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The collaborative filtering (CF) approach is one of the most successful personalized recommendation methods so far, which is
employed by the majority of personalized recommender systems to predict users’ preferences or interests. The basic idea of CF is
that if users had the same interests in the past they will also have similar tastes in the future. In general, the traditional CF may
suffer the following problems: (1)The recommendation quality of CF based system is greatly affected by the sparsity of data. (2)The
traditional CF is relatively difficult to adapt the situation that users’ preferences always change over time. (3) CF based approaches
are used to recommend similar items to a user ignoring the user’s demand for variety. In this paper, to solve the above problems we
build a new user-user covariance matrix to replace the traditional CF’s user-user similarity matrix. Compared with the user-user
similarity matrix, the user-user covariance matrix introduces the user-user covariance to finely describe the changing trends of
users’ interests. Furthermore, we propose an enhancing collaborative filtering method based on the user-user covariance matrix.
The experimental results show that the proposed method can significantly improve the diversity of recommendation results and
ensure the good recommendation precision.

1. Introduction

Recommendation systems have been widely applied to deal
with information overload problems in e-commerce sites [1].
It is well known that collaborative filtering (CF) is one of
the most widely used methods in recommender systems. CF
utilizes users’ behaviors (e.g., ratings or clicks) to infer a target
user’s preference for a particular item.

CF is based on the assumption that users’ previous
behaviors have huge influence on their future behaviors. The
basic idea of CF is that if users shared the same interests
in the past they will also have similar tastes in the future.
Although CF approach has been employed by the majority of
traditional personalized recommender systems, CF approach
usually faces the following challenges: (1) The sparse data
of the user-item matrix seriously affect the recommendation
quality. (2) The traditional CF is relatively difficult to adapt

the situation that users’ preferences always change over time.
(3) Always recommending similar items to a user will fail to
meet the user’s demand for variety.

In this paper, we propose an enhancing collaborative
f iltering method based on covariance matrix named CFCM,
such that the problems described above can be solved. We
first construct the user-user covariance matrix according to
the traditional user-item rating matrix, which alleviates the
sparsity of the rating matrix. Secondly, we introduce the
covariance to effectively capture the user’s interest change.
Finally, we adjust the weight between positive and negative
reverse recommendations to improve the diversity of CF
methods. The experimental results on a large MovieLens
dataset demonstrate that CFCM outperforms the state-of-
the-art CF methods.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 builds a new user-user
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covariance matrix and presents an enhancing collaborative
filtering method. Section 4 evaluates the proposed method
through extensive experiments, and Section 5 concludes this
paper.

2. Related Work

CF approach is one of the most successful personalized rec-
ommendation methods. The CF approach was first proposed
by Goldberg et al. [2]. Since then, many improved CF meth-
ods have been proposed for personalized recommendation.
CF methods can be grouped into two categories: memory-
based and model-based.

The model-based CF approaches leverage training
datasets to train a predefined model [3–8]. The memory-
based CF approaches are most relevant to the method
proposed in this paper. At present, the memory-based CF
approaches are widely adopted in commercial personalized
recommender systems [9, 10]. The key to these memory-
based CF approaches is how to efficiently compute the
similarity between two users. Then, for a particular user, his
neighborhood can be determined according to the similarity
and recommendations are made based on the rating of
neighborhood of the target user. Many similarity measures
(i.e., similarity functions) for these memory-based CF
approaches have been proposed. In the following, we use 𝑈
to denote the set of users, I to represent the set of items, 𝐼𝑢 to
denote the set of those items rated by user u, and 𝑅 to denote
the user-item rating matrix. The user-item rating matrix 𝑅
is a |𝑈| × |𝐼| matrix, and each entry 𝑟𝑢𝑖 of 𝑅 represents the
rating of user 𝑢 for item 𝑖. Let →𝑟𝑢 denote the rating vector
of user u; i.e., →𝑟𝑢 is a |𝐼|-dimensional vector constructed by
all entries 𝑟𝑢𝑖, where 𝑖 ∈ 𝐼. We use 𝑟𝑢 to denote the average
rating value of user 𝑢 and 𝑟𝑚𝑒𝑑 to denote the median value of
all rates in the user-item rating matrix R.

Given two users 𝑢 and V, a similarity function 𝑠𝑖𝑚(𝑢, V)
returns a value that indicates the similarity of the two users.
The larger the value is, the more similar the two users are.The
cosine similarity is one of thewidely used similarity functions.
The cosine similarity function is defined as follows:

𝑠𝑖𝑚𝑐𝑜𝑠 (𝑢, V) = →𝑟𝑢→.𝑟V→𝑟𝑢 × →𝑟V = ∑𝑖∈𝐼 𝑟𝑢𝑖 × 𝑟V𝑖
√∑𝑖∈𝐼 𝑟2𝑢𝑖 × √∑𝑖∈𝐼 𝑟2V𝑖 (1)

ThePearson correlation coefficient (PCC) [11] is another of
the most popular similarity measures for CF approaches.The
PCC similarity function is defined by the following equation:

𝑠𝑖𝑚𝑝𝑐𝑐 (𝑢, V)
= ∑𝑖∈𝐼𝑢∩𝐼V (𝑟𝑢𝑖 − 𝑟𝑢) × (𝑟V𝑖 − 𝑟V)

√∑𝑖∈𝐼𝑢∩𝐼V (𝑟𝑢𝑖 − 𝑟𝑢)2 × √∑𝑖∈𝐼𝑢∩𝐼V (𝑟V𝑖 − 𝑟V)2
(2)

A variant of PCC is the constrained Pearson correlation
coefficient (CPCC) [12]. The difference between CPCC and
PCC is that CPCC uses the median value of all users’ ratings

to replace themean value of the specified user’ ratings used in
PCC.The CPCC similarity function is formulated as follows:

𝑠𝑖𝑚𝑐𝑝𝑐𝑐 (𝑢, V)
= ∑𝑖∈𝐼𝑢∩𝐼V (𝑟𝑢𝑖 − 𝑟𝑚𝑒𝑑) × (𝑟V𝑖 − 𝑟𝑚𝑒𝑑)

√∑𝑖∈𝐼𝑢∩𝐼V (𝑟𝑢𝑖 − 𝑟𝑚𝑒𝑑)2 × √∑𝑖∈𝐼𝑢∩𝐼V (𝑟V𝑖 − 𝑟𝑚𝑒𝑑)2
(3)

Jaccard and mean squared difference (MSD) are also
commonly used as similarity measures [13]. Their similarity
functions are, respectively, defined as follows:

𝑠𝑖𝑚𝐽𝑎𝑐 (𝑢, V) = 𝐼𝑢 ∩ 𝐼V𝐼𝑢 ∪ 𝐼V
𝑠𝑖𝑚𝑀𝑆𝐷 (𝑢, V) = 1 − ∑𝑖𝜖𝐼 (𝑟𝑢𝑖 − 𝑟V𝑖)2𝐼𝑢 ∪ 𝐼V

(4)

Further, Bobadilla et al. [14] combine Jaccard and MSD
and propose a new similarity measure called JMSD. JMSD is
defined as the following equation:

𝑠𝑖𝑚𝐽𝑀𝑆𝐷 (𝑢, V) = 𝑠𝑖𝑚𝐽𝑎𝑐 (𝑢, V) × 𝑠𝑖𝑚𝑀𝑆𝐷 (𝑢, V) (5)
In addition, more works on similarity measures [15–19]

have been investigated. Bobadilla et al. [15] present a new
similarity measure, calledMJD, which leverages optimization
based on neural learning to combine the existing similarity
measures. Ahn [16] proposes a new heuristic similarity
measure called PIP (Proximity-Impact-Popularity), which is
composed of three factors (proximity, impact, and popular-
ity) of similarity and utilizes domain specific interpretation
of user ratings to overcome the cold-start problem. Pirasteh
et al. [17] introduce new weighting schemes and propose a
new similarity measure called AC-PCC. AC-PCC allows us
to consider new features in finding similarities between users.
Liu et al. [18] present a new user similarity model (NHSM)
to improve the recommendation performance when only
few ratings are available to calculate the similarities. NHSM
considers the local context information of user ratings to infer
a target user’s preference for a particular item. Patraet al. [19]
propose BCF similarity measure, which utilizes all ratings
information comprehensively for locating useful neighbors of
an active user in sparse ratings dataset.

Obviously, the existing traditional similarity measures
focus on how to infer a target user’s local preference based
on his/her similar users’ previous behaviors and ignore more
or less the fact that a user’s preference or interest always
changes dynamically. In addition, ensuring the diversity of
recommendations is often a desirable feature in recom-
mender systems. Therefore, how to truly reflect the change of
user’s interest is an important issue in designing a similarity
function. In this paper, we introduce a novel method by using
covariance to depict the changing trends of users’ interests
and build a new user-user covariance matrix to model user
similarity.

3. Enhancing Collaborative Filtering Approach

In this section, we first introduce covariance to build a new
user-user covariance matrix and then propose an enhancing
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collaborative filtering method based on the user-user covari-
ance matrix.

3.1. User-User Covariance Matrix. In probability theory and
statistics, covariance is a measure of the joint variability
of two random variables. If the trend of the two variables
is consistent, the covariance between the two variables is
positive. In the opposite case, if two variables change in the
opposite direction, the covariance between the two variables
is negative. The sign of the covariance therefore shows the
tendency in the linear relationship between the variables.

Considering the above-mentioned statistical characteris-
tics of covariance, we construct a new user-user covariance
matrix to model user similarity. Let 𝑢𝑖 and 𝑢𝑗 denote any two
users in U, |𝑈| =m, I represent the set of items, 𝐼𝑖 represent
the set of items rated by 𝑢𝑖, 𝐼𝑗 denote the set of items rated by𝑢𝑗, rik denote the rating of user 𝑢𝑖 for item 𝑖𝑘, and rjk represent
the rating of user 𝑢𝑗 for item 𝑖𝑘. Now, we formally define the
user-user covariance matrix.

Definition 1. A user-user covariance matrix is an 𝑚 × 𝑚
matrix, denoted by 𝐶 = {𝑐𝑖𝑗}𝑚×𝑚, where

𝑐𝑖𝑗 = 𝑐𝑜V (𝑢𝑖, 𝑢𝑗)
= {{{

+∞, 𝑖 = 𝑗
𝐸 [(𝑢𝑖 − 𝐸 (𝑢𝑖)) . (𝑢𝑗 − 𝐸 (𝑢𝑗))] , 𝑖 ̸= 𝑗

(6)

In the above definition, cov(𝑢𝑖, 𝑢𝑗) is set to+∞, when i= j.
When 𝑖 ̸= 𝑗, cov(𝑢𝑖, 𝑢𝑗) denotes the covariance between 𝑢𝑖 and𝑢𝑗. Since each user is modeled as the rating sequence for all
items in CF approaches, we can consider a user as a random
variable, which means that it makes sense to calculate the
covariance between two users. Like the covariance between
two variables in probability theory and statistics, we give the
calculation method for the covariance between two users at𝑖 ̸= 𝑗 in

𝑐𝑜V (𝑢𝑖, 𝑢𝑗) = 𝐸 [(𝑢𝑖 − 𝐸 (𝑢𝑖)) ∙ (𝑢𝑗 − 𝐸 (𝑢𝑗))]
= 𝐸 (𝑢𝑖𝑢𝑗) − 𝐸 (𝑢𝑖) 𝐸 (𝑢𝑗)
= 1|𝐼|∑
𝑘∈𝐼

𝑟𝑖𝑘.𝑟𝑗𝑘 − 1
|𝐼|2∑𝑘∈𝐼𝑟𝑖𝑘.∑𝑘∈𝐼𝑟𝑗𝑘

= 1|𝐼| ∑
𝑘∈(𝐼𝑖∩𝐼𝑗)

𝑟𝑖𝑘.𝑟𝑗𝑘 − 1
|𝐼|2∑𝑘∈𝐼𝑟𝑖𝑘.∑𝑘∈𝐼𝑟𝑗𝑘

(7)

Below we use an example to illustrate how to use (7)
to calculate the covariance between two users. let →𝑟1 =
(𝑟11, 𝑟12, 𝑟13, 𝑟14, 𝑟15, 𝑟16) = (0, 5, 2, 0, 3, 0) denote the rating
vector of user 𝑢1 for items 𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, and 𝑖6, and →𝑟2 =
(𝑟21, 𝑟22, 𝑟23, 𝑟24, 𝑟25, 𝑟26) = (4, 0, 0, 3, 0, 4) represent the rating
vector of user 𝑢2 for items 𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, and 𝑖6. According to
(7), the covariance cov(𝑢1, 𝑢2) between 𝑢1 and 𝑢2 is calculated
as follows:𝑐𝑜V(𝑢1, 𝑢2) = (1/|𝐼|)∑𝑘∈(𝐼1∩𝐼2) 𝑟1𝑘.𝑟2𝑘 − (1/|𝐼|2)∑𝑘∈𝐼 𝑟1𝑘.∑𝑘∈𝐼 𝑟2𝑘, where 𝐼1 = {𝑖2, 𝑖3, 𝑖5}, 𝐼2 = {𝑖1, 𝑖4, 𝑖6}, 𝐼 = {𝑖1, 𝑖2,

Table 1: A user-user covariance matrix.

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5𝑢1 +∞ -3.056 -0.444 -2.222 2.222𝑢2 -3.056 +∞ 0.111 2.389 -1.972𝑢3 -0.444 0.111 +∞ -0.889 1.222𝑢4 -2.222 2.389 -0.889 +∞ -2.889𝑢5 2.222 -1.972 1.222 -2.889 +∞
Table 2: A user-item rating matrix.

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6𝑢1 null 5 2 null 3 null𝑢2 4 null null 3 null 4𝑢3 null null 2 null null 2𝑢4 5 null null 3 null null𝑢5 null 5 5 null null 3

𝑖3, 𝑖4, 𝑖5, 𝑖6}, 𝐼1 ∩ 𝐼2 = {𝑖2, 𝑖3, 𝑖5} ∩ {𝑖1, 𝑖4, 𝑖6} = 0, and |𝐼| = 6.
That is, cov(𝑢1, 𝑢2) = 1/6×0− (1/62)(𝑟11 +𝑟12 +𝑟13 +𝑟14+𝑟15 +𝑟16) × (𝑟21 + 𝑟22 + 𝑟23 + 𝑟24+𝑟25 + 𝑟26) = 0 − (1/36)(0 + 5 + 2 +0 + 3 + 0) × (4 + 0 + 0 + 3 + 0 + 4) ≈ −3.056.

Further, Table 1 demonstrates a user-user covariance
matrix, which is derived by (7) from a user-item rating
matrix shown in Table 2. As shown in Table 1, a user-
user covariance matrix is a symmetric matrix and adds the
negative correlation to depict the opposite trends of users’
interests. For traditional similarity measures, if two users
have no common rated items, the similarity between the two
users is usually equal to zero. For example, the similarity
between 𝑢1 and 𝑢2 is equal to the similarity between 𝑢1 and𝑢4, and both values are zero according to the traditional
similarity measures, because 𝑢1 have no common rated items
with 𝑢2 and 𝑢4, as shown in Table 2. This means that the
traditional similarity measures cannot distinguish the degree
of dissimilarity between the userswhohave no common rated
items. However, we can find from Table 1 that the covariance
cov(𝑢1, 𝑢2) between 𝑢1 and 𝑢2 is different from the covariance
cov(𝑢1, 𝑢4) between 𝑢1 and 𝑢4, both values are negative,
and the absolute value of cov(𝑢1, 𝑢2) is bigger than that of
cov(𝑢1, 𝑢4). It means that 𝑢2 is more disinterested in those
items, which 𝑢1 are of interest to, than 𝑢4. From the above
example, we can learn that the user-user covariance matrix
has a finer description capability for user similarity trends,
and especially for the users without common rated items,
it shows the more powerful description capability than the
traditional similarity measures.

3.2. The Proposed Collaborative Filtering Algorithm. In the
proposed enhancing collaborative f iltering method based
on covariance matrix (CFCM), we first build the user-user
covariance matrix 𝐶 = {𝑐𝑖𝑗}𝑚×𝑚 based on the user-item
rating matrix. The above Definition 1 and (7) give the way
of computing 𝐶 = {𝑐𝑖𝑗}𝑚×𝑚. Then, for any target user u,
we employ the user-user covariance matrix to calculate its𝐾 neighbors with the most similar interested trends and
opposite 𝐾 neighbors with the most dissimilar interested
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Table 3: The basic attributes of MovieLens-1M.

Dataset Number of users Number of
Movies

Number of
Ratings Sparsity level Rating domain

MovieLens-1M 6040 3706 1M 4.2% {1, 2, 3, 4, 5}

Input: 𝑅 and 𝑢, where 𝑅 is the user-item rating matrix and 𝑢 denotes a target user.
Output: Result, i.e., the recommendation list for 𝑢.
1: Result fl ⌀;𝑁𝑢,𝑠 fl ⌀;𝑁𝑢,𝑑 fl ⌀; Orderlistfl ⌀;
2: build the user-user covariance matrix 𝐶 = {𝑐𝑖𝑗}𝑚×𝑚 based on 𝑅;
3: 𝑁𝑢,𝑠 fl GetKSimilarUser(𝑢);
4: 𝑁𝑢,𝑑 fl GetKDSimilarUser(𝑢);
5: for ∀𝑖 ∈ 𝐼 do

6: 𝑟𝑢𝑖 = 𝑟𝑢 + 𝛼 × ∑V∈𝑁𝑢,𝑠 𝑐𝑜V(𝑢, V) × (𝑟V𝑖 − 𝑟V)∑V∈𝑁𝑢,𝑠 |𝑐𝑜V(𝑢, V)| + (1 − 𝛼) × ∑V∈𝑁𝑢,𝑑 |𝑐𝑜V(𝑢, V)| × (𝑟V𝑖 − 𝑟V)∑V∈𝑁𝑢,𝑑 |𝑐𝑜V(𝑢, V)| ;

7: insert 𝑖 intoOrderlist in descending order of 𝑟𝑢𝑖;
8: end for
9: Result fl GetFirstn(Orderlist)
10: return Result;

Algorithm 1: CFCM (𝑅, 𝑢).

trends, respectively. In this paper, we use𝑁𝑢,𝑠 to denote the set
of u’s 𝐾 most similar neighbors and 𝑁𝑢,𝑑 to denote the set of
u’s𝐾most dissimilar neighbors. Finally, the rating prediction𝑟𝑢𝑖 of user 𝑢 for item 𝑖 is computed by the following equation:

𝑟𝑢𝑖 = 𝑟𝑢 + 𝛼 × ∑V∈𝑁𝑢,𝑠 𝑐𝑜V (𝑢, V) × (𝑟V𝑖 − 𝑟V)∑V∈𝑁𝑢,𝑠 |𝑐𝑜V (𝑢, V)| + (1 − 𝛼)

× ∑V∈𝑁𝑢,𝑑 |𝑐𝑜V (𝑢, V)| × (𝑟V𝑖 − 𝑟V)∑V∈𝑁𝑢,𝑑 |𝑐𝑜V (𝑢, V)|
(8)

In (8), 𝑟𝑢 denotes u’s average rating; (∑V∈𝑁𝑢,𝑠 𝑐𝑜V(𝑢, V) ×(𝑟V𝑖 − 𝑟V))/∑V∈𝑁𝑢,𝑠 |𝑐𝑜V(𝑢, V)| reflects the influence on 𝑟𝑢𝑖
from the users who have the most similar interested
trends with u, which ensures the recommendation precision;(∑V∈𝑁𝑢,𝑑 |𝑐𝑜V(𝑢, V)| × (𝑟V𝑖 − 𝑟V))/∑V∈𝑁𝑢,𝑑 |𝑐𝑜V(𝑢, V)| represents
the influence on 𝑟𝑢𝑖 from the users who have the most
dissimilar interested trends with u, which provides the
diversity for the recommended result;𝛼 is the threshold that is
employed to control the proportion of the above two aspects
of influences. 𝛼 takes a real value between 0 and 1.

The difference between CFCM and the traditional CF
approaches is mainly reflected in the following two aspects:
(1) CFCM uses the covariance cov(u, v) instead of the simi-
larity sim(u, v) of the traditional CF approaches to enhance
the recommendation precision, and (2) CFCM leverages the
set of u’s𝐾most dissimilar neighbors to improve the diversity
of recommendation results.

Based on the above processing strategy, we formalize
CFCMmethod in Algorithm 1.

In Algorithm 1, the function GetKSimilarUser(u) is
responsible for getting the top 𝐾 users who have the greatest
covariance with u, the function GetKDSimilarUser (u) is
responsible for getting the top𝐾 users who have the smallest

covariance with u, and the function GetFirstn(Orderlist)
retrieves the first 𝑛 items from Orderlist.

4. Performance Evaluation

In this section, we evaluate the performance of the proposed
approach (CFCM) through extensive experiments. We first
describe the experimental dataset chosen for our experiments
in Section 4.1. Then, in Section 4.2 we introduce the perfor-
mance metrics of concern in this paper. Finally, we present
and analyze the experimental results in Section 4.3.

4.1. Dataset Description. Similar to the existing litera-
ture related CF methods, we choose MovieLens (https://
grouplens.org/datasets/movielens/) as the data source for
our experiments. MovieLens includes integer ratings of
users for movies. Specifically, the dataset used in our
experiments is MovieLens-1M (https://grouplens.org/data-
sets/movielens/1m/) that is a stable benchmark dataset.
MovieLens-1M consists of 6040 users who have rated a total
of 3706 different movies and the total number of ratings
is 1000209. All movies are divided into 18 basic categories
by their themes. The sparsity level of the user-movie rating
matrix is about 4.2% for MovieLens-1M. Here, the sparsity
level is described as the percentage of all possible ratings
available in a dataset. Table 3 shows the basic attributes of
MovieLens-1M.

Like the literature [15–18], we randomly pick 80% of
ratings from MovieLens-1M as the training set and the rest
as the testing set.

4.2. Performance Metrics. In our experiments, we use four
performance metrics, the Mean Absolute Error (MAE), the
Normalized Mean Absolute Error (NMAE), F1, and Diversity

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/1m/


Mathematical Problems in Engineering 5

to measure the performance of the proposed approach
(CFCM).

MAE is a popular evaluation metric widely used to
measure the precision of a recommendation method. MAE
is defined by the following equation:

𝑀𝐴𝐸 = ∑𝑖𝑗 𝑟𝑖𝑗 − 𝑟𝑖𝑗𝑛 (9)

where 𝑟𝑖𝑗 represents the rating of user 𝑢𝑖 for item j, 𝑟𝑖𝑗
denotes the rating prediction of user 𝑢𝑖 for item 𝑗 by a
recommendation method, and 𝑛 represents the number of
tested ratings.

NMAE is the normalized MAE and is formulated as
follows:

𝑁𝑀𝐴𝐸 = 1𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛
∑𝑖𝑗 𝑟𝑖𝑗 − 𝑟𝑖𝑗𝑛 (10)

where 𝑟𝑚𝑎𝑥 and 𝑟𝑚𝑖𝑛, respectively, represent the maximum
and minimum values of all user’s ratings.

MAE and NMAE are used to describe the prediction
precision of recommendation methods. The smaller MAE
and NMAEmean the more accurate prediction.

F1 is introduced as one of themost important comprehen-
sive performance metrics for measuring the performance of
the recommendation methods. F1 is defined by the following
equation:

𝐹1 = 21/𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 1/𝑟𝑒𝑐𝑎𝑙𝑙 (11)

where the definitions of precision and recall are formulated by
the following equations, respectively:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑𝑢∈𝑈 |𝑅 (𝑢) ∩ 𝑇 (𝑢)|
∑𝑢∈𝑈 |𝑅 (𝑢)| (12)

𝑟𝑒𝑐𝑎𝑙𝑙 = ∑𝑢∈𝑈 |𝑅 (𝑢) ∩ 𝑇 (𝑢)|
∑𝑢∈𝑈 |𝑇 (𝑢)| (13)

where 𝑅(𝑢) represents the recommendation result set gen-
erated for user 𝑢 by a recommendation method and 𝑇(𝑢)
denotes the result set for user 𝑢 generated by u’s actual
behaviors on the testing set. Similar to some previous work,
we use N=20 as the number of items recommended to the
users while computing precision, recall and F1.

The higher F1 of a recommendation method means the
better comprehensive performance of the recommendation
method.

Diversity, as an important performance metric, is used to
describe the dissimilarity between the items in the recom-
mendation result set. The larger Diversity means the better
recommended performance at the same precision. Diversity
is formulated as follows:

𝐷𝑖V𝑒𝑟𝑠𝑖𝑡𝑦 = 1|𝑈| ∑𝑢∈𝑈(1 − ∑𝑖,𝑗∈𝑅(𝑢),𝑖 ̸=𝑗 𝑠 (𝑖, 𝑗)(1/2) |𝑅 (𝑢)| (|𝑅 (𝑢)| − 1)) (14)

where s(i, j) denotes the Jaccard similarity of 𝑖 and 𝑗.
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Figure 1: Impact of 𝛼 and𝐾 onMAE.

4.3. Experimental Results. It can be seen from (8) that 𝛼 and
the number 𝐾 of neighbors with the most similar or most
dissimilar interested trend have an inevitable influence on
the performance of CFCM. In this section, we first evaluate
the impact of 𝛼 and 𝐾 on the performance of CFCM, and
then we compare CFCMwith the state-of-the-art approaches
based on traditional CF methods. We can find that at 𝛼 =0, (8) degenerates to 𝑟𝑢𝑖 = 𝑟𝑢 + (∑V∈𝑈𝑢,𝑑 |𝑐𝑜V(𝑢, V)| ×(𝑟V𝑖 − 𝑟V))/∑V∈𝑈𝑢,𝑑 |𝑐𝑜V(𝑢, V)|, i.e., the calculation of 𝑟𝑢𝑖 only
considers 𝐾 most dissimilar neighbors of the target user.
Obviously, 𝛼 = 0 is a special case for our method.

Figure 1 shows the impact of the parameters 𝛼 and 𝐾
on MAE. As shown in Figure 1, we can learn that when𝛼 ̸= 0, MAE decreases with 𝛼 for any fixed K; i.e., the
recommendation precision increases with 𝛼 for any fixed 𝐾.
This result is not surprising because 𝛼 represents the weight
of ensuring the recommended precision in (8), and a larger𝛼 means a higher recommendation precision. Furthermore,
we can find from Figure 1 thatMAE remains relatively stable
when𝛼 is greater than 0.8whichmeans that there ismuch less
benefit to improve the prediction precision of recommenda-
tion by continually increase 𝛼 when it is larger the 0.8. We
can also observe that MAE decreases with 𝐾 when 𝛼 takes
a fixed value between 0 and 0.7. This is because the larger 𝐾
means more neighbors are considered when calculating the
rating prediction. The more neighbors naturally lead to the
better recommendation precision. In addition, for a fixed 𝛼
between 0.7 and 1,MAE no longer decreases with𝐾 when𝐾 is
greater than 20.This demonstrates when 𝛼 is greater than 0.7,
the recommendation precision cannot be simply improved
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Figure 2: Impact of 𝛼 and 𝐾 on NMAE.

by increasing 𝐾. For 𝛼 = 0, the trend of MAE is slightly
fluctuating only when 𝐾 is relatively small, such as 𝐾 = 20.
At the same time, we find that 𝐾 had very little influence on
MAE at 𝛼 = 0.

Figure 2 demonstrates the impact of the parameters 𝛼 and𝐾 on NMAE. As we expect, the result and the trend of the
curve are very similar to Figure 1.The reason is that NMAE is
the normalized MAE.

Figure 3 depicts the impact of the parameters 𝛼 and 𝐾
on F1. We can see from Figure 3 that F1 increases with 𝛼
for any fixed K, that is, the recommendation comprehensive
performance (including precision and recall) increases with𝛼 for any fixed 𝐾. The reason is the same as the one for
Figure 1. We can also observe from Figure 3 that F1 increases
with𝐾 when 𝛼 takes a fixed value between 0 and 0.7, and the
growth rate gradually reduces as 𝛼 increases. When 𝛼 takes a
fixed value between 0.7 and 1, F1 no longer increases with 𝐾.
This demonstrates when 𝛼 is greater than a certain threshold
(i.e., 0.7), it is not feasible to improve the recommendation
comprehensive performance by increasing K.

Figure 4 shows the impact of the parameters 𝛼 and 𝐾 on
Diversity. We can find from Figure 4 that Diversity decreases
with 𝛼 for any fixed K, and this decreasing trend becomes
more apparent when 𝛼 is greater than 0.8. This result is not
surprising because the increase of 𝛼 means the decrease of
the weight that ensures the recommendation diversity. We
can also observe from Figure 4 that Diversity has a very small
change with 𝐾 when 𝛼 takes a fixed value between 0 and 0.9.
This demonstrates that Diversitymainly depends on 𝛼 and is
less affected by K.
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Figure 3: Impact of 𝛼 and𝐾 on F1.

By analyzing Figures 1–4, we can find that when 𝛼 takes
0.8, CFCM can achieve the optimal overall performance in
terms of both recommendation precision and recommenda-
tion diversity.

Further, in order to demonstrate the superiority of
CFCM, we compare CFCM with the existing CF methods
based on the traditional similarity measures. In the state-of-
the-art CF methods, we select PCC [11], CPCC [12], JMSD
[14], MJD [15], PIP [16], AC-PCC [17], NHSM [18], and BCF
[19] as the baseline methods of our experiments. For CFCM,
the parameter 𝛼 is set to 0.8 in the following experiments. To
ensure fairness, we adopt the optimal experimental parame-
ter setting for each baseline method.

Figure 5 shows the performance comparison of CFCM
with the above-mentioned eight methods on MAE for
different 𝐾. As we expect, our method CFCM evidently
outperforms the other eight methods on MAE at all 𝐾
values. We can also observe from Figure 5 that the MAE
of CFCM is the most stable and is almost unaffected by𝐾. The reason is that the user-user covariance matrix has a
finer description capability for user similarity trend than the
traditional similarity measures.

Figure 6 depicts the performance comparison of CFCM
with the other eight methods on NMAE for different 𝐾.
As shown in Figure 6, CFCM evidently outperforms the
other eight methods on NMAE at all 𝐾 values. Similar to
Figure 5, theNMAE of CFCM is the most stable and is almost
unaffected by K.

Figure 7 demonstrates the performance comparison of
CFCM with the other eight methods on F1 for different 𝐾.
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Figure 4: Impact of 𝛼 and K on Diversity.
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Figure 5: Performance comparison onMAE.
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Figure 6: Performance comparison on NMAE.
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Figure 8: Performance comparison on Diversity.

We can see from Figure 7 that CFCM evidently outperforms
the other eight methods on F1 at all 𝐾 values. We can also
observe fromFigure 7 that theNMAEs of CFCM, NHSM and
AC PCC are almost unaffected by𝐾 and have a good stability.

Figure 8 shows the performance comparison of CFCM
with the other eight methods on Diversity for different 𝐾.
As we expect, CFCM evidently outperforms the other eight
methods on Diversity at all 𝐾 values. This is because CFCM
adds the influencing factor from the neighbors with the most
dissimilar interested trend into the rating prediction, which
enhances the diversity of recommendation results.

5. Conclusion

Although the traditional CF methods have been widely
studied and deployed, most of these methods suffer several
inherent weaknesses. In this paper, to solve the inherent
weaknesses we build a new user-user covariance matrix
to replace the traditional CF’s user-user similarity matrix.
Compared to the user-user similarity matrix, the user-user
covariance matrix has a finer description capability for
user similarity trends, and especially for the users without
common rated items, it shows the more powerful description
capability. Further, we propose an enhancing collaborative
filtering method based on the user-user covariance matrix.
The experimental results show that the proposed method can
significantly improve the diversity of recommendation results
in ensuring a good recommendation precision.

In the future work, we will consider introducing new
quality measure metrics, such as coverage quality measure

[20], to measure the proposed approach more comprehen-
sively.
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