝑒−𝜌𝑡 + 𝑐𝜌 ≤ 𝑉 (0) + 𝑐𝜌
≜ 𝑉 (0) + 𝐶.

(61)

From the preceding inequality and𝑉(𝑡), we can conclude
that log(𝑘2𝑏𝑗/(𝑘2𝑏𝑗 − 𝑧2𝑗 )), 𝑒𝑖, 𝜃𝑗, 𝜀1, 𝑤𝑗 and 𝑧𝑗 are bounded, and𝐾𝑧𝑖 is bounded. Due to the boundedness of 𝜃∗𝑗 , 𝜀∗1 , 𝑤∗𝑗 and
𝜃𝑗 = 𝜃∗𝑗 −𝜃𝑗, 𝜀1 = 𝜀∗1 −𝜀1,𝑤𝑗 = 𝑤∗𝑗 −𝑤𝑗, then 𝜃𝑗, 𝜀1, and𝑤𝑗 are
bounded. It is easy to see that the tracking error converges to
a bounded compact set.

(ii) According to (61), we define 𝐵 =√2(𝑉(0) + 𝐶)/𝜆min(𝑃). From the form of 𝑉(𝑡), we have|𝑒𝑖| ≤ ‖𝑒‖ ≤ 𝐵. Since 𝑥1 = 𝑧1 + 𝑦𝑑(𝑡) and |𝑦𝑑(𝑡)| ≤ 𝑌0, it
can be shown that |𝑥1| ≤ |𝑧1| + |𝑦𝑑(𝑡)| < 𝑘𝑏1 + 𝑌0. Suppose𝑘𝑐1 = 𝑘𝑏1 +𝑌0, and then |𝑥1| < 𝑘𝑐1 . To show |𝑥2| < 𝑘𝑐2 , it needs
to confirm that there exists a positive constant 𝛼1 such that|𝛼1| ≤ 𝛼1. The boundedness of 𝑥1, 𝑦𝑑, ̇𝑦𝑑, 𝜃1, 𝜀1, 𝐾𝑧1 can be
guaranteed because𝛼1 = 𝛼1(𝑥1, 𝑦𝑑, ̇𝑦𝑑, 𝜃1, 𝜀1, 𝐾𝑧1). It is easy to
know from the definition of𝛼1 that the supremumof𝛼1 exists.
In view of |𝑧2| < 𝑘𝑏2 and𝑥2 = 𝑧2+𝛼1, it has |𝑥2| < 𝑘𝑏2+𝛼1. Due
to 𝑥2 = 𝑥2 + 𝑒2, the inequality |𝑥2| ≤ |𝑥2| + |𝑒2| < 𝑘𝑏2 + 𝛼1 + 𝐵
holds. Let 𝑘𝑐2 = 𝑘𝑏2 + 𝛼1 + 𝐵, and then |𝑥2| < 𝑘𝑐2 . Similarly, it
can show that |𝑥𝑖+1| < 𝑘𝑐𝑖+1 , 𝑖 = 2, 3, . . . , 𝑛𝑠 −1, after verifying|𝛼𝑖| ≤ 𝛼𝑖. Since (41), (51), and |𝛼𝑖−1| ≤ 𝛼𝑖−1, then the controller𝑢 is bounded. From the above analysis, we conclude that all
the signals of the closed-loop system 𝑥, 𝛼𝑖, 𝑢, 𝑧, 𝜃𝑗, 𝜀1, 𝑤𝑗
are bounded.

(iii) From the construction of (61), we get

log
𝑘2𝑏1𝑘2
𝑏1

− 𝑧21 ≤ 2 [𝑉 (0) − 𝐶] 𝑒−𝜌𝑡 + 2𝐶. (62)

Taking exponentials on both sides, one has

𝑘2𝑏1𝑘2
𝑏1

− 𝑧21 ≤ 𝑒2[𝑉(0)−𝐶]𝑒−𝜌𝑡+2𝐶. (63)

Define

𝐷 = 𝑘𝑏1√1 − 𝑒−2[𝑉(0)−𝐶]𝑒−𝜌𝑡−2𝐶. (64)

Because 𝑘2𝑏1 − 𝑧21 > 0, it is easy to get |𝑧1| ≤ 𝐷. If 𝑉(0) = 𝐶
then |𝑧1| ≤ 𝑘𝑏1√1 − 𝑒−2𝐶 = 𝐷 holds. If 𝑉(0) ̸= 𝐶, it can be
concluded that, given any 𝐷 > 𝑘𝑏1√1 − 𝑒−2𝐶, there exists 𝑇
such that, for any 𝑡 > 𝑇, it has |𝑧1| ≤ 𝐷. This implies that|𝑧1| ≤ 𝑘𝑏1√1 − 𝑒−2𝐶 as 𝑡 󳨀→ ∞. That means 𝑧1 can be made
arbitrarily small. From above analysis, we can get that |𝑥𝑖+1| <𝑘𝑐𝑖+1 (𝑖 = 2, 3, . . . , 𝑛𝑠 − 1), |𝛼𝑖−1| ≤ 𝛼𝑖−1, and the controller𝑢 is bounded. The variables 𝑧𝑖 = 𝑥𝑖 − 𝛼𝑖−1, so that 𝑧𝑖 (𝑖 =1, 2, . . . , 𝑛) is bound, and the systems states are not violated.
This completes the proof.

4. Illustrative Example

In this section, we give an example to show how to apply the
results proposed in this paper to investigate the stabilization
of nonlinear pure feedback systems subject to partial state
constraints.

Let us consider the following nonlinear systems:

𝑥̇1 = 𝑥1 cos (𝑥1) + (2𝑥21 + 0.6) 𝑥2,
𝑥̇2 = 𝑥1𝑥2 + 𝑢 + 0.4 sin (𝑢) ,
𝑦 = 𝑥1,

(65)

where the state constraints are |𝑥1| < 0.5; the reference signal
is given as 𝑦𝑑 = 0.1sin(𝜋𝑡/3) + 0.1 cos(𝑡/3) for the tracking
problem. It is unnecessary to give precise knowledge of the
initial state 𝑥(0). In this simulation, the figures are specific
cases. Let 𝑥1 = 0.05, 𝑥2 = 0.2, 𝑥1 = 0, 𝑥2 = 0. Fuzzy
membership functions for the variables 𝑥1, 𝑥2, 𝑥2𝑓, and 𝑢𝑓
are given as follows:

𝜇𝐹󸀠1 (𝑥1) = exp[−(𝑥1 − 5 + 2𝑙)2
2 ] ,

𝜇𝐹󸀠2 (𝑥2) = exp[−(𝑥2 − 3 + 𝑙)2
5 ] ,

𝜇𝐹󸀠3 (𝑥2𝑓) = exp[
[
−(𝑥2𝑓 − 3 + 𝑙)2

5 ]
]

,

𝜇𝐹󸀠4 (𝑢𝑓) = exp[
[
−(𝑢𝑓 − 5 + 3𝑙)2

7 ]
]

,
(𝑙 = 1, 2, . . . , 5) .

(66)

From [35], the fuzzy logic systems can be represented as

𝑓1 (𝑥1, 𝑥2𝑓 | 𝜃1) = 𝜃T1𝜑 (𝑥1, 𝑥2𝑓) ,
𝑓2 (𝑥1, 𝑥2, 𝑢𝑓 | 𝜃2) = 𝜃T2𝜑 (𝑥1, 𝑥2, 𝑢𝑓) . (67)

Letting 𝑘1 = 5 and 𝑘2 = 5, then the state observer can be
constructed as

̇̂𝑥1 = 𝑥2 + 𝑓1 (𝑥1, 𝑥2𝑓 | 𝜃1) + 5 (𝑦 − 𝑥1) ,
̇̂𝑥2 = 𝑢 + 𝑓2 (𝑥1, 𝑥2, 𝑢𝑓 | 𝜃2) + 5 (𝑦 − 𝑥1) . (68)
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The virtual control function 𝛼1 and controller 𝑢 as well as the
adaptive laws 𝜃1, 𝜃2, 𝜀1 and 𝑤2 are as follows:

𝛼1 = −𝜆1𝑧1 − 𝜃T1𝜑1 + ̇𝑦𝑑 − 𝜀1 tanh(𝐾𝑧1𝑘 ) − 12𝐾𝑧1 ,
𝑢 = −𝜆2𝑧2 − 𝜃T2𝜑2 − 𝑘2𝑒1 + 𝛼̇1 − 𝑤2 tanh(𝑧2𝑘 )

− 𝑧1,
̇̂𝜃1 = −𝜎1𝜃1 + 𝛾1𝐾𝑧1𝜑1,
̇̂𝜀1 = −𝜎1𝜀1 + 𝛾1𝐾𝑧1 tanh(𝐾𝑧1𝑘 ) ,
̇̂𝜃2 = −𝜎2𝜃2 + 𝛾2𝑧2𝜑2,
̇̂𝑤2 = −𝜎2𝑤2 + 𝛾2𝑧2 tanh(𝑧2𝑘 ) .

(69)

Set the design parameters in the above control scheme as

𝜆1 = 1,
𝜆2 = 2,
𝛾1 = 1,
𝛾2 = 1,
𝛾1 = 1,
𝛾2 = 1;
𝜎1 = 1,
𝜎2 = 1,
𝜎1 = 1.5,
𝜎2 = 0.5,
𝑘 = 0.2.

(70)

Let 𝑘𝑏1 = 0.2, and from calculation we know it is valid.
Choose the initial conditions of adaptive parameters as 𝜃1 =(1, 1, 1, 1, 1), 𝜀1 = 1, 𝜃2 = (1, 1, 1, 1, 1), 𝑤2 = 1.

The simulation is given in Figures 1–8. Figure 1 shows the
trajectory of the state 𝑥. Figure 2 is the swing curve of the
control signal 𝑢. Figure 3 is the state 𝑥1 which remains in
the constraint region; it shows the trajectory of the state 𝑥.
Figure 4 stands for the variables of 𝑧1 and 𝑧2, and these error
variables can not violate their bounds. Figures 5 and 6 are
used to illustrate the trajectories of the system states 𝑥1, 𝑥2
and the observer states 𝑥1, 𝑥2. Figures 7 and 8 show that all
the signals in the closed-loop system are bounded. It is clear
that the nonlinear pure feedback system subject to partial
constraints under the output feedback law is bounded. From
the simulation, we can conclude that the results proposed
in Theorem 9 are very practicable in stability of nonlinear
pure feedback systems with partial constraints. Meanwhile,
it is a good tool in analyzing the stability problems of some
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classes of nonlinear pure feedback systems in the presence of
constraint.

5. Conclusions

In this paper, the tracking control problem of a class of
nonlinear pure feedback systems subject to partial state con-
straints and adaptive fuzzy output feedback controls has been
investigated by use of BLFs and backstepping. The output
feedback control law, by which the stability of the closed-
loop system is guaranteed, is determined by constraints.
Simulations show that the results obtained in this paper are
very practicable in analyzing the stability of some classes of
nonlinear pure feedback systems.



Mathematical Problems in Engineering 11

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (no. 61703232) and the Natural Sci-
ence Foundation of Shandong Province (nos. ZR2017MF068,
ZR2017QF013).

References

[1] L. Guo, L. Liu, and Y. Wu, “Existence of positive solutions
for singular fractional differential equations with infinite-point
boundary conditions,” Nonlinear Analysis: Modelling and Con-
trol, vol. 21, no. 5, pp. 635–650, 2016.

[2] F. Li andY. Bao, “Uniform stability of the solution for amemory-
type elasticity system with nonhomogeneous boundary control
condition,” Journal of Dynamical and Control Systems, vol. 23,
no. 2, pp. 301–315, 2017.

[3] S. Rahmani, N. Mendalek, and K. Al-Haddad, “Experimental
design of a nonlinear control technique for three-phase shunt
active power filter,” IEEE Transactions on Industrial Electronics,
vol. 57, no. 10, pp. 3364–3375, 2010.

[4] W. Sun and L. Peng, “Observer-based robust adaptive control
for uncertain stochastic Hamiltonian systems with state and
input delays,”Nonlinear Analysis: Modelling and Control, vol. 19,
no. 4, pp. 626–645, 2014.

[5] W. Sun and B. Fu, “Adapative control of time-varying uncertain
non-linear systems with input delay: a Hamiltonian approach,”
IET Control Theory and Applications, vol. 10, no. 15, pp. 1844–
1858, 2016.

[6] W. Sun, K. Wang, C. Nie et al., “Energy-based controller
design of stochasic magnetic levitation system,” Mathematical
Problems in Engineering, vol. 2017, 6 pages, 2017.

[7] A. Bemporad, “Reference governor for constrained nonlinear
systems,” Institute of Electrical and Electronics Engineers Trans-
actions on Automatic Control, vol. 43, no. 3, pp. 415–419, 1998.

[8] G. Chen, J. Xia, G. Zhuang, and J. Zhao, “Improved delay-
dependent stabilization for a class of networked control systems
with nonlinear perturbations and two delay components,”
Applied Mathematics and Computation, vol. 316, pp. 1–17, 2018.

[9] T. Hu and Z. Lin, Control Systems with Actuator Saturation:
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