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A refined variational asymptotic method (VAM) and Hamilton’s principle were used to establish the free vibration differential
equations of a rotating composite thin-walled shaft with circumferential uniform stiffness (CUS) configuration. The generalized
differential quadrature method (GDQM) was adopted to discretize and solve the governing equations. The accuracy and efficiency
of theGDQMwere validated in analyzing the frequency of a rotating composite shaft. Compared to the available results in literature,
the computational results by the GDQM are accurate. In addition, effects of boundary conditions, rotating speed, ply angle, ratio
of radius over thickness, and ratio of length over radius on the frequency characteristics were also investigated.

1. Introduction

A rotating shaft, as an important structure, is commonly used
in many applications. Composite materials have been widely
applied in shaft structural designs owing to their advantages
of strength, specific modulus, corrosion resistance, wear
resistance, fatigue life, light weight, high specific stiffness, and
design ability.

In the past decades, great effort has been made in
developingmore accurate and appropriate models andmeth-
ods to analyze dynamic characteristics of shaft structures.
Zinberg and Symonds [1] determined the critical speeds of
rotating anisotropic cylindrical shafts simply supported at
the ends using equivalent modulus beam theory (EMBT).
Dos Reis et al. [2] evaluated the rotordynamic performance
of shaft configuration of Zinberg and Symmonds [1] using
the finite element method. Kim and Bert [3] derived the
motion equations of the rotating composite thin-walled shafts
by means of the thin- and thick-shell theories of first-
order approximation. They investigated the critical speeds
of composite shafts including the effect of bending-twisting
coupling. Bert and Kim [4] studied the dynamic instability of
drive shafts subjected to fluctuating torque and/or rotational
speed by means of various thin shell theories. The theories
included the combined effects of torsion and rotation. Singh
and Gupta [5] developed two composite spinning shaft

models by using EMBT and layerwise beam theory (LBT),
respectively. It was indicated that a discrepancy existed
between the critical speeds obtained from the two theories
for the unsymmetric laminated composite shaft. Chen and
Peng [6, 7] analyzed the stability of a rotating shaft subjected
to axial periodic forces using the finite element method. In
their study, each node contains 5 degrees of freedom. Based
on a first-order shear deformable beam theory, Chang et
al. [8] presented a simple spinning composite shaft model.
They found the approximate solution of the system using
the finite element model with three-node one-dimensional
line elements that have 6 degrees of freedom in each node.
Lagrangian interpolation functionswere used to approximate
the displacement fields of the shaft. Chang et al. [9] studied
the vibration behaviors of the rotating composite shafts
containing randomly oriented reinforcements. The finite
element model of the composite shaft [8] was extended to
the case that contains the fiber inclusions by taking effective
elastic moduli into account. Gubran and Gupta [10] modified
EMBTwith shear deformation, rotary inertia, and gyroscopic
effects and analysed the natural frequencies of composite
tubular shafts. Song et al. [11] investigated the vibrational
and stability behavior of spinning circular shafts modeled
as thin-walled beams considering the effects of transverse
shear, rotatory inertias, the axial compressive load, and
boundary conditions. Sino et al. [12] developed a simplified
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homogenized beam theory (SHBT) to analyse the sensitivity
of the frequencies and instability thresholds regarding shear
effect, stacking order, and fiber orientation. Boukhalfa et al.
[13] performed free vibration analysis of rotating composite
shafts using the p-version hierarchical finite element method
with trigonometric shape functions. Boukhalfa and Hadjoui
[14] also studied the vibratory behavior of rotating composite
shafts. The study incorporated the rotary inertia, gyroscopic
effects, transverse shear deformation, and the coupling effect
due to the lamination of composite layers. Alwan et al.
[15] analyzed solid shafts and composite tube shafts using
ANSYS. Boukhalfa [16] considered the dynamic behavior of
the spinning Functionally Graded Material (FGM) shaft on
rigid bearings. A p-version hierarchical finite element was
employed to define the model. Considering the effects of
stacking sequences and shear-normal coupling on rotating
composite shafts, Arab et al. [17] developed a finite element
based on Equivalent Single LayerTheory (ESLT) tomodel the
rotating composite shaft using the Timoshenko beam theory.
More recently, Layerwise Shaft Theory (LST) is developed
based on shaft finite element theory by Arab et al. [18].
They investigated the dynamic analysis of rotating laminated
shafts including t the influences of stacking sequence, fiber
orientation, and shear-normal coupling.

Many studies have been done on the vibration analysis
of composite shafts using Galerkin methods. Kim et al.
[19] investigated the free vibration of a rotating tapered
composite Timoshenko shaft. The spatial solutions to the
equations of motion were obtained by the general Galerkin
method. Oh et al. [20] studied vibration and instability of
functionally graded cylindrical spinning thin-walled beams
also using the Galerkin method. Na et al. [21] evaluated
the vibration and stability of a cylindrical shaft modeled
as a tapered thin-walled composite beam and adopted the
extended Galerkin method to solve the eigenvalue problem.
Ren et al. [22] conducted structural modeling and dynamic
analysis of a rotating composite shaft and also used the
Galerkin method to discretize and solve the governing
equations. Furthermore, Ren et al. [23] studied the dynamic
behavior of an internally damped rotating composite shaft
considered as an anisotropic thin-walled Timoshenko beam.
The Galerkin method was also employed to discretize and
solve the equations of motion.

The generalized differential quadraturemethod (GDQM)
is a well-organized numerical technique originating from the
differential quadraturemethod (DQM) proposed by Bellman
and Casti [24]. The DQM has been promoted as a potential
alternative to conventional numerical solution techniques
such as the Galerkin method and finite element method.

So far, no publications have reported on using theGDQM
to conduct the free vibration analysis of rotating composite
thin-walled shaft. In this paper, the equations of motion of
the rotating shaft were established by a refined variational
asymptotic method and Hamilton’s principle. The motion
governing equations are partial differential equations. With
the aid of the GDQM, the partial differential governing
equations were transformed approximately into a set of
linear algebraic governing equations. Imposing the given
boundary conditions, the numerical eigenvalue equations for
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Figure 1: Composite thin-walled rotating shaft of a circular cross
section.

the free vibration of the shaft were derived and then solved.
The dynamic characteristics of the rotating shaft were then
analyzed. The computational results using the GDQM were
compared to those available in literature, and it was validated
that the GDQM is accurate and efficient for the frequency
analysis of a rotating composite shaft. Effects of boundary
conditions, rotating speed, ply angle, ratio of radius over
thickness, and ratio of length over radius on the frequency
characteristics were also investigated.

2. Model of Rotating Composite
Thin-Walled Shaft

The model of the composite thin-walled rotating shaft is
shown in Figure 1, where 𝐿, 𝑟, and h denote the length, the
radius of curvature of the middle surface, and the thickness,
respectively, satisfying 𝑟 ≪ 𝐿 and ℎ ≪ 𝑟. The following
coordinate systems are defined to describe the motion of the
rotating shaft: (1) (𝑋, 𝑌, 𝑍) represents the inertial coordinate
system whose origin is at the geometric center, and the
corresponding unit vector is (I, J,K); (2) (𝑥, 𝑦, 𝑧) is a rotating
reference system and the corresponding unit vector is (i,
j, k); (3) (𝑥, 𝑠, 𝜉) is a local coordinate system, where s
and 𝜉 represent the directions, tangent, and normal to the
middle surface of the shaft, respectively. Inertial (𝑋, 𝑌, 𝑍) and
rotating (𝑥, 𝑦, 𝑧) coordinate systems are shown in Figure 2.
The shaft rotates along its longitudinal 𝑥-axis at a constant
rate Ω. 𝜃 represents the ply angle measured by the s-axis
positive coordinate.

2.1. Stress-Strain Formulae. The stress-strain relations of a
lamina shown in Figure 3 [13] in the principle material
directions are as follows [25]:

{{{{{{{{{{{{{{{{{{{{{{{

𝜎11𝜎22𝜎33𝜏12𝜏13𝜏23

}}}}}}}}}}}}}}}}}}}}}}}

=
[[[[[[[[[[[
[

𝑄11 𝑄12 𝑄13 0 0 0
𝑄12 𝑄22 𝑄23 0 0 0
𝑄13 𝑄23 𝑄33 0 0 0
0 0 0 𝑄66 0 0
0 0 0 0 𝑄55 0
0 0 0 0 0 𝑄44

]]]]]]]]]]]
]

{{{{{{{{{{{{{{{{{{{{{{{

𝜀11𝜀22𝜀33𝛾12𝛾13𝛾23

}}}}}}}}}}}}}}}}}}}}}}}

(1)
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Figure 2: Inertial (X,Y,Z) and rotating (x, y, z) coordinate systems.
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Figure 3: A typical composite lamina.

The above formula can be abbreviated as

{𝜎} = [𝑄] {𝜀} (2)

where [Q] is the stiffness matrix and the material constants𝑄𝑖𝑗 can be determined according to thematerial properties of
orthogonal anisotropic laminates [25].

𝑄11 = 𝐸11 1 − V23V32Δ ,
𝑄22 = 𝐸22 1 − V31V13Δ
𝑄33 = 𝐸33 1 − V12V21Δ ,
𝑄44 = 𝜅𝐺23,
𝑄55 = 𝜅𝐺13,
𝑄66 = 𝜅𝐺12
𝑄12 = 𝐸11 V21 + V31V23Δ = 𝐸22 V12 + V32V13Δ

𝑄13 = 𝐸11 V31 + V21V32Δ = 𝐸22 V13 + V12V23Δ
𝑄23 = 𝐸22 V32 + V12V31Δ = 𝐸33 V23 + V21V13Δ
Δ = 1 − V12V21 − V23V32 − V31V13 − 2V21V32V13

(3)

where 𝐸𝑖𝑗 are the elastic moduli, 𝐺𝑖𝑗 are the shear moduli, V𝑖𝑗
are Poisson’s ratios, and 𝜅 is the Timoshenko shear coefficient
[26].

Consider an arbitrary layer of the laminate whose fiber
direction makes an angle 𝜂 with respect to the x-axis of the
cylindrical coordinate system (𝑥, 𝑠, 𝜉) as shown in Figure 4
[13]. The stress-strain relationship can be written as [25]

{{{{{{{{{{{{{{{{{{{{{{{

𝜎𝑥𝑥𝜎𝑠𝑠𝜎𝜉𝜉𝜏𝜉𝑠𝜏𝑥𝜉𝜏𝑥𝑠

}}}}}}}}}}}}}}}}}}}}}}}

=
[[[[[[[[[[[[
[

𝑄11 𝑄12 𝑄13 0 0 𝑄16𝑄12 𝑄22 𝑄23 0 0 𝑄26𝑄13 𝑄23 𝑄33 0 0 𝑄360 0 0 𝑄44 𝑄45 0
0 0 0 𝑄45 𝑄55 0
𝑄16 𝑄26 𝑄36 0 0 𝑄66

]]]]]]]]]]]]
]

{{{{{{{{{{{{{{{{{{{{{{{

𝜀𝑥𝑥𝜀𝑠𝑠𝜀𝜉𝜉𝛾𝜉𝑠𝛾𝑥𝜉𝛾𝑥𝑠

}}}}}}}}}}}}}}}}}}}}}}}

(4)

The above equation can be abbreviated as

{𝜎} = [𝑄] {𝜀} (5)

where [𝑄] is the transformed stiffness matrix of the layer,
which can be obtained by transformation matrix [T]:

[𝑄] = [T]−1 [𝑄] [T]−T (6)

in which

[𝑇] =
[[[[[[[[[[[[
[

𝑐2 𝑠2 0 0 0 2𝑐𝑠
𝑠2 𝑐2 0 0 0 −2𝑐𝑠
0 0 1 0 0 0
0 0 0 𝑐 −𝑠 0
0 0 0 𝑠 𝑐 0
−𝑐𝑠 𝑐𝑠 0 0 0 (𝑐2 − 𝑠2)

]]]]]]]]]]]]
]

,

𝑐 = cos 𝜂, 𝑠 = sin 𝜂

(7)

The displacement field of the shaft based on the refined
VAM thin-walled beam theory is assumed in the form [22]:

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑈 (𝑥, 𝑡) − 𝑦 (𝑠) 𝜓𝑦 (𝑥, 𝑡) − 𝑧 (𝑠) 𝜓𝑧 (𝑥, 𝑡)
+ 𝑔 (𝑠, 𝑥, 𝑡)

V (𝑥, 𝑦, 𝑧, 𝑡) = 𝑉 (𝑥, 𝑡) − 𝑧 (𝑠) 𝜙 (𝑥, 𝑡)
𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑊 (𝑥, 𝑡) + 𝑦 (𝑠) 𝜙 (𝑥, 𝑡)

(8)

where 𝑈(𝑥, 𝑡), 𝑉(𝑥, 𝑡), and 𝑊(𝑥, 𝑡) denote the rigid body
displacements in the 𝑥, 𝑦, 𝑧 directions, while 𝜙(𝑥, 𝑡), 𝜓𝑦(𝑥, 𝑡),
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Figure 4: Definitions of the principal material coordinate axes on an arbitrary layer of the composite shaft.

and 𝜓𝑧(𝑥, 𝑡) are the rotation angles of the cross-section
about x-, y-, and z-axis, respectively. 𝑔(𝑠, 𝑥, 𝑡) is the warping
function, which is modified as

𝑔 (𝑠, 𝑥, 𝑡) = 𝐺 (𝑠) 𝜙 (𝑥, 𝑡) + 𝑔1 (𝑠) 𝑈 (𝑥, 𝑡)
+ 𝑔2 (𝑠) 𝜓𝑦 (𝑥, 𝑡) + 𝑔3 (𝑠) 𝜓𝑧 (𝑥, 𝑡) (9)

where 𝐺(𝑠), 𝑔1(𝑠), 𝑔2(𝑠), and 𝑔3(𝑠) are related to physical
behavior of the torsion twist rate, the axial strain, and the
bending curvatures, respectively.

In the (𝑥, 𝑦, 𝑧) frame,𝜓𝑦(𝑥, 𝑡) and 𝜓𝑧(𝑥, 𝑡)can be
expressed as

𝜓𝑦 (𝑥, 𝑡) = 𝑉 (𝑥, 𝑡) − 2𝛾𝑧𝑥
𝜓𝑧 (𝑥, 𝑡) = 𝑊 (𝑥, 𝑡) − 2𝛾𝑦𝑥 (10)

where 𝛾𝑧𝑥 and 𝛾𝑦𝑥 are the transverse shear strains in the planes
of 𝑥𝑧 and 𝑥𝑦, respectively.

According to the displacement representations (8), (9),
and (10), the strains of the composite shaft are obtained by

𝜀𝑥𝑥 = 𝑈 (𝑥, 𝑡) − 𝑦 (𝑠) 𝜓𝑦 (𝑥, 𝑡) − 𝑧 (𝑠) 𝜓𝑧 (𝑥, 𝑡)
2𝛾𝑥𝑠 = 𝑑𝑔𝑑𝑠 + 𝑟𝑛𝜙 (𝑥, 𝑡) + (𝑉 (𝑥, 𝑡) − 𝜓𝑦 (𝑥, 𝑡) 𝑑𝑦𝑑𝑠
+ (𝑊 (𝑥, 𝑡) − 𝜓𝑧 (𝑥, 𝑡)) 𝑑𝑧𝑑𝑠 )

2𝛾𝑥𝜉 = (𝑉 (𝑥, 𝑡) − 𝜓𝑦 (𝑥, 𝑡) 𝑑𝑧𝑑𝑠
+ (𝑊 (𝑥, 𝑡) − 𝜓𝑧 (𝑥, 𝑡)) 𝑑𝑦𝑑𝑠 )

(11)

where 𝑟𝑛 denotes the normal projection of 𝑟 of an arbitrary
point on the cross section of the deformed shaft in the normal
direction:

𝑟𝑛 = 𝑦 (𝑠) 𝑑𝑧 (𝑠)𝑑𝑠 − 𝑧 (𝑠) 𝑑𝑦 (𝑠)𝑑𝑠 (12)

2.2. Strain Energy of Composite Shaft. Thestrain energy of the
composite shaft is

𝑈 = 12 ∫
𝐿

0
∬
𝐴
(𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜏𝑥𝑠𝛾𝑥𝑠 + 𝜏𝑥𝜉𝛾𝑥𝜉) 𝑑𝐴𝑑𝑥 (13)

where 𝜎𝑥𝑥, 𝜏𝑥𝑠, and 𝜏𝑥𝜉 are the engineering stresses associated
with the engineering strains 𝜀𝑥𝑥, 𝛾𝑥𝑠, and 𝛾𝑥𝜉.

Taking variation of the above strain energy expression,
(14) is obtained:

𝛿𝑈 = ∫𝐿
0
∬
𝐴
(𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜏𝑥𝑠𝛿𝛾𝑥𝑠 + 𝜏𝑥𝜉𝛿𝛾𝑥𝜉) 𝑑𝐴𝑑𝑥

= ∫𝐿
0
[𝐹𝑥𝛿𝑈 + 𝑄𝑦𝛿𝑉 + 𝑄𝑍𝛿𝑊 +𝑀𝑥𝛿𝜙 + (𝑀𝑧

+ 𝑄𝑦) 𝛿𝜓𝑦 + (𝑀𝑦 + 𝑄𝑧) 𝛿𝜓𝑧] 𝑑𝑥
(14)

Define the stress resultants 𝐹𝑥,𝑄𝑦, 𝑄𝑧 and stress couples𝑀𝑥,𝑀𝑦,𝑀𝑧 as
𝐹𝑥 = ∮𝑁𝑥𝑥𝑑𝑠
𝑀𝑥 = ∮𝑁𝑥𝑠𝑟𝑛𝑑𝑠
𝑀𝑦 = −∮𝑁𝑥𝑥𝑧 (𝑠) 𝑑𝑠
𝑀𝑧 = −∮𝑁𝑥𝑥𝑦 (𝑠) 𝑑𝑠
𝑄𝑦 = ∮[𝑁𝑥𝑠 𝑑𝑦 (𝑠)𝑑𝑠 + 𝑁𝑥𝜉 𝑑𝑧 (𝑠)𝑑𝑠 ] 𝑑𝑠
𝑄𝑧 = ∮[𝑁𝑥𝑠 𝑑𝑧 (𝑠)𝑑𝑠 + 𝑁𝑥𝜉 𝑑𝑦 (𝑠)𝑑𝑠 ] 𝑑𝑠

(15)

where𝑁𝑥𝑥,𝑁𝑥𝑠, and𝑁𝑥𝜉 are shell stress resultants, which are
defined according to the following expressions:

[[[
[
𝑁𝑥𝑥𝑁𝑥𝑠𝑁𝑥𝜉

]]]
]
= [[[[
[

𝐴 (𝑠) 𝐵 (𝑠)2 0𝐵 (𝑠)2 𝐶 (𝑠)4 0
0 0 𝜅𝐷 (𝑠)

]]]]
]
[[[
[
𝜀𝑥𝑥2𝛾𝑥𝑠𝛾𝑥𝜉

]]]
]

(16)
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in which

𝐴 (𝑠) = 𝐴11 − 𝐴212𝐴22 ,
𝐵 (𝑠) = 2 [𝐴16 − 𝐴12𝐴26𝐴22 ] ,
𝐶 (𝑠) = 4 [𝐴66 − (𝐴26)2𝐴22 ] ,
𝐷 (𝑠) = [A44 − (A45)2A55

] ,
𝐴 𝑖𝑗 = ∫ℎ/2

−ℎ/2
𝑄𝑖𝑗𝑑𝜉 = 𝑁∑

𝑘=1

𝑄𝑘𝑖𝑗 (𝑧𝑘 − 𝑧𝑘−1)
(𝑖, 𝑗 = 1, 2, 6; 𝑖, 𝑗 = 4, 5)

(17)

Combining (11) and (16), (15) can be expressed in the
following form:

𝐹𝑥 = 𝐶11𝑈 + 𝐶12𝜙 + 𝐶13𝜓𝑧 + 𝐶14𝜓𝑦
+ 𝐶15 (𝑉 − 𝜓𝑦) + 𝐶16 (𝑊 − 𝜓𝑍)

𝑀𝑥 = 𝐶12𝑈 + 𝐶22𝜙 + 𝐶23𝜓𝑧 + 𝐶24𝜓𝑦
+ 𝐶25 (𝑉 − 𝜓𝑦) + 𝐶26 (𝑊 − 𝜓𝑍)

𝑀𝑦 = 𝐶13𝑈 + 𝐶23𝜙 + 𝐶33𝜓𝑧 + 𝐶34𝜓𝑦
+ 𝐶35 (𝑉 − 𝜓𝑦) + 𝐶36 (𝑊 − 𝜓𝑍)

𝑀𝑧 = 𝐶14𝑈 + 𝐶24𝜙 + 𝐶34𝜓𝑧 + 𝐶44𝜓𝑦
+ 𝐶45 (𝑉 − 𝜓𝑦) + 𝐶46 (𝑊 − 𝜓𝑍)

𝑄𝑦 = 𝐶15𝑈 + 𝐶25𝜙 + 𝐶35𝜓𝑧 + 𝐶45𝜓𝑦
+ 𝐶55 (𝑉 − 𝜓𝑦) + 𝐶56 (𝑊 − 𝜓𝑍)

𝑄𝑧 = 𝐶16𝑈 + 𝐶26𝜙 + 𝐶36𝜓𝑧 + 𝐶46𝜓𝑦
+ 𝐶56 (𝑉 − 𝜓𝑦) + 𝐶66 (𝑊 − 𝜓𝑍)

(18)

where 𝐶𝑖𝑗 = 𝐶𝑗𝑖 (𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ , 6) are the stiffness coefficients
of the composite shaft, which can be expressed according to
the cross section geometry andmaterial properties as follows:

𝐶11 = ∮
Γ
(𝐴 − 𝐵2𝐶 )𝑑𝑠 + {{{

[∮
Γ
(𝐵/𝐶) 𝑑𝑠]2

∮
Γ
(1/𝐶) 𝑑𝑠

}}} ,

𝐶12 = [∮Γ (𝐵/𝐶) 𝑑𝑠∮
Γ
(1/𝐶) 𝑑𝑠 ]𝐴𝑒,

𝐶13 = −∮
Γ
(𝐴 − 𝐵2𝐶 )𝑧𝑑𝑠

− {[∮Γ (𝐵/𝐶) 𝑑𝑠 [∮Γ (𝐵/𝐶) 𝑧𝑑𝑠]]∮
Γ
(1/𝐶) 𝑑𝑠 } ,

𝐶14 = −∮
Γ
(𝐴 − 𝐵2𝐶 )𝑦𝑑𝑠

− {[∮Γ (𝐵/𝐶) 𝑑𝑠 [∮Γ (𝐵/𝐶) 𝑦𝑑𝑠]]∮
Γ
(1/𝐶) 𝑑𝑠 } ,

𝐶15 = 12 ∮Γ 𝐵𝑑𝑦𝑑𝑠 𝑑𝑠,
𝐶16 = 12 ∮Γ 𝐵𝑑𝑧𝑑𝑠 𝑑𝑠,
𝐶22 = [ 1∮

Γ
(1/𝐶) 𝑑𝑠]𝐴2𝑒,

𝐶23 = −[∮Γ (𝐵/𝐶) 𝑧𝑑𝑠∮
Γ
(1/𝐶) 𝑑𝑠 ]𝐴𝑒,

𝐶24 = −[∮Γ (𝐵/𝐶) 𝑦𝑑𝑠∮
Γ
(1/𝐶) 𝑑𝑠 ]𝐴𝑒,

𝐶25 = 14 ∮Γ 𝑟𝑛𝐶𝑑𝑦𝑑𝑠 𝑑𝑠,
𝐶26 = 14 ∮Γ 𝑟𝑛𝐶𝑑𝑧𝑑𝑠 𝑑𝑠,
𝐶33 = ∮

Γ
(𝐴 − 𝐵2𝐶 )𝑧2𝑑𝑠 + {{{

[∮
Γ
(𝐵/𝐶) 𝑧𝑑𝑠]2

∮
Γ
(1/𝐶) 𝑑𝑠

}}} ,

𝐶34 = ∮
Γ
(𝐴 − 𝐵2𝐶 )𝑦𝑧𝑑𝑠

+ {[∮Γ (𝐵/𝐶) 𝑦𝑑𝑠∮Γ (𝐵/𝐶) 𝑧𝑑𝑠]∮
Γ
(1/𝐶) 𝑑𝑠 } ,

𝐶35 = −12 ∮Γ 𝐵𝑧𝑑𝑦𝑑𝑠 𝑑𝑠,
𝐶36 = −12 ∮Γ 𝐵𝑧𝑑𝑧𝑑𝑠 𝑑𝑠,
𝐶44 = 𝜅∮

Γ
(𝐴 − 𝐵2𝐶 )𝑦2𝑑𝑠 + {{{

[∮
Γ
(𝐵/𝐶) 𝑦𝑑𝑠]2

∮
Γ
(1/𝐶) 𝑑𝑠

}}} ,
𝐶45 = −12𝜅∮Γ 𝐵𝑦𝑑𝑦𝑑𝑠 𝑑𝑠,
𝐶46 = −12𝜅∮Γ 𝐵𝑦𝑑𝑧𝑑𝑠 𝑑𝑠,
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𝐶55 = 𝜅∮
Γ

14𝐶(𝑑𝑦𝑑𝑠 )
2 + 𝐷(𝑑𝑧𝑑𝑠 )

2 𝑑𝑠,
𝐶56 = 𝜅∮

Γ
(14𝐶 − 𝐷) 𝑑𝑦𝑑𝑠 𝑑𝑧𝑑𝑠 𝑑𝑠,

𝐶66 = 𝜅∮
Γ

14𝐶(𝑑𝑧𝑑𝑠 )
2 + 𝐷(𝑑𝑦𝑑𝑠 )

2 𝑑𝑠,
𝐴𝑒 = 12𝜅∮Γ (𝑦𝑑𝑧𝑑𝑠 − 𝑧𝑑𝑦𝑑𝑠 ) 𝑑𝑠

(19)

where ∮
Γ
(∙)𝑑𝑠 denotes the integral around the loop of the

midline cross section; 𝐴𝑒 is the surrounded area of the
midline of the section.

2.3. Kinetic Energy of Composite Shaft. The position vector of
an arbitrary point on the composite shaft can be written as

𝑟 = (𝑦 + V) 𝑖 + (𝑧 + 𝑤) 𝑗 + (𝑥 + 𝑢) 𝑘 (20)

From the above equation, the velocity of an arbitrary
point can be given by

𝑉 = �̇� = (V̇ − Ω (𝑧 + 𝑤)) 𝑖 + (�̇� + Ω (𝑦 + V)) 𝑗 + �̇�𝑘 (21)

The kinetic energy of the composite spinning shaft can be
written as

𝑇 = 12 ∫
𝐿

0
∬
𝐴
𝜌 (𝑉 ∙𝑉) 𝑑𝐴𝑑𝑥 (22)

The variation of kinetic energy can be written as

𝛿𝑇 = −∫𝐿
0
(𝐼1𝛿𝑈 + 𝐼2𝛿𝑉 + 𝐼3𝛿𝑊 + 𝐼4𝜓𝑦 + 𝐼5𝜓𝑧

+ 𝐼6𝜙) 𝑑𝑥
(23)

in which

𝐼1 = mcÜ − Sz�̈�𝑦 − Sy�̈�𝑧
𝐼2 = 𝑚𝑐 (�̈� − 2Ω�̇� − Ω2𝑉) − 𝑆𝑧 (2Ω ̇𝜙 + Ω2)

− 𝑆𝑦 ( ̈𝜙 − Ω2𝜙)
𝐼3 = 𝑚𝑐 (�̈� − 2Ω�̇� − Ω2𝑊) + 𝑆𝑧 ( ̈𝜙 + Ω2𝜙)

− 𝑆𝑦 (2Ω ̇𝜙 + Ω2)
𝐼4 = 𝑆𝑧�̈� − 𝐼𝑧�̈�𝑦 − 𝐼𝑦𝑧�̈�𝑧

𝐼5 = 𝑆𝑦�̈� − 𝐼𝑦𝑧�̈�𝑦 − 𝐼𝑦�̈�𝑧
𝐼6 = 𝑆𝑧 (�̈� + 2Ω�̇� − Ω2𝑊) + (𝐼𝑦 + 𝐼𝑧) ( ̈𝜙 − Ω2𝜙)

− 𝑆𝑦 (�̈� − 2Ω�̇� − Ω2𝑉)
𝑚𝑐 = ∬

𝐴
𝜌𝑑𝐴,

𝑆𝑧 = ∬
𝐴
𝜌𝑦𝑑𝐴,

𝑆𝑦 = ∬
𝐴
𝜌𝑧𝑑𝐴,

𝐼𝑧 = ∬
𝐴
𝜌𝑦2𝑑𝐴,

𝐼𝑦 = ∬
𝐴
𝜌𝑧2𝑑𝐴,

𝐼𝑦𝑧 = ∬
𝐴
𝜌𝑦𝑧𝑑𝐴

(24)

where 𝐼𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ , 6) are equivalent cross section mass
coefficients.

2.4. Governing Equations. To derive the vibration equation
of the composite thin-walled shaft, Hamilton's principle was
applied:

∫𝑡1
𝑡0

(𝛿𝑈 − 𝛿𝑇) 𝑑𝑡 = 0 (25)

Combining (14), (23), and (25), the governing equations
of the composite shaft are obtained:

−𝐹𝑥 + 𝐼1 = 0
−𝑄𝑦 + 𝐼2 = 0
−𝑄𝑧 + 𝐼3 = 0

−𝑀𝑧 − 𝑄𝑦 + 𝐼4 = 0
−𝑀𝑦 − 𝑄𝑧 + 𝐼5 = 0

−𝑀𝑥 + 𝐼6 = 0

(26)

Substituting internal forces into (26), the free vibration
equations can be derived. The special properties of the
circular cross section shaft with CUS configuration cause
some of stiffness coefficients to be zero. The equations of
motion involving variables in terms of displacements can be
reduced as

𝑓1 (𝑈, 𝜙) = −𝐶11𝑈 − 𝐶12𝜙 + 𝑚𝑐�̈� = 0 (27a)

𝑓2 (𝑈, 𝜙) = −𝐶12𝑈 − 𝐶22𝜙
+ (𝐼𝑦 + 𝐼𝑧) ( ̈𝜙 − Ω2𝜙) = 0 (27b)
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𝑓3 (𝑉,𝑊, 𝜓𝑦, 𝜓𝑧) = −𝐶35𝜓𝑧 − 𝐶55 (𝑉 − 𝜓𝑦)
+ 𝑚𝑐 (�̈� − 2Ω�̇� − Ω2𝑉) = 0 (27c)

𝑓4 (𝑉,𝑊, 𝜓𝑦, 𝜓𝑧) = −𝐶46𝜓𝑦 − 𝐶66 (𝑊 − 𝜓𝑧)
+ 𝑚𝑐 (�̈� + 2Ω�̇� − Ω2𝑊) = 0 (27d)

𝑓5 (𝑉,𝑊, 𝜓𝑦, 𝜓𝑧) = −𝐶44𝜓𝑦 − 𝐶46 (𝑊 − 𝜓𝑧)
− 𝐶35𝜓𝑧 − 𝐶55 (𝑉 − 𝜓𝑦)
− 𝐼𝑧�̈�𝑦 = 0

(27e)

𝑓6 (𝑉,𝑊, 𝜓𝑦, 𝜓𝑧) = −𝐶33𝜓𝑧 − 𝐶35 (𝑉 − 𝜓𝑦)
− 𝐶46𝜓𝑦 − 𝐶66 (𝑊 − 𝜓𝑧)
− 𝐼𝑦�̈�𝑧 = 0

(27f)

The vibration equations are decoupled as the tensile-
torsion coupling system ((27a) and (27b)) and bending-
transverse shear coupling system ( (27c)∼(27f)). This paper
only studies the latter.

3. GDQM Solution to Governing Equations

TheGDQMwas used to solve the governing equations. In the
GDQM, derivative of any order of a function is approximated
by a weighted linear sum of the function values at all the
discrete points. Taking a function 𝑓(𝑥, 𝑡) as an example, the
mathematic description of the GDQM is given by [27]

𝜕𝑝𝑓 (𝑥, 𝑡)𝜕𝑥𝑝
𝑥=𝑥𝑗 =

𝑁∑
𝑘=1

𝐶𝑝𝑗𝑘𝑓 (𝑥𝑘, 𝑡) , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 (28)

where N is the number of total discrete grid points in the 𝑥
direction. 𝐶𝑝𝑗𝑘 is the weighting coefficient related to the 𝑝th-
order derivative, and the weighting coefficenct is obtained by
the following.

If p= 1, then

𝐴(1)𝑗𝑘 = 𝑀(1) (𝑥𝑗)(𝑥𝑗 − 𝑥𝑘)𝑀(1) (𝑥𝑘) ,
𝑗 ̸= 𝑘, 𝑗, 𝑘 = 1, 2, . . . , 𝑁

𝐴(1)𝑗𝑗 = − 𝑁∑
𝑘=1(𝑘 ̸=𝑗)

𝐴(1)𝑗𝑘 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁
(29)

where𝑀(1)(𝑥) is the first derivative of𝑀(𝑥) and they can be
defined as

𝑀(𝑥) = 𝑁∏
𝑘=1

(𝑥 − 𝑥𝑘) ,
𝑀(1) (𝑥𝑘) = 𝑁∏

𝑗=1(𝑗 ̸=𝑘)

(𝑥𝑘 − 𝑥𝑗)
(30)

If p>1, namely, for the second and higher order deriva-
tives, the weighting coefficients are obtained by using the
following simple recurrence relationship:

𝐴(𝑛)𝑗𝑘 = 𝑝(𝐴(1)𝑗𝑘 ∙ 𝐴(𝑛−1)𝑗𝑗 − 𝐴(𝑛−1)𝑗𝑘𝑥𝑗 − 𝑥𝑘) ,
𝑗 ̸= 𝑘, 𝑗, 𝑘 = 1, 2, . . . , 𝑁, 𝑛 ≥ 2

𝐴(𝑛)𝑗𝑗 = − 𝑁∑
𝑘=1(𝑘 ̸=𝑗)

𝐴(𝑛)𝑗𝑘 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁
(31)

To get denser population near boundaries, the sampling
points are selected based on the Chebyshev–Gauss–Lobatto
grid distribution.

𝑥𝑗 = 𝐿2 [1 − cos( 𝑗 − 1𝑁 − 1𝜋)] , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 (32)

To find the approximate solution of the composite shaft,
assume that bending deformation and bending angle are of
the following form:

V (𝑥, 𝑡) = 𝑉 (𝑥) 𝑒𝑖𝜔𝑡,
𝑤 (𝑥, 𝑡) = 𝑊 (𝑥) 𝑒𝑖𝜔𝑡,
𝜓𝑦 (𝑥, 𝑡) = Ψ𝑦 (𝑥) 𝑒𝑖𝜔𝑡,
𝜓𝑧 (𝑥, 𝑡) = Ψ𝑧 (𝑥) 𝑒𝑖𝜔𝑡

(33)

where 𝑉(𝑥),𝑊(𝑥), Ψ𝑦(𝑥), and Ψ𝑧(𝑥) denote mode functions
of the composite shaft; 𝜔 is the natural frequency; 𝑖 = √−1.

Substituting (33) into the governing Equations (27c),
(27d), (27e), and (27f), a group of ordinary differential
equationswith the coefficients varying toward the x-direction
is produced:

𝐿∗𝑈∗ = 0 (34)

where 𝑈∗T = {𝑉(𝑥),𝑊(𝑥), Ψ𝑦(𝑥), Ψ𝑧(𝑥)} and 𝐿∗ = [𝐿∗𝑖𝑗](𝑖,𝑗 = 1, ⋅ ⋅ ⋅ , 4) is a 4×4 matrix which includes the differential
operative of 𝑈∗ defined as

𝐿∗ = −𝜔2 [𝑀] + 𝑖𝜔 [𝐺] + [𝐾] (35)
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where

[𝑀] = [[[[[
[

𝑚𝑐 0 0 0
0 𝑚𝑐 0 0
0 0 −𝐼𝑧 0
0 0 0 −𝐼𝑦

]]]]]
]

[𝐺] = [[[[[
[

0 −2Ω𝑚𝑐 0 0
2Ω𝑚𝑐 0 0 0
0 0 0 0
0 0 0 0

]]]]]
]

[𝐾] =
[[[[[[[[[[[
[

−𝐶55 𝜕2𝜕𝑥2 − 𝑚𝑐Ω2 0 𝐶55 𝜕𝜕𝑥 −𝐶35 𝜕2𝜕𝑥2
0 −𝐶66 𝜕2𝜕𝑥2 − 𝑚𝑐Ω2 −𝐶46 𝜕2𝜕𝑥2 𝐶66 𝜕𝜕𝑥

−𝐶55 𝜕𝜕𝑥 −𝐶46 𝜕2𝜕𝑥2 −𝐶44 𝜕2𝜕𝑥2 + 𝐶55 (𝐶46 − 𝐶35) 𝜕𝜕𝑥
−𝐶35 𝜕2𝜕𝑥2 −𝐶66 𝜕𝜕𝑥 (𝐶35 − 𝐶46) 𝜕𝜕𝑥 −𝐶33 𝜕2𝜕𝑥2 + 𝐶66

]]]]]]]]]]]
]

(36)

Considering (28), the differential quadrature discrete
expression of the governing equations of the composite shaft
can be obtained:

− 𝐶55 𝑁∑
𝑗=1

𝑃(2)𝑖𝑗 𝑉(𝑥𝑗) − 𝑚𝑐Ω2𝑉 (𝑥𝑖)

+ 𝐶55 𝑁∑
𝑗=1

𝑃(1)𝑖𝑗 Ψ𝑦 (𝑥𝑗) − 𝐶35 𝑁∑
𝑗=1

𝑃(2)𝑖𝑗 Ψ𝑧 (𝑥𝑗)
− 𝑖𝜔2Ω𝑚𝑐𝑊(𝑥𝑖) − 𝜔2𝑚𝑐𝑉 (𝑥𝑖) = 0

(37a)

− 𝐶66 𝑁∑
𝑗=1

𝑃(2)𝑖𝑗 𝑊(𝑥𝑗) − 𝑚𝑐Ω2𝑊(𝑥𝑖)

− 𝐶46 𝑁∑
𝑗=1

𝑃(2)𝑖𝑗 Ψ𝑦 (𝑥𝑗) + 𝐶66 𝑁∑
𝑗=1

𝑃(1)𝑖𝑗 Ψ𝑧 (𝑥𝑗)
+ 𝑖𝜔2Ω𝑚𝑐𝑉 (𝑥𝑖) − 𝜔2𝑚𝑐𝑉 (𝑥𝑖) = 0

(37b)

−𝐶55 𝑁∑
𝑗=1

𝑃(1)𝑖𝑗 𝑉(𝑥𝑗) − 𝐶46 𝑁∑
𝑗=1

𝑃(2)𝑖𝑗 𝑊(𝑥𝑗)

− 𝐶44 𝑁∑
𝑗=1

𝑃(2)𝑖𝑗 Ψ𝑦 (𝑥𝑗) + 𝐶55Ψ𝑦 (𝑥𝑖)

+ (𝐶46 − 𝐶35) 𝑁∑
𝑗=1

𝑃(1)𝑖𝑗 Ψ𝑧 (𝑥𝑗) + 𝜔2𝐼𝑧Ψ𝑦 (𝑥𝑖) = 0
(37c)

− 𝐶35 𝑁∑
𝑗=1

𝑃(2)𝑖𝑗 𝑉(𝑥𝑗) − 𝐶66 𝑁∑
𝑗=1

𝑃(1)𝑖𝑗 𝑊(𝑥𝑗)

+ (𝐶35 − 𝐶46) 𝑁∑
𝑗=1

𝑃(1)𝑖𝑗 Ψ𝑦 (𝑥𝑗) − 𝐶33 𝑁∑
𝑗=1

𝑃(2)𝑖𝑗 Ψ𝑧 (𝑥𝑗)
+ 𝐶66Ψ𝑧 (𝑥𝑖) + 𝜔2𝐼𝑦Ψ𝑧 (𝑥𝑖) = 0

(37d)

where 𝑖 = 2, ⋅ ⋅ ⋅ , 𝑁 − 1.
The differential quadrature discrete expression can be

simplified as

([𝑀]𝜔2) 𝑑 + ([𝐺] 𝑖𝜔) 𝑑 + [𝐾𝑑𝑑] 𝑑 + [𝐾𝑑𝑏] 𝑏 = 0 (38)

In the above equations, the dimensions of [𝑀], [𝐺], and[𝐾𝑑𝑑] are 4(𝑁−2)×4(𝑁−2); the dimension of [𝐾𝑑𝑏] is 4(𝑁−2) × 8; the dimensions of vectors 𝑑 and 𝑏 are 4(𝑁 − 2) and 8,
respectively, which can be expressed as

𝑑T = {𝑉 (𝑥2) , ⋅ ⋅ ⋅ , 𝑉 (𝑥𝑁−1) ,𝑊 (𝑥2) , ⋅ ⋅ ⋅ ,𝑊 (𝑥𝑁−1) ,
Ψ𝑦 (𝑥2) , ⋅ ⋅ ⋅ , Ψ𝑦 (𝑥𝑁−1) , Ψ𝑧 (𝑥2) , ⋅ ⋅ ⋅ , Ψz (𝑥𝑁−1)}

𝑏T = {𝑉 (𝑥1) , ⋅ ⋅ ⋅ , 𝑉 (𝑥𝑁) ,𝑊 (𝑥1) , ⋅ ⋅ ⋅ ,𝑊 (𝑥𝑁) , Ψ𝑦 (𝑥1) ,
⋅ ⋅ ⋅ , Ψ𝑦 (𝑥𝑁) , Ψ𝑧 (𝑥1) , ⋅ ⋅ ⋅ , Ψz (𝑥𝑁)}}

(39)

Similarly, the discretized formof the boundary conditions
becomes

[𝐾𝑏𝑑] 𝑑 + [𝐾𝑏𝑏] 𝑏 = 0 (40)

In the current application of the GDQM, three boundary
conditions considered for shafts are
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(a) clamped at both edges (clamped-clamped, C-C)

𝑉 = 0,
𝑊 = 0,
Ψ𝑦 = 0,
Ψ𝑧 = 0
(𝑥 = 0, 𝐿)

(41)

(b) simply supported at both edges (simply supported-
simply supported, S-S)

𝑉 = 0,
𝑊 = 0,
𝑀y = 0,
𝑀z = 0
(𝑥 = 0, 𝐿)

(42)

(c) cantilever shaft (clamped-free, C-F)

𝑉 = 0,
𝑊 = 0,
Ψ𝑦 = 0,
Ψ𝑧 = 0
(𝑥 = 0)
𝑄y = 0,
𝑄z = 0,
𝑀y = 0,
𝑀z = 0
(𝑥 = 𝐿)

(43)

Combine (40) and (38) to remove vector b, and then (44)
is obtained:

([𝑀]𝜔2) 𝑑 + ([𝐺] 𝑖𝜔) 𝑑
+ ([𝐾𝑑𝑑] − [𝐾𝑑𝑏] [𝐾𝑏𝑏]−1 [𝐾𝑏𝑑]) 𝑑 = 0 (44)

Equation (44) can be abbreviated as

([𝑀]𝜔2) 𝑑 + ([𝐺] 𝑖𝜔) 𝑑 + [𝐾] 𝑑 = 0 (45)

Equation (45) is a nonstandard eigenvalue equation that
can be equivalently converted into a standard formula for a
certain frequency [28]:

([ 0 𝐼
−𝐾 −𝐺] − 𝜔[

𝐼 0
0 𝑀]){

𝑑
𝜔𝑑} = 0 (46)
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Figure 5: Effect of grid points N on natural frequencies of the
simply-supported shaft.

where I is an identity matrix and its dimension is 4(N − 2) ×
4(N − 2).

By a mainstream method, the eigenvalue equation (46)
can be solved, and the natural frequencies are achieved.

4. Numerical Results Analysis and Discussion

4.1. Convergence Analysis and Accuracy Verification. To val-
idate the approximate calculation method in this paper, the
composite hollow shafts made of the boron/epoxy composite
material, which are considered by Bert and Kim [30], were
investigated.

The properties of the material are 𝐸11 = 211 GPa, 𝐸22 =24.1 GPa, 𝐺12 = 𝐺13 = 𝐺23 = 6.9 GPa, V12 = 0.36, and 𝜌
= 1967 kg/m3. The dimensions of the shaft are 𝐿 = 2.47 m,𝑟 = 0.06345m, and ℎ = 1.321mm.The stacking sequence of
the composite shaft is [90∘/45∘/45∘/0∘6/90∘].

The effects of the number of grid points on the first
five natural frequencies of the rotating composite shafts
with various boundary conditions are shown in Figures 5–7,
respectively. It can be seen from the figures that the first five
natural frequencies converge quickly. When the number of
grid points is larger than 12, the first five natural frequencies
almost do not vary.This indicates that the convergence of the
GDQM is good. Therefore, in later calculations, 12 uniform
grid points are used.

Table 1 presents the natural frequencies of cantilever
composite shafts without shear deformation obtained from
both present model and [29] at different rotating speeds.Ω∗ and 𝜔∗𝑖 denote the nondimensional rotating speed and
natural frequency, respectively. As shown in the Table, the
numerical results agree well with those in [29].
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Table 1: Natural frequencies of cantilever composite shafts.

Ω∗ 𝜔∗1 𝜔∗2 𝜔∗3 𝜔∗4 𝜔∗5 𝜔∗6
0 3.5160 3.5160 22.0345 22.0345 61.6975 61.6975
Ref [29] 3.5160 3.5160 22.0340 22.0340 61.6970 61.6970
2 1.5160 5.5160 20.0345 24.0345 59.6975 63.6975
Ref [29] 1.5160 5.5160 20.0340 24.0340 59.6970 63.6970
3.5 0.0160 7.0160 18.5345 25.5345 58.1975 65.1975
Ref [29] - 7.0160 18.5340 25.5340 58.1970 65.1970
4 0.4840 7.5160 18.0345 26.0345 57.6975 65.6975
Ref [29] - 7.5160 18.0340 26.0340 57.6970 65.6970
8 4.4839 11.5160 14.0345 30.0345 53.6975 69.6975
Ref [29] - 11.5160 14.0340 30.0340 53.6970 69.6970
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Figure 6: Effect of grid points N on natural frequencies of the
clamped shaft.

4.2. Stability and Free Vibration Analysis. In the following
example, the shaft is made of the graphite-epoxy composite
material with parameters as follows:𝐸11 = 206.8 GPa, 𝐸22 = 𝐸33 = 5.17 GPa, 𝐺12 = 3.1 GPa,𝐺23 = 𝐺13 = 2.55 GPa, V21 = V31 = 0.00625, V32 = 0.25, and𝜌 = 1528.15 kg/m3.

The dimensions of the shaft are 𝐿 = 2.023 m, 𝑟 = 0.127
m, and ℎ = 0.381 mm. The stacking sequence of the shaft is[±𝜃]3.

Figure 8 shows the first natural frequencies of the rotating
composite shaft, which considers the shear deformation
versus rotating speed for selected ply angles. When the
rotating speed is zero, each ply angle corresponds to a
single fundamental frequency because the bending mode
frequencies in horizontal and vertical directions are the same
for a circular cross section shaft. As soon as the rotation starts,
a bifurcation of natural frequencies occurs because of the
gyroscopic effect. Hence, a natural frequency curve splits into
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Figure 7: Effect of grid points N on natural frequencies of the
cantilever shaft.

an upper one and a lower one. With the increase of rotational
speed, the upper curve goes up corresponding to the forward
feed (F), while the lower curve goes down corresponding to
the backward feed (B).

The shaft spinning speed at zero natural frequency is
called the critical speed, which corresponds to the instability.
When the spinning speed exceeds the critical speed, the natu-
ral frequency increases with the rotating speed. It also can be
seen that both natural frequencies and critical spinning speed
of the shaft with the clamped boundary condition are higher
than those with simply supported and cantilever boundary
conditions.

The numerical results of the Figure 8 are given in Table 2
to show the influence of the gyroscopic effect.

Figure 9 reveals the first three natural frequencies of the
rotating composite thin-walled shaft with different boundary
conditions versus the ply angle when rotation speed is 800
rpm. Figure 9(a) represents the clamped boundary condition.
As shown in the figure, the maximum values of the first-
and second-order natural frequencies occur at 𝜃=70∘, while
the maximum values of the third order natural frequencies
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Figure 8: The first natural frequencies of the rotating composite shaft versus rotating speed for different ply angles.

occur at 𝜃=65∘. Figure 9(b) represents the simply supported
shaft.The figure shows the maximum values of the first order
natural frequencies occur at 𝜃=75∘, while the second- and
third-order natural frequencies occur at 𝜃=70∘. Figure 9(c)
represents the cantilever composite shaft.The figure indicates
that the maximum values of the first-order natural frequen-
cies occur at 𝜃=80∘, and the maximum values of the second-
order ones occur at 𝜃=75∘, while those of the third order
occur at 𝜃=70∘. It also can be seen from Figure 9 that the
higher the mode, the lager the variation amplitude for the
three aforementioned boundary conditions. The numerical

results of the figure are given in Table 3 to show the influence
of the boundary conditions and ply angles.

Figure 10 shows the first three natural frequencies of the
rotating composite thin-walled shaft versus the ratio of mean
radius to thickness.The natural frequencies increase with the
ratio of radius to thickness, and this tendency becomes more
obvious when the mode is higher.

Figure 11 shows the first three frequencies of the rotating
composite thin-walled shaft versus the ratio of length tomean
radius. The figure demonstrates that the natural frequencies
decrease with the increase of the ratio of length to mean
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Table 2: The first natural frequencies of the shaft for different boundary conditions and various rotating speed (𝜃 = 60∘).
Rotating SpeedΩ [rpm]

Frequency 𝜔 [Hz]
1B(C-C) 1F(C-C) 1B(S-S) 1F(S-S) 1B(C-F) 1F(C-F)

0 289.3935 289.3935 207.0878 207.0878 49.0284 49.0284
100 287.7097 291.0775 205.4020 208.7737 47.3530 50.7041
200 286.0260 292.7615 203.7163 210.4598 45.6779 52.3801
300 284.3423 294.4457 202.0308 212.1461 44.0031 54.0564
400 282.6588 296.1299 200.3455 213.8326 42.3286 55.7330
500 280.9753 297.8142 198.6603 215.5191 40.6544 57.4099
600 279.2920 299.4987 196.9752 217.2059 38.9806 59.0871
700 277.6087 301.1832 195.2904 218.8928 37.3070 60.7646
800 275.9256 302.8678 193.6057 220.5798 35.6337 62.4424
900 274.2425 304.5526 191.9211 222.2670 33.9607 64.1205
1000 272.5596 306.2374 190.2367 223.9544 32.2881 65.7990
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Figure 9: The first three natural frequencies of the rotating composite thin-walled shaft versus ply angle (Ω = 800rpm).
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Figure 10:The first three natural frequencies of the composite thin-walled rotating shaft versus mean radius to thickness ratios (Ω= 800rpm,𝜃=60∘).

radius. In addition, the higher themode, the faster the natural
frequencies decrease.

5. Conclusions

A refined VAM and Hamilton’s principle were used to
establish the vibration differential equation of the rotating
composite thin-walled shaft, and the equation was solved
by the GDQM. The computational results by this method
were compared with those available in literature, and it
was validated that the GDQM is accurate and efficient for

the frequency analysis of the rotating composite shaft. The
influences of the boundary conditions, rotating speed, ply
angle, ratio of radius over thickness, and ratio of length over
radius on the frequency characteristics were discussed.

Compared with the numerical solution methods such
as the Galerkin method and finite element method, the
GDQMhas the advantages of simple mathematical principle,
fast convergence speed, high calculation accuracy, small
calculation amount and less memory demand, etc. According
to the results obtained in this work, the main conclusions are
followed as below:
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Table 3: The first three natural frequencies of the shaft for different boundary conditions and ply angles (Ω = 800rpm).

Boundary conditions Ply angle 𝜃[∘] Frequency 𝜔 [Hz]
1B 1F 2B 2F 3B 3F

C-C

0∘ 89.5956 116.5424 250.1030 277.5957 462.3860 490.3354
30∘ 109.5489 136.5861 325.5890 353.6101 653.8300 683.2888
60∘ 275.9256 302.8678 724.3444 751.8162 1314.0023 1341.9065
75∘ 356.2460 382.9658 765.3613 792.1977 1233.6654 1260.4888

S-S

0∘ 60.1498 87.1267 211.7786 239.3596 423.3616 451.4875
30∘ 71.8321 98.8569 263.8645 291.8418 569.8837 599.3474
60∘ 193.2056 220.5798 618.5663 646.1292 1207.7548 1235.8342
75∘ 288.0808 314.8729 730.6617 757.5166 1214.6430 1241.4759

C-F

0∘ 4.0188 30.8277 91.7179 119.2882 266.1023 294.4848
30∘ 6.1303 32.9436 109.4554 137.1525 334.9323 364.0539
60∘ 35.6337 62.4424 282.7588 310.3222 771.1312 799.4811
75∘ 75.0446 101.8206 402.6232 429.7342 895.0152 922.1036
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Figure 11: The first three natural frequencies of the rotating composite thin-walled shaft versus length to mean radius ratio (Ω = 800rpm,𝜃 = 60∘).
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(1) When the composite shaft rotates, a bifurcation of
natural frequencies appears due to the effects of gyroscopic
forces. With the increase of spinning speed, the forward
whirling frequencies increase, while the backward whirling
frequencies decrease.

(2) For the same ply angle, with the clamped boundary
condition, the composite thin-walled shaft has higher natural
frequencies and critical spinning speed; on the other hand,
with simply supported and cantilever boundary conditions,
both natural frequencies and critical spinning speed are
lower.

(3) The natural frequencies of the rotating composite
thin-walled shaft increase with the ratio of diameter over
thickness and decrease with the increasing ratio of length to
diameter. The natural frequencies of higher-order mode vary
faster than those of lower order mode.
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