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In this paper, we consider the problem of convolutive blind source separation in frequency domain and introduce a solution to the
problem in an independent vector analysis (IVA) framework. IVA utilizes both the statistical independence of different sources in
each frequency bin and the statistical dependence of the same source in different frequency bins. However, most of previous works
impose orthogonality constraint on the rows of each separation matrix which may undermine the separation performance. In this
work, we propose a nonorthogonal IVA algorithm based on decoupled relative Newton method.This proposed algorithm updates
the separation matrices row by row, and unlike deflation separation algorithm, there is no separation error accumulation arising.
Simulation results are provided to show the superior convergence behavior and separation performance of the proposed algorithm.

1. Introduction

Blind source separation (BSS) has been widely researched
over the last decades since it is able to estimate the source
signals from their mixtures (observed sensor signals) without
knowing both the mixing process and the sources, such
as crosstalk separation in telecommunications [1], speech
enhancement [2], and biomedical signal processing [3]. From
the mixing model point of view, the works on BSS can
be divided into two categories, which are instantaneous
mixing and convolutivemixing. For the instantaneousmixing
BSS problem, the most popular and promising method to
address this issue is independent component analysis (ICA)
[4–6]. ICA assumes that the source signals are mutually
statistically independent and at most one source is Gaussian
distributed. Based on this assumption, some separation
criteria are employed, such as non-Gaussianity maximization
[7] and negentropy maximization [6]. However, in many real
applications such as wireless communications, the instan-
taneous mixing model is invalid. In this case, the sources
undergo propagation time delay and reverberation which

results in convolutive mixing. In the recent decades, various
approaches have been proposed to deal with this case and
they basically fall into two categories: time domain [8, 9]
and frequency domain [10–12] algorithms. Time domain
methods are mainly inspired by the existing blind deconvo-
lution methods and the solutions usually require intensive
computations due to the relationship of filter coefficients with
each other. The computation load can be overcome by the
frequency domain methods. By applying Fourier transform
to the time domain convolutive observed signals, it can
be converted to multiple independent linear mixing in the
frequency domain. Subsequently, the separation methods
for instantaneous mixing can be performed on every single
frequency bin. However, there is a common problem for
instantaneous BSS methods that the estimated signals are
disordered. Therefore, further postprocessing is necessary to
correct the permutation disorder at each frequency bin and
then the separated signals in the time domain are recon-
structed properly. Extensive works [13, 14] have been per-
formed to solve the permutation problem, but most of these
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permutation correction methods do not perform consistently
well.

Independent vector analysis (IVA), an extension of ICA,
can solve the frequency domain BSS problem efficiently and
normally requires no bin-wise permutation correction post
processing [10–12]. IVA algorithms extend the univariate
function of ICA algorithms to multivariate function as the
score function. In this way, the separation for different
frequency bin data is no longer separate but joint, and
the permutation problem is mitigated by exploiting the
dependences of frequency bins. Various algorithms employ
different multivariate prior distributions to preserve the
interfrequency dependences for individual sources and cor-
responding nonlinear score functions are derived. However,
most of these algorithms impose orthogonality constraint on
the rows of each separation matrix which may undermine
the separation performance. In addition, the most popular
algorithms to address this issue are based on gradient descent
method because of its simplicity [14, 15], but they suffer
from slow convergence. Several Newton-based algorithms
are proposed to speed up the convergence [12, 16]. However,
performance of these algorithms, as shown in this paper, may
be unsatisfactory in certain scenarios.

In this paper, we propose a nonorthogonal IVA algo-
rithm based on decoupled relative Newton method. This
proposed algorithm updates the separation matrices row by
row, and, unlike deflation separation algorithm, there is no
separation error accumulation arising. For real data, it has
been shown that the decoupled IVA algorithm may converge
faster than the vector gradient decent and Newton ones [17].
This paper is an extended version of the literature [17] to
the complex domain. In order to avoid the occurrence of
singular solutions, some approximate solutions are taken
in the process of algorithm derivation, and the improved
algorithm is applied to solve the problem of convolutive blind
separation. Simulation results are demonstrated to confirm its
superior performance.

The rest of this paper is organized as follows.The problem
of IVA for frequency domain blind source separation is pre-
sented in Section 2. The proposed algorithm is introduced in
Section 3. Finally, the performance of the proposed algorithm
is evaluated in Section 4 by means of some simulations, and
our conclusions are stated in Section 5.

2. Frequency Domain IVA

Let there be 𝑁 sensors and 𝑁 independent sources; the
convolutedly mixture at the 𝑛𝑡ℎ sensor is

𝑥𝑛 (𝑚) =
𝑁∑
𝑗=1

𝑃−1∑
𝑝=0

𝑎𝑛𝑗 (𝑝) 𝑠𝑗 (𝑚 − 𝑝) (1)

where 𝑠𝑗(𝑚) is 𝑗𝑡ℎ source in the time domain, 𝑎𝑛𝑗(𝑝) is
the impulse response of the channel linking 𝑗𝑡ℎ source
and 𝑛𝑡ℎ sensor, and 𝑃 is the channel order. The signals
are transformed to the frequency domain using the short
time Fourier transform (STFT). A sliding window is used to
perform discrete Fourier transform; then a time-frequency
representation of the observation signal is created. Using

STFT, the sensor observation vector at time block 𝑡 and
frequency bin 𝑘 becomes

x[𝑘]𝑡 = A[𝑘]s[𝑘]𝑡 1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑡 ≤ 𝐿 (2)

where s[𝑘]𝑡 = [𝑠[𝑘]1,𝑡 , 𝑠[𝑘]2,𝑡 , ⋅ ⋅ ⋅ , 𝑠[𝑘]𝑁,𝑡]𝑇 (superscript 𝑇 denotes
transpose operator) is a source vector and A[𝑘] ∈ C𝑁×𝑁 is the
unknownnonsingularmixingmatrix.The 𝑛𝑡ℎ source compo-
nent vector (SCV) can be written as s𝑇𝑛,𝑡 = [𝑠[1]𝑛,𝑡 , 𝑠[2]𝑛,𝑡 , ⋅ ⋅ ⋅ , 𝑠[𝐾]𝑛,𝑡 ],
which is independent of all the other SCVs. Then, the proba-
bility density function of the concatenated source vector can
be written as 𝑓(s1,𝑡, s2,𝑡, ⋅ ⋅ ⋅ , s𝑁,𝑡) = ∏𝑁𝑛=1𝑓(s𝑛,𝑡). The IVA
solution finds 𝐾 demixing matrices and the corresponding
source signal estimations for each frequency bin, denoted
as W[𝑘] and y[𝑘]𝑡 = W[𝑘]x[𝑘]𝑡 for the 𝑘𝑡ℎ frequency bin,
respectively. 𝑛𝑡ℎ estimated source of the 𝑘𝑡ℎ frequency bin
at time block 𝑡 is 𝑦[𝑘]𝑛,𝑡 = (w[𝑘]𝑛 )𝑇x[𝑘]𝑡 , where (w[𝑘]𝑛 )𝑇 is 𝑛𝑡ℎ row
vector ofW[𝑘].

3. Proposed Algorithm

3.1. Decoupled Relative Leaning. In the decoupled relative
learning, the demixing matrix W[𝑘] is updated through
repeated left multiplications with matrices in form [5]

W[𝑘]𝑛𝑒𝑤 = (I + uk𝐻)W[𝑘]𝑜𝑙𝑑 (3)

until convergence, where I is the𝑁×𝑁 identity matrix and u
and k are two𝑁 × 1 vectors to be optimized. Noting that the
eigenvalues of I+uk𝐻 are 1 withmultiplicity𝑁−1 and 1+k𝐻u,
we can find that (3) is a rank-1 update as long as 1 + k𝐻u ̸= 0.
Thus a nonsingular matrix can be transformed into another
arbitrary nonsingular matrix within𝑁 steps in (3).

It is obvious that the decoupled relative learning trans-
forms the matrix optimization problem into a series of vector
optimization problems; thus we can design the algorithm
more flexibly compared with the relative (natural) gradient
algorithm.We only consider one special kind of relative rank-
1 update, i.e., letting u = e𝑛, where e𝑛 is a unit vector whose𝑛𝑡ℎ element is 1. Then, by letting u = e1, e2, ⋅ ⋅ ⋅ , e𝑁, we can
update W[𝑘] row by row via optimizing k. In this way, as
shown in the next subsection, the calculation of the Newton-
based learning algorithm is simplified.

3.2. Proposed Algorithm. In this paper, we use the score
function [18]

𝐽𝐼𝑉𝐴 ≡
𝑁∑
𝑛=1

𝐻[y𝑛,𝑡] −
𝐾∑
𝑘=1

log 󵄨󵄨󵄨󵄨󵄨det (W[𝑘])󵄨󵄨󵄨󵄨󵄨 − 𝐶1 (4)

where 𝐻[y𝑛,𝑡] = 𝐸[− log 𝑝(y𝑛,𝑡)] is the entropy of y𝑛,𝑡 and𝐶1 is constant which is independent of demixing matrices
W[𝑘]|𝑘=1,2,⋅⋅⋅ ,𝐾. As processed in ICA, we select a nonlinear
function 𝐺 : R𝐾×1 󳨃󳨀→ R1×1 to approximate the entropy of
SCV; e.g.,

𝐻[y𝑛,𝑡] = 𝐸 {𝐺 (y𝐻𝑛,𝑡y𝑛,𝑡)}
𝐺 (y𝑛,𝑡) = (y𝐻𝑛,𝑡y𝑛,𝑡)2

(5)
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Without loss of generality, according to (3), the optimiza-
tion of the 𝑛𝑡ℎ row ofW[𝑘] can be written as

Δw[𝑘]𝑛 = w[𝑘]𝑛,𝑛𝑒𝑤 − w[𝑘]𝑛,𝑜𝑙𝑑 = (Δk𝐻W[𝑘]𝑜𝑙𝑑)𝑇 (6)

where Δk is a small perturbation of k at 0. Correspondingly,
the change of the 𝑛𝑡ℎ estimated source within 𝑘𝑡ℎ frequency
bin is

Δ𝑦[𝑘]𝑛,𝑡 = (Δw[𝑘]𝑛 )𝑇 x[𝑘]𝑡 = Δk𝐻W[𝑘]𝑜𝑙𝑑x[𝑘]𝑡 = Δk𝐻y[𝑘]𝑡 (7)

Noting that det(W[𝑘]𝑛𝑒𝑤) = (1 + Δk𝐻e𝑛)det(W[𝑘]𝑜𝑙𝑑), the
change of cost can be written as

Δ𝐽 = 𝐸 {𝐺 (y𝑛,𝑡 + Δ𝑦[𝑘]𝑛,𝑡 e𝑘) − 𝐺 (y𝑛,𝑡)}
− log 󵄨󵄨󵄨󵄨󵄨1 + Δk𝐻e𝑛󵄨󵄨󵄨󵄨󵄨

(8)

Then, using second-order Taylor series expansion to
approximate𝐺(y𝑛,𝑡 +Δ𝑦[𝑘]𝑛,𝑡 e𝑘) and log|1 +Δk𝐻e𝑛|, the change
of cost Δ𝐽 can be written as

Δ𝐽 ≈ [Δk𝐻 Δk𝑇] [ f
f∗
]

+ 12 [Δk𝐻 Δk𝑇] [
D0 D1
D∗1 D∗0

][ ΔkΔk∗]
(9)

where f = 𝐸{𝐺󸀠(y𝑛,𝑡)|𝑦[𝑘]𝑛,𝑡 y[𝑘]𝑡 } − e𝑛, 𝐺󸀠(y𝑛,𝑡)|𝑦[𝑘]𝑛,𝑡 ,𝐺󸀠󸀠(y𝑛,𝑡)|𝑦[𝑘]𝑛,𝑡 , D0 = 𝐸{𝐺󸀠󸀠(y𝑛,𝑡)|𝑦[𝑘]𝑛,𝑡 (𝑦[𝑘]𝑛,𝑡 )∗y[𝑘]𝑡 (y[𝑘]𝑡 )𝐻}, and
D1 = 𝐸{𝐺󸀠󸀠(y𝑛,𝑡)|𝑦[𝑘]𝑛,𝑡 𝑦[𝑘]𝑛,𝑡 y[𝑘]𝑡 y[𝑘]𝑡 } + e𝑛e𝐻𝑛 are the first- and
second-order derivatives of 𝐺(y𝑛,𝑡) with respect to 𝑦[𝑘]𝑛,𝑡 ,
respectively.

To design a Newton algorithm, the quadratic form in (9)
is required to be positive definite. However, the quadratic
formmaynot be positive definitewhen𝑦[𝑘]𝑛,𝑡 does not converge
to the source. Therefore, we make an approximation of the
quadratic form to ensure the positive definiteness. When
𝑦[𝑘]𝑛,𝑡 converges to the source, D0 and D1 reduce to diagonal
matrices respectively. ApproximateD0 and D1 as

D̂0 = diag {𝐸{𝐺󸀠󸀠 (y𝑛,𝑡)󵄨󵄨󵄨󵄨󵄨𝑦[𝑘]𝑛,𝑡 (𝑦[𝑘]𝑛,𝑡 )∗ y[𝑘]𝑡 ⊙ (y[𝑘]𝑡 )
∗}} (10)

D̂1 = diag {𝐸{𝐺󸀠󸀠 (y𝑛,𝑡)󵄨󵄨󵄨󵄨󵄨𝑦[𝑘]𝑛,𝑡 𝑦[𝑘]𝑛,𝑡 y[𝑘]𝑡 ⊙ y[𝑘]𝑡 } + e𝑛} (11)

where diag{d} generates a diagonal matrix with diagonal
element vector d and ⊙ denotes element-wise multiplication
of two vectors. Then, the Hessian matrix for the 𝑖𝑡ℎ element
of Δk is [ 𝑑0,𝑖 𝑑1,𝑖𝑑∗1,𝑖 𝑑0,𝑖

], where 𝑑0,𝑖 and 𝑑1,𝑖 are the 𝑖𝑡ℎ diagonal
elements of D̂0 and D̂1, respectively. To ensure the positive
definiteness of this Hessian matrix, a modification is made:

𝑑0,𝑖 = max [𝑑0,𝑖, (1 + 𝛼) 󵄨󵄨󵄨󵄨𝑑1,𝑖󵄨󵄨󵄨󵄨] (12)

where 𝛼 is a small positive number. The Newton update rule
for the 𝑖𝑡ℎ element of Δk is derived as

ΔV𝑖 = −𝑑0,𝑖𝑓𝑖 − 𝑑1,𝑖𝑓𝑖
∗

𝑑20,𝑖 − 󵄨󵄨󵄨󵄨𝑑1,𝑖󵄨󵄨󵄨󵄨2 (13)

From the derivation process of the proposed algorithm,
we can see that there is no orthogonality constraint on the
demixing matrices and no separation error accumulation
arises.

4. Simulation and Results

In the first simulation, we consider the separation of two
convoluted speech signals generated by (1), and set the
channel order 𝑃 = 3. At each mixed signal, 1024-point FFT
is done to time blocks. Figure 1 shows the separation result of
two convolutedly mixed speech signals using the proposed
algorithm. It indicates that the proposed algorithm is able
to separate convolutive mixing successfully in frequency
domain.

In order to numerically compare the separation perfor-
mance of the proposed decoupled IVA algorithm with other
IVA algorithms, multiple datasets separation for complex
sources are simulated. The complex mixed signal is generated
by (2). In addition, the dependence elements of SCV are
generated as

s𝑛,𝑡 =
𝛽∑
𝑖=0

M𝑛,𝑖z𝑛,𝑡−𝑖 (14)

where M𝑛,𝑖 is a real-valued 𝐾 × 𝐾 matrix and z𝑛,𝑡−𝑖 is
a zero-mean vector whose entities are subject to uniform
distribution. In the following simulations, 𝛽 = 3.

In this section, we compare the proposed decoupled IVA
algorithm with other two algorithms, vector gradient, and
Newton updates for IVA with multivariate Gaussian model
[16], respectively. Performance is assessed using interference
to source ratio (ISR)

𝐼𝑆𝑅 = 1
𝐾𝑁 (𝑁 − 1)

𝐾∑
𝑘=1

𝑁∑
𝑚,𝑛=1
𝑚 ̸=𝑛

(𝐶[𝑘]𝑚,𝑛)2 (15)

where 𝐶[𝑘]𝑚,𝑛 is the (𝑚, 𝑛) element of C[𝑘] = W[𝑘]A[𝑘]; here we
assume that no permutation exists. The smaller the value of𝐼𝑆𝑅, the better the separation performance, specially, 𝐼𝑆𝑅 = 0
implies ideal separation performance. In all the simulations,
the results of 100 independent realizations are averaged.

Figure 2 shows the convergence behavior of the ISR.
We observe that, among the three algorithms, the proposed
decoupled relative Newton algorithm converges in the fewest
iterations, and the vector gradient algorithm performs poorly
compared with the other two algorithms. In addition, the
decoupled relative Newton algorithm has the lowest ISR
values when the algorithm converges, which implies that the
decoupled relative Newton algorithm has the best separation
performance.

Figure 3 depicts the separation performance versus the
datasets number. We can observe that the separation perfor-
mance of the proposed algorithm is the best among the three
algorithms, and the ISR value of the proposed decoupled
algorithm is lower than the other comparison algorithms
around 15-20dB. Furthermore, the ISR of the three algorithms
increases with the number of datasets. In addition, we also
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Figure 1: Separation of convoluted speech signals using the proposed algorithm.
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Figure 2: Mean ISR of 100 trails versus number of iterations for
K=4,N=4,T=3000 using the vector gradient, Newton and proposed
decoupled relative Newton optimization algorithms.
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Figure 4: Mean ISR of 100 trails versus the number of samples per
dataset for K=4,8,12, N=4 using the vector gradient, Newton, and
proposed decoupled relative Newton optimization algorithms.

consider the influence of the number of sources. It shows
that the number of sources has little effect on the separation
results.

Figure 4 shows the ISR of the estimated sources as a func-
tion of the number of samples per dataset, where we can find
that the ISR of the proposed algorithm is the lowest among
the three algorithms and the ISR of the three algorithms
increases as the number of datasets increases, with the largest
rate of decrease occurring for the sample length smaller than
1000. When the sample length is smaller than 1000, vector
gradient and Newton optimization algorithms have a similar
separation performance, while, with the increase of sample
length, the influence of the number of datasets becomesmore
apparent.

5. Conclusion

In this paper, we propose a new IVA algorithm for sep-
arating convolutedly mixed signals in frequency domain
which is based on decoupled relative Newton approach.
This algorithm decomposes the matrix optimization problem
into a series of row vector optimization problems, and the
separation matrices do not need to be orthogonal. Simulation
results show that the proposed algorithm converges fast and
its separation performance is superior to that of other two
algorithms based on vector gradient and Newton methods,
respectively.
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