
Research Article
A Multi-GPU Parallel Algorithm in Hypersonic
Flow Computations

Jianqi Lai , Hua Li, Zhengyu Tian, and Ye Zhang

College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Jianqi Lai; laijianqi kd@nudt.edu.cn

Received 2 December 2018; Revised 28 January 2019; Accepted 25 February 2019; Published 17 March 2019

Academic Editor: Xesús Nogueira

Copyright © 2019 Jianqi Lai et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computational fluid dynamics (CFD) plays an important role in the optimal design of aircraft and the analysis of complex flow
mechanisms in the aerospace domain. The graphics processing unit (GPU) has a strong floating-point operation capability and
a high memory bandwidth in data parallelism, which brings great opportunities for CFD. A cell-centred finite volume method
is applied to solve three-dimensional compressible Navier–Stokes equations on structured meshes with an upwind AUSM+UP
numerical scheme for space discretization, and four-stage Runge–Kutta method is used for time discretization. Compute unified
device architecture (CUDA) is used as a parallel computing platform and programming model for GPUs, which reduces the
complexity of programming. The main purpose of this paper is to design an extremely efficient multi-GPU parallel algorithm
based on MPI+CUDA to study the hypersonic flow characteristics. Solutions of hypersonic flow over an aerospace plane model
are provided at different Mach numbers. The agreement between numerical computations and experimental measurements is
favourable. Acceleration performance of the parallel platform is studied with single GPU, two GPUs, and four GPUs. For single
GPU implementation, the speedup reaches 63 for the coarser mesh and 78 for the finest mesh. GPUs are better suited for compute-
intensive tasks than traditional CPUs. For multi-GPU parallelization, the speedup of four GPUs reaches 77 for the coarser mesh
and 147 for the finest mesh; this is far greater than the acceleration achieved by single GPU and two GPUs. It is prospective to apply
the multi-GPU parallel algorithm to hypersonic flow computations.

1. Introduction

Generally, real flows have different levels of compressibility.
In comparison with incompressible flow, the density of
compressible flow varies, which increases the complexity of
the solution of governing equations. According to the Mach
number, compressible flow can be divided into subsonic
flow (Ma<0.8), transonic flow (Ma=0.8–1.2), supersonic flow
(Ma=1.2–5.0), and hypersonic flow (Ma>5.0) [1]. Hypersonic
flight has been with us since 1963; North American X-15
achieved a successful flight at Mach number 6.7. Over the
last six decades, with the development of scramjet engines,
high-speed aircrafts, hypersonic missiles, and hypersonic
reentry vehicles, research on hypersonic flow theory has
made considerable progress and attracts much attention of
scientists [2, 3]. In hypersonic flow, some of the preceding
physical phenomena become important. For flow over a
hypersonic body, a strong shock wave with high temperature

is formed.Theflowfield between the shockwave and the body
is defined as shock layer, and the distance of the shock layer
can be small. At a high temperature, the vibrational energy
may be excited, and chemical reactions can occur. Accurate
simulations of hypersonic flow need a more sophisticated
meshing, which enlarges the computational work remarkably
[4].What ismore, it is attractive for engineers and researchers
to obtain accurate numerical results as soon as possible.
The graphics processing unit (GPU) has exhibited significant
achievements in the accelerated solution of hypersonic flow
problems [5, 6].

With the rapid development of computational fluid
dynamics (CFD) and computer technology, CFD plays a
vital role in the optimal design of aircraft and the anal-
ysis of complex flow mechanisms [7]. At present, CFD is
used to simulate problems ranging from molecular level
to macroscopic magnitude, from simple two-dimensional
configurations to three-dimensional complex real aircrafts,

Hindawi
Mathematical Problems in Engineering
Volume 2019, Article ID 2053156, 15 pages
https://doi.org/10.1155/2019/2053156

http://orcid.org/0000-0003-3622-6856
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2053156

2 Mathematical Problems in Engineering

and from the simulation of subsonic flow problems to
hypersonic flow problems [8, 9]. A large number of appli-
cations of CFD can reduce the development costs and
provide technical support for the research on aircrafts.
High Reynolds number flows, which are ubiquitous in real
flows, such as turbulence, vortices, separation, aeroacous-
tics, and other multiscale complex flow problems, require
intensive computational meshes [10]. When modeling real
gas flow simulations, chemical reaction models that con-
tain multiple components significantly increase the com-
putational demands [11]. High-fidelity simulations are inac-
cessible to engineering activities and scientific research
because of large-scale computing requirements. To reduce
the computational time and obtain accurate numerical results
quickly, the extensive calculations can only be completed
by parallel computing. In recent years, the progress of the
central processing unit (CPU) has shifted into a bottle-
neck because of the limitations in power consumption and
heat dissipation prevention, and adding CPU cores cannot
improve the overall performance of CPU-based parallel
clusters.

In comparison with the Intel CPU, the GPU has strong
floating-point operations and a high memory bandwidth
in data parallelism, as illustrated in Figures 1 and 2 [12].
Traditionally, a GPU is limited to graphics rendering. In
2007, NVIDIA introduced the compute unified device archi-
tecture (CUDA), which is a parallel computing platform
and programming model for GPU that allows develop-
ers to use C/C++ as a high-level language and reduces
the complexity of programming. The emergence of CUDA
as a programming model marked the beginning of the
widespread use of GPUs in general-purpose computing.
Currently, GPUs are widely used in the area of scientific
computing, such as molecular dynamics (MD), direct sim-
ulation Monte Carlo (DSMC), CFD, weather forecast (WF),
and artificial intelligence (AI) [13–17]. The development of
GPU-based parallelization brings increased opportunities
and challenges for high-performance computing. In the
field of CFD, GPU parallelization has achieved numerous
achievements. Brandvik et al. [18] studied the solution of
three-dimensional Euler equations on an NVIDIA 8800GTX
GPU with explicit time-stepping schemes, and the speedup
reached 16 times. Khajeh–Saeed et al. [19] accomplished
direct numerical simulation (DNS) of turbulence using GPU
accelerated supercomputers, which demonstrated that sci-
entific problems could benefit significantly from advanced
hardware. Wang et al. [20] discussed DNS and Large Eddy
Simulation (LES) on a turbulent wall-bounded flow using
Lattice Boltzmann method and multiple GPUs, and the
acceleration performance has been discussed. Emelyanov et
al. [21] discussed the popular CFD benchmark solution of the
flow over a smooth flat plate on a GPU with various meshes,
and the speedup reached more than 46 times. Zhang et al.
[22] performed an implicitmeshlessmethod for compressible
flow on an NVIDIA GTX TITAN GPU, and the solution
agrees well with experimental results.

The main purpose of this paper is to design an extremely
efficient multi-GPU parallel algorithm to study hyper-
sonic flow characteristics of an aerospace model, and the

0

3,000

6,000

9,000

12,000

2002 2004 2006 2008 2010 2012 2014 2016 2018

G
Fl

op
s

Intel CPU Single Precision

Intel CPU Double Precision

NVIDIA GPU Single Precision

NVIDIA GPU Double Precision

Figure 1: Floating-point operations per second for the CPU and
GPU [12].

acceleration performance of the algorithm has been analysed
to apply it to large-scale scientific calculation.

The remainder of this paper is organized as follows.
Section 2 presents the governing equations and numerical
schemes. Section 3 introduces CUDA and the GPU parallel
algorithm for CFD, and then multi-GPU parallel algorithm
based on MPI+CUDA is established. Section 4 describes the
physical model and mesh generation of an aerospace plane
in sufficient detail. Section 5 shows the computed results
compared with experimental measurements and analyses
the performance of multi-GPU parallel platform. Section 6
provides the conclusions of this work.

2. Governing Equations and
Numerical Schemes

2.1. Governing Equations. In the field of CFD, without regard
to volume sources due to body forces and volumetric, three-
dimensional compressible Navier–Stokes (NS) equations can
be written in integral form as follows [23]:

𝜕𝜕𝑡 ∫Ω
→𝑊𝑑Ω +∮

𝜕Ω
(→𝐹𝑐 − →𝐹V) 𝑑𝑆 = 0 (1)

where →𝑊 is the vector of conservative variables, which
contains three dimensions of five components;→𝐹𝑐 is the vector
of convective fluxes; →𝐹V presents the vector of viscous fluxes;Ω is the control volume; and 𝜕Ω is the cell surface.

Mathematical Problems in Engineering 3

0

200

400

600

800

2002 2004 2006 2008 2010 2012 2014 2016 2018

Th
eo

re
tic

al
 P

ea
k

(G
B/

s)

Intel CPU
Tesla GPU
GeForce GPU

Figure 2: Memory bandwidth for the CPU and GPU [12].

→𝑊 =
[[[[[[[[
[

𝜌
𝜌𝑢
𝜌V
𝜌𝑤
𝜌𝐸

]]]]]]]]
]
,

→𝐹𝑐 =
[[[[[[[[
[

𝜌𝑉
𝜌𝑢𝑉 + 𝑛𝑥𝑝𝜌V𝑉 + 𝑛𝑦𝑝𝜌𝑤𝑉 + 𝑛𝑧𝑝𝜌𝐻𝑉

]]]]]]]]
]

(2)

→𝐹V =
[[[[[[[[
[

0
𝑛𝑥𝜏𝑥𝑥 + 𝑛𝑦𝜏𝑥𝑦 + 𝑛𝑧𝜏𝑥𝑧𝑛𝑥𝜏𝑦𝑥 + 𝑛𝑦𝜏𝑦𝑦 + 𝑛𝑧𝜏𝑦𝑧𝑛𝑥𝜏𝑧𝑥 + 𝑛𝑦𝜏𝑧𝑦 + 𝑛𝑧𝜏𝑧𝑧𝑛𝑥Θ𝑥 + 𝑛𝑦Θ𝑦 + 𝑛𝑧Θ𝑧

]]]]]]]]
]

(3)

Θ𝑥 = 𝑢𝜏𝑥𝑥 + V𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 − 𝑞𝑥
Θ𝑦 = 𝑢𝜏𝑦𝑥 + V𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 − 𝑞𝑦
Θ𝑧 = 𝑢𝜏𝑧𝑥 + V𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧 − 𝑞𝑧

(4)

In the above equations, 𝜌 is the density, →𝑉 = (𝑢, V, 𝑤) are the
local Cartesian velocity components,𝑝 is the static pressure,𝑇
is the static temperature, →𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) are the unit normal
vector of the cell surface,𝑉 is the scalar product of the velocity

vector and the unit normal vector, 𝐻 is the total enthalpy,
and 𝐸 is the total energy, which can be related to the static
pressure, 𝑝, through the equation of state:

𝑝 = 𝜌𝑅𝑇 (5)

𝐸 = 𝑝(𝛾 − 1) 𝜌 + 𝑢
2 + V2 + 𝑤22 (6)

where 𝛾 is the ratio of specific heat capacities which is taken as
1.4 for calorically perfect gas and𝑅 is the specific gas constant.

For the vector of viscous fluxes, the components of
viscous stress 𝜏𝑖𝑗 and heat flux vector 𝑞𝑖 are expressed as
follows:

𝜏𝑖𝑗 = 𝜇(𝜕𝑢𝑖𝜕𝑥𝑗 +
𝜕𝑢𝑗𝜕𝑥𝑖 −

23 𝜕𝑢𝑘𝜕𝑥𝑘 𝛿𝑖𝑗) (7)

𝑞𝑖 = −𝑘 𝜕𝑇𝜕𝑥𝑖 (8)

where 𝜇 and 𝑘 are the viscosity coefficient and thermal
conductivity coefficient, respectively, which can be obtained
by Sutherland’s law and the definition of Prandtl number,
respectively, shown as follows:

𝜇𝜇0 = (
𝑇𝑇0)

1.5 (𝑇0 + 𝑇𝑠𝑇 + 𝑇0) (9)

𝑃𝑟 = 𝜇𝑐𝑝𝑘 (10)

where 𝑇0 is a constant equal to 273.11K, 𝜇0 = 1.716 ×10−5 kg/(m s), 𝑆0 = 110.56K for air, 𝑐𝑝 is the specific heat
at constant pressure, and 𝑃𝑟 is the Prandtl number, which
equivalents to 0.72.

2.2. Nondimensionlisation of Governing Equations. In order
to solve the NS equation more conveniently due to its
complexity, nondimensionlisation of these equations is based
on the freestream values: density (𝜌∞), speed of sound (𝑐∞),
static temperature (𝑇∞), and a reference length (𝐿0).

𝑢∗ = 𝑢𝑐∞ ,
V∗ = V𝑐∞ ,
𝑤∗ = 𝑤𝑐∞ ,
𝜌∗ = 𝜌𝜌∞ ,
𝑇∗ = 𝑇𝑇∞ ,
𝑝∗ = 𝑝𝜌∞𝑐2∞

(11)

𝑥𝑖∗ = 𝑥𝑖𝐿0 (12)

4 Mathematical Problems in Engineering

Nondimensionlisation of governing equations is as follows
[24]:

𝛾𝑝∗ = 𝜌∗𝑇∗ (13)

𝐸∗ = 𝑝∗(𝛾 − 1) 𝜌∗ +
(𝑢∗)2 + (V∗)2 + (𝑤∗)2

2 (14)

𝜏𝑖𝑗∗ = 𝑀𝑎∞𝑅𝑒∞ [𝜇∗ (𝜕𝑢𝑖∗𝜕𝑥𝑗∗ +
𝜕𝑢𝑗∗𝜕𝑥𝑖∗ −

23 𝜕𝑢𝑘
∗

𝜕𝑥𝑘∗ 𝛿𝑖𝑗)] (15)

𝑅𝑒∞ = 𝜌∞𝑉∞𝐿0𝜇∞ (16)

𝑞𝑖∗ = −𝑀𝑎∞𝑅𝑒∞
𝜇∗𝑃𝑟 (𝛾 − 1) 𝜕𝑇

∗

𝜕𝑥𝑖∗ (17)

𝜇∗ = (𝑇∗)3/2 1 + 𝑆(𝑇∗ + 𝑆) , 𝑆 = 110.4K𝑇∞ (18)

2.3. Numerical Schemes. Structured or unstructured meshes
are used to discretize the governing equations. An outstand-
ing advantage of structured meshes is that the indices 𝐼, 𝐽, 𝐾
represent the computational space, since it directly corre-
sponds to how the flow variables are stored in the computer
memory.This property allows it to implement computational
algorithms more efficiently in numerical simulation. Mean-
while, CFD codes are easily performed on GPUs due to
their regular data structures which are convenient for parallel
computing. However, the generation of structured meshes
is more complicated than that of unstructured meshes for
complex geometries.

The cell-centred finite volume method based on struc-
turedmeshes is used in the spatial discretization of governing
equations. For the control volumeΩ𝐼,𝐽,𝐾, the discrete form of
formula (1) can be written in the following form:

Ω𝐼,𝐽,𝐾𝑑
→𝑊𝐼,𝐽,𝐾𝑑𝑡 = −[𝑁𝐹∑

𝑚=1

(→𝐹𝑐 − →𝐹V)Δ𝑆𝑚] (19)

The term in square brackets on the right-hand side of formula
(19) is called the residual, which is denoted by →𝑅𝐼,𝐽,𝐾

Ω𝐼,𝐽,𝐾𝑑
→𝑊𝐼,𝐽,𝐾𝑑𝑡 = −→𝑅𝐼,𝐽,𝐾 (20)

The convective fluxes are computed by an upwindAUSM+UP
numerical scheme [25], which has a high resolution and
computational efficiency for all speeds. The underlying idea
of the approach is that the convective fluxes are decomposed

into two parts (the convective and pressure parts) based on
the mass flow function

(→𝐹𝑐)
𝐼+1/2

= (→𝐹 (𝑐))
𝐼+1/2

+ (→𝑝)
𝐼+1/2

= (�̇�)𝐼+1/2{{{
(→𝜓)

𝐿
, (�̇�)𝐼+1/2 ≥ 0

(→𝜓)
𝑅
, (�̇�)𝐼+1/2 < 0

+ (→𝑝)
𝐼+1/2

(21)

where subscript 𝐼 + 1/2 refers to the cell face; subscripts 𝐿
and 𝑅 refer to the control volume on the left and right edges

of the cell face; →𝐹 (𝑐) denotes the vector of the convective part;→𝑝 denotes the vector of pressure; �̇� denotes the mass flux;
and →𝜓 is a vector quantity that is convected by �̇�, in which

(�̇�)𝐼+1/2 = (𝑐)𝐼+1/2 (𝑀𝑎)𝐼+1/2{{{
𝜌𝐿, (𝑀𝑎)𝐼+1/2 ≥ 0
𝜌𝑅, (𝑀𝑎)𝐼+1/2 < 0 (22)

(→𝜓)
𝐿/𝑅

= {{{
[1, 𝑢, V, 𝑤,𝐻]T𝐿 , (�̇�)𝐼+1/2 ≥ 0
[1, 𝑢, V, 𝑤,𝐻]T𝑅 , (�̇�)𝐼+1/2 < 0 (23)

In this paper, second-order accuracy is achieved through
the monotone upstream-centred schemes for conservation
laws (MUSCL) [26] with the Van Leer’s limiter, which can
prevent the generation of oscillations and spurious solutions
in regions with a large gradient.

The central scheme is selected to solve the viscous fluxes
due to its ellipticmathematical properties.The values𝑈 at the
cell face result from

𝑈𝐼+1/2 = 12 (𝑈𝐼 + 𝑈𝐼+1) (24)

For the temporal discretization of formula (20), the method
of lines is used, such that space and time integration can
be handled separately. Space integration, which consists
of the solution of convective fluxes and viscous fluxes, is
introduced hereinbefore. The four-stage Runge–Kutta time-
stepping method [23, 27] is implemented for the temporal
discretization, in which

→𝑊(0)

𝐼,𝐽,𝐾 = →𝑊(𝑛)

𝐼,𝐽,𝐾

→𝑊(1)

𝐼,𝐽,𝐾 = →𝑊(0)

𝐼,𝐽,𝐾 − 𝛼1Δ𝑡𝐼,𝐽,𝐾Ω𝐼,𝐽,𝐾
→𝑅 (0)𝐼,𝐽,𝐾

→𝑊(2)

𝐼,𝐽,𝐾 = →𝑊(0)

𝐼,𝐽,𝐾 − 𝛼2Δ𝑡𝐼,𝐽,𝐾Ω𝐼,𝐽,𝐾
→𝑅 (1)𝐼,𝐽,𝐾

→𝑊(3)

𝐼,𝐽,𝐾 = →𝑊(0)

𝐼,𝐽,𝐾 − 𝛼3Δ𝑡𝐼,𝐽,𝐾Ω𝐼,𝐽,𝐾
→𝑅 (2)𝐼,𝐽,𝐾

→𝑊(4)

𝐼,𝐽,𝐾 = →𝑊(0)

𝐼,𝐽,𝐾 − 𝛼4Δ𝑡𝐼,𝐽,𝐾Ω𝐼,𝐽,𝐾
→𝑅 (3)𝐼,𝐽,𝐾

→𝑊(n+1)
𝐼,𝐽,𝐾 = →𝑊(4)

𝐼,𝐽,𝐾

(25)

Mathematical Problems in Engineering 5

Block(0,0)

Grid 0

Block(1,0)

Block(0,1) Block(1,1)

Block(2,0)

Block(2,1)

Thread(0,0)

Block(1,1)

Thread(1,0)

Thread(0,1) Thread(1,1)

Thread(2,0)

Thread(1,1)

Thread(3,0)

Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Figure 3: Grid–block–thread.

This scheme is second-order accurate in time, where Δ𝑡𝐼,𝐽,𝐾
is the time step of control volumeΩ𝐼,𝐽,𝐾 and 𝛼𝑘 (𝛼1 = 0.1084,𝛼2 = 0.2602, 𝛼3 = 0.5052, 𝛼4 = 1.0000) represents the
stage coefficients. The multistage scheme is good at data
parallelism, which is of considerable significance to parallel
computing. Furthermore, this method reduces the storage
expense because only the initial conservative variables and
the latest calculated residual value are stored in memory.The
implicit residual smoothing method is used to accelerate the
solution of the governing equations.

3. CUDA and GPU Parallel Algorithm for CFD

3.1. CUDA Overview and GPU Architecture. CUDA is a
general-purpose parallel computing platform and program-
mingmodel for researchers to perform codes onGPUflexibly
to solve many complex scientific problems [9, 12, 28]. In
CUDA, a C program is extended to the execution of kernels,
which are executed by a large number of threads. Individual
threads are grouped into thread blocks, and the block size
is no more than 1,024 for current devices. Thread blocks are
organized into a grid, and the number of thread blocks in a
grid is usually decided by the size of the data being processed,
which ensures that a thread loads the computation of a mesh.
Figure 3 shows the relationship among thread, block, and
grid.

TheGPU architecture contains different types of memory
to access data, such as global, constant, texture, shared, and
local memories and registers [12, 21]. Figure 4 shows the

memory hierarchy of aGPU.At a low level, localmemory and
registers are private to the threads. The input or intermediate
output variables in the threads will be stored in registers
or local memory. At a high level, each thread block has
shared memory, and all threads in the same thread block
can cooperate with one another. At an even higher level,
the texture and constant memories are used to store read-
only parameters that need to be frequently accessed. The
global memory is available to CPU and GPU and enables
data transfer between them. The memory hierarchy of a
GPU guarantees that high-performance computing can be
achieved.

TheGPUarchitecture is built based on an array of stream-
ing multiprocessors (SMs). A multiprocessor is designed to
execute hundreds of threads concurrently to help a GPU
hide the latency of the memory access, which is called
Single-Instruction, Multiple-Thread (SIMT). When the host
invokes a kernel function, the thread blocks of the grid are
distributed to SMs. For a SM, thread blocks are executed in
turn: once old thread blocks terminate, new thread blocks
are launched immediately. Threads within the same block
are guaranteed to run on the same SM concurrently, and
interthread communication is accomplished through shared
memory.

3.2. GPUParallel Algorithm forCFD. Figure 5 shows theGPU
parallel algorithm corresponding to the solution of CFD.The
solid boxes represent the general cooperation of CPU and
GPU, and the dashed box represents the solution of governing

6 Mathematical Problems in Engineering

Global
Memory

Constant
Memory

Texture
Memory

Shared Memory

Registers

Thread (0,0)

Local
Memory

GPU Grid

Block (0,0)

Registers

Local
Memory

Thread (1,0)

Shared Memory

Registers

Thread (0,0)

Local
Memory

Block (1,0)

Registers

Local
Memory

Thread (1,0)

CPU

Figure 4: The memory hierarchy of a GPU.

equations implemented on GPU.TheGPU parallel algorithm
follows seven steps: device setting, memory allocation, data
transfer from host to device, kernel execution, data transfer
from device to host, freeing memory, and device resetting.
For the solution of governing equations, each time step of the
computation contains a series of kernel functions, including
the processing of boundary conditions, the calculation of
fluxes of cell face, and the update of primitive variables. The
exchanges of primitive variables and their gradients between
GPUs are essential to calculate the fluxes of cell face accurately
when running the GPU-based CFD codes on multi-GPU
parallel cluster.

3.3. Multi-GPU Parallelization Based on MPI+CUDA. The
Message Passing Interface (MPI) is widely used on shared
and distributed memory machines to implement large-
scale calculations on multi-GPU parallel cluster [5, 29, 30].
Figure 6 shows the multi-GPU programming model based
on MPI+CUDA. At the beginning of the calculation, the
MPI Init function is called to enter the MPI environment.
The computing tasks are then evenly distributed to each
GPU to achieve load balance by one-dimensional domain
decompositionmethod [31]. At the end of the calculation, the
MPI Finalize function is called to exit the MPI environment.
Here, each node consists of one Intel Xeon E5-2670 CPUwith
eight cores and four NVIDIA GTX 1070 GPUs.

In a multi-GPU parallel cluster, the ghost and singularity
data will be exchanged between GPUs. For the current

devices, data transfer cannot be completed directly between
GPUs, and CPU plays a role as medium. Figure 7 shows data
transfer process between GPUs.The function cudaMcemcpy-
HostToDevice is called to transfer data from the GPU to the
relevant CPU through the PCI-e bus. After fulfilling data
transfer between CPUs, the function cudaMcemcpyDevice-
ToHost is called to transfer the data from CPU to the target
GPU. The latest device introduced by NVIDIA Corporation
is Tesla V100, which provides an NVLink bus technique [32]
to achieve communication between GPUs directly.

4. Physical Model and Mesh Generation

4.1. Physical Model. Figure 8 shows the physical model of an
aerospace plane. Reference [33] provides a wide variety of
experimental data sets for this model, and these experiments
are carried out in a hypersonic wind tunnel. The aerospace
plane is significantly important for future space warfare and
transportation, which are drawing increasing interest. In
this paper, the hypersonic flow over the aerospace plane
model has been studied on the multi-GPU parallel platform.
Orthographic views and the main dimensions (given in
mm) of the model are presented in Figure 9, which exactly
corresponds to the experimental model.

Two Mach numbers, namely, 8.02 and 10.02, are chosen
to analyse the hypersonic flow characteristics of aerospace
plane.The slip angle for all cases is 00, and the angles of attack
are 00 and 50 for Mach number 8.02, and 00 and 100 for Mach

Mathematical Problems in Engineering 7

Kernel
execution

Finish?
Yes

No

CPU GPU

cudaSetDevice
&

Allocate CPU
memory

Initialization

Time-stepping
(max_step)

Boundary conditions

Calculate timestep

Exchange primitive
variables

Calculate gradient of
primitive variables

Exchange gradient of
primitive variables

Calculate
(convective, viscous)

fluxes (RHS)

Exchange RHS

>max_step?

Update primitive
variables

Stop

Start

End

Input
parameters

Initialize CPU
parameters

cudaMemcpy
Host To Device

Receive data
from GPU

Free CPU
memory

Post-
processing

cudaSetDevice
success &

Allocate GPU
memory

Free GPU
memory

Receive data
from CPU

cudaMemcpy
Device To Host

cudaDevice
Reset

Yes

No

Figure 5: GPU parallel algorithm corresponding to the solution of CFD.

number 10.02.The temperature of isothermal wall 𝑇𝑤 is set to
300K. Table 1 shows the flow conditions for this study. The
freestream values can be obtained as follows:

𝑇∞ = 𝑇𝑡,0(1 + ((𝛾 − 1) /2)𝑀𝑎∞2) (26)

𝜇∞ = 𝜇0 (𝑇∞𝑇0)
1.5 (𝑇0 + 𝑇𝑠𝑇∞ + 𝑇0) (27)

𝜌∞ = 𝑅𝑒∞𝜇∞𝑀𝑎∞√𝛾𝑅𝑇∞ (28)

𝑝∞ = 𝜌∞𝑅𝑇∞ (29)

4.2. Mesh Generation. The commercial software Pointwise is
used to generate the multiblock structured mesh. Only half
of the flow field is simulated because of its symmetry with no
sideslip.Themesh is refined near the walls and at the corners,

and themagnitude of the grid height of the first layer is 1e-6m
to capture the characteristics of the boundary layer accurately.
The mesh in the boundary layer (see the orange part in
Figures 10 and 11) is generated separately from the main flow
to ensure the quality of the grid in this region.Meanwhile, this
method of mesh generation has strong flexibility. The mesh
has 1.046 × 107 nodes and 1.004 × 107 hexahedra. Figures
10 and 11 show the computational mesh of symmetry plane
and base plane, respectively. Figure 12 shows the boundary
conditions, which are marked in different colours. Here, four
types of boundary conditions are employed: wall, symmetry,
inflow, and outflow.

5. Results and Discussion

5.1.Multi-GPUParallel Platform. In this paper, we useCUDA
version 8.0, Visual Studio 2013 for C code and MPICH2
1.4.1 for MPI communication. All simulations are performed

8 Mathematical Problems in Engineering

Table 1: The flow conditions for the aerospace plane.

Case 𝑀𝑎∞ 𝑅𝑒∞ [1/m] 𝑃𝑡,0 [MPa] 𝑇𝑡,0 [K] 𝛼 [0]
Case 1 8.02 1.34 × 107 6.0 740 0
Case 2 8.02 1.34 × 107 6.0 740 5
Case 3 10.02 2.20 × 107 6.9 1,457 0
Case 4 10.02 2.20 × 107 6.9 1,457 10

MPI_Init

MPI Finalize

Node 1

Node2

CPU GPU

Node2

Node N
CPU GPU

Figure 6: Multi-GPU programming model based on MPI+CUDA.

GPU_1

MPI CPU_2CPU_1

GPU_2

Figure 7: Data transfer process between GPUs.

Figure 8: The configuration of the aerospace plane model.

Table 2: The main parameters of multi-GPU parallel platform.

NVIDIA GTX
1070 GPU

Device memory (GB) 8
Compute capability 6.1

Streaming multiprocessors 15
Stream processors 1,920

Single-precision (GFLOPS) 6,080
Double-precision (GFLOPS) 194
Memory bandwidth(GB/s) 256.3

Intel Xeon
CPU E5-2670

Operating system Windows 7
Number of cores 8

RAM (GB) 64

AIPs
CUDA Version 8.0
MPI Version 1.4.1
C Visual studio 2013

on one node, which contains one Intel Xeon E5-2670 CPU
at 2.60GHz and four NVIDIA GTX 1070 GPUs. The main
parameters of the multi-GPU parallel platform are shown in
Table 2. The theoretical peak single-precision floating-point
operations are more than those of double-precision. Hence,
the single-precision data for GTX 1070 GPU parallelization
is used.

5.2. Flow over the Physical Model at Mach Number 8.02. The
Mach number and pressure contours on the symmetry plane
atMachnumber 8.02 are shown in Figures 13 and 14.TheGPU
parallel algorithm can clearly capture the wave structures in
the flow field. The approximate boundary layer thickness is
present in Figure 13. The bow shock at the head and the
expansion wave at the upper surface (shown in Figure 14)
have an important influence on the distributions of the flow
field parameters.

The surface pressure distributions on the symmetry
plane at Mach number 8.02, shown in Figures 15 and 16,
depict pressure distributions on the symmetry plane, and the
experimental results are presented here to facilitate a direct
comparison. The experimental results are all from [33]. The
pressure reaches a maximum at the head due to the effect of
bow shock and then rapidly decreases. At the upper surface,
the pressure decreases at the corner of cone and cylinder
because of the expansion and thenmaintains about the same.
As the angle of attack increases, the upper surface pressure
decreases, while the opposite holds for the lower surface.
It can be seen that the numerical results agree well with
experimental data, and the agreement between numerical
and experimental results is favourable.

Mathematical Problems in Engineering 9

180

R15

58

18
4.

8

2
0
∘

68
∘

(a)

290

581
0
∘

1
0
∘

(b)

R15
R12

R10

10

R29

45 ∘

55
∘

(c)

Figure 9: Orthographic views and the main dimensions. (a) Front view. (b) Top view. (c) Side view.

Figure 10: Computational mesh of the symmetry plane.

Figure 11: Computational mesh of the base plane.

5.3. Flow over the Physical Model at Mach Number 10.02.
In this section, the computed results of cases 3 and 4 are
discussed. Figure 17 shows the heat flow contours of the
aerospace plane. As clearly shown in Figure 17, extreme
values occur at the head and wing twist due to the drastic
changes of the temperature gradients. Figure 18 shows the
temperature contours on the symmetry plane. Obviously, a

Wall
Symmetry

Inflow
Outflow

Figure 12: Boundary conditions of computational domain.

high temperature zone is formed at the head of the physical
model due to the influence of bow shock.

Figures 19 and 20 show the heat flow distributions on
the symmetry plane of cases 3 and 4, which are close to the
experimental data reported in [33]. For calculation of𝑄𝑊, see
(8), and the reference value𝑄𝑅𝑒𝑓 equals 441.1KW/m2. As can
be seen from the figures, the distributions of heat flow are
consistent with the trend of pressure. Nevertheless, discrep-
ancy exists between simulation andmeasurements, especially
at the corner of cone and cylinder, due to the grid resolution.
Overall, the agreement between numerical simulation and
experimental measurements is also favourable.

5.4. GPUParallel Performance Analysis. For case 1, numerical
computations are performed on six different grid-refinement
levels: coarser (1.78 million), coarse (3.56 million), medium
(5.02 million), fine (7.08 million), finer (10.04 million), and
finest (20.08 million), to analyse the performance of multi-
GPU parallel algorithm.

10 Mathematical Problems in Engineering

Ma: 0 1 2 3 4 5 6 7 8

(a) 𝛼 = 00

Ma: 0 1 2 3 4 5 6 7 8

(b) 𝛼 = 50

Figure 13: Mach number contours on the symmetry plane.

Pressure (N/m):2 2000 10000 18000 26000 34000 42000 50000

(a) 𝛼 = 00

Pressure (N/m):2 2000 10000 18000 26000 34000 42000 50000

(b) 𝛼 = 50

Figure 14: Pressure contours on the symmetry plane.

A good parallel system requires better acceleration, and
speedup is an important parameter to measure the perfor-
mance of parallel algorithms. The speedup is defined as the
runtime of one CPU with eight cores divided by that of the
GPU. In this paper, we simulate ten thousand time steps, and
the runtime of one iteration step is achieved by averaging the
execution time.

𝑆𝑝 = 𝑡𝐶𝑃𝑈𝑡𝐺𝑃𝑈 (30)

The runtime of one iteration step for one CPU and single
GPU is presented in Table 3 (time is given in ms). Figure 21
shows that the speedup of the single GPU increases with the
grid size. In comparisonwith CPU-based parallel computing,
GPU parallelization can considerably improve the computa-
tional efficiency. The speedup reaches 63.22 for the coarser
mesh, and 77.59 for the finest mesh. The speedup increases
rapidly and then gradually becomes flat with the increase
of grid size; this is because the proportion of the single

Table 3: Runtime of one CPU and single GPU.

No. Grid size [million] CPU [ms] Single GPU [ms]
1 1.78 1,720.12 27.21
2 3.56 3,658.74 52.99
3 5.02 5,227.01 72.01
4 7.08 7,662.74 101.68
5 10.04 10,978.25 142.86
6 20.08 22,412.56 288.84

instruction task increases (iteration, etc.) as the grid size
increases compared with the branch instruction task (data
transfer, etc.). GPUs are better suited for compute-intensive
tasks than traditional CPUs. After the grid size attains the
“limit value,” the speedup remains basically unchanged and
the “limit value” is closely related to the properties of GPU
architecture.

Mathematical Problems in Engineering 11

x
−0.1 −0.05 0 0.05 0.1 0.15 0.2

0

20

40

60

80

100

Computation
Experiment

p/
p ∞

(a) Upper surface

x
−0.1 −0.05 0 0.05 0.1 0.15 0.2

0

20

40

60

80

100

Computation
Experiment

p/
p ∞

(b) Lower surface

Figure 15: Pressure distributions on the symmetry plane at 𝛼 = 00.

x
−0.1 −0.05 0 0.05 0.1 0.15 0.2

0

20

40

60

80

100

Computation
Experiment

p/
p ∞

(a) Upper surface

Computation
Experiment

x
−0.1 −0.05 0 0.05 0.1 0.15 0.2

0

20

40

60

80

100

p/
p ∞

(b) Lower surface

Figure 16: Pressure distributions on the symmetry plane at 𝛼 = 50.

Table 4: Runtime of multi-GPUs.

No. Grid size [million] Two GPUs [ms] Four GPUs [ms]
1 1.78 23.23 22.39
2 3.56 40.41 37.16
3 5.02 49.53 40.48
4 7.08 67.12 54.59
5 10.04 94.19 75.62
6 20.08 191.16 152.93

Table 4 shows the runtime of one iteration step for multi-
GPUs (time is given in ms). Figure 22 shows that the speedup
of different numbers of GPUs increases with the grid size,
starting with a single GPU and going up to four GPUs.
Multi-GPUparallelization prominently improves the compu-
tational efficiency with the increased grid size. The speedup
of four GPUs reaches 76.83 for the coarser mesh and 146.55
for the finest mesh; this is far greater than the acceleration
achieved by single GPU and two GPUs, which indicates that
the multi-GPU parallel algorithm established in this paper
can be applied to large-scale scientific computations.

12 Mathematical Problems in Engineering

(a) 𝛼 = 00 (b) 𝛼 = 100

Figure 17: Heat flow contours of the aerospace plane.

T: 50 250 450 650 850 1050 1250

(a) 𝛼 = 00

T: 50 250 450 650 850 1050 1250

(b) 𝛼 = 100

Figure 18: Temperature contours on the symmetry plane.

X
−0.1 −0.05 0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

1.2

Computation
Experiment

１
７

/１
２
？＠

(a) Upper surface

X
−0.1 −0.05 0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

1.2

Computation
Experiment

１
７

/１
２
？＠

(b) Lower surface

Figure 19: Heat flow distributions on the symmetry plane at 𝛼 = 00.

Mathematical Problems in Engineering 13

X
−0.1 −0.05 0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

1.2

Computation
Experiment

１
７

/１
２
？＠

(a) Upper surface

X
−0.1 −0.05 0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

1.2

Computation
Experiment

１
７

/１
２
？＠

(b) Lower surface

Figure 20: Heat flow distributions on the symmetry plane at 𝛼 = 100.

Grid size (million)

Sp
ee

du
p

0 5 10 15 20
60

65

70

75

80

Figure 21: Speedup of single GPU increases with the number of
meshes.

6. Conclusions

In the present work, a multi-GPU parallel algorithm based
onMPI+CUDA is established to accelerate the computations
of hypersonic flow problems. Flow over an aerospace plane
model atMach numbers 8.02 and 10.02 is studied onNVIDIA
GTX 1070 GPUs to verify the algorithm. The numerical
results agree well with experimental data by comparing
pressure and heat flow distributions. The speedup of single
GPU reaches 63.22 for the coarser mesh and 77.59 for the
finest mesh. In comparison with CPU-based parallel com-
puting, GPU parallelization can considerably improve the
computational efficiency. The speedup of four GPUs reaches

Grid size (million)

Sp
ee

du
p

0 5 10 15 20

60

80

100

120

140

Single_GPU
Two_GPUs
Four_GPUs

Figure 22: The speedup of multi-GPUs increases with the grid size.

76.83 for the coarser mesh and 146.55 for the finest mesh; this
is far greater than the acceleration achieved by single GPU
and two GPUs, which indicates that the multi-GPU parallel
algorithm established in this paper can be applied to large-
scale scientific computations.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

14 Mathematical Problems in Engineering

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The first author would like to thank Dr. Feng Liu. All
authors would like to express their thanks for the support
from the National Natural Science Foundation of China (No.
11472004).

References

[1] J. D. Anderson Jr., Fundamentals of Aerodynamics, Tata
McGraw-Hill Education, 5th edition, 2010.

[2] J. J. Bertin and R. M. Cummings, “Fifty years of hypersonics:
where we’ve been, where we’re going,” Progress in Aerospace
Sciences, vol. 39, no. 6-7, pp. 511–536, 2003.

[3] E. T. Curran, “Scramjet engines: the first forty years,” Journal of
Propulsion and Power, vol. 17, no. 6, pp. 1138–1148, 2001.

[4] J. D. Anderson Jr., Hypersonic and High-Temperature Gas
Dynamics, AIAA, 2nd edition, 2006.

[5] F. Bonelli, M. Tuttafesta, G. Colonna, L. Cutrone, and G.
Pascazio, “An MPI-CUDA approach for hypersonic flows with
detailed state-to-state air kinetics using a GPU cluster,” Com-
puter Physics Communications, vol. 219, pp. 178–195, 2017.

[6] E. Elsen, P. LeGresley, and E. Darve, “Large calculation of
the flow over a hypersonic vehicle using a GPU,” Journal of
Computational Physics, vol. 227, no. 24, pp. 10148–10161, 2008.

[7] W. L. Oberkampf and T. G. Trucano, “Verification and valida-
tion in computational fluid dynamics,” Progress in Aerospace
Sciences, vol. 38, no. 3, pp. 209–272, 2002.

[8] A. Afzal, Z. Ansari, A. Rimaz Faizabadi, and M. K. Ramis,
“Parallelization strategies for computational fluid dynamics
software: state of the art review,” Archives of Computational
Methods in Engineerin: State-of-the-Art Reviews, vol. 24, no. 2,
pp. 337–363, 2017.

[9] K. E. Niemeyer and C.-J. Sung, “Recent progress and chal-
lenges in exploiting graphics processors in computational fluid
dynamics,”
e Journal of Supercomputing, vol. 67, no. 2, pp.
528–564, 2014.

[10] T. Chen, Y. Ning, A. Amritkar et al., “Multi-GPU solution
to the lattice Boltzmann method: an application in multiscale
digital rock simulation for shale formation,” Concurrency and
Computation: Practice and Experience, vol. 30, no. 19, Article ID
e4530, 2018.

[11] M. J. Goldsworthy, “A GPU-CUDA based direct simulation
Monte Carlo algorithm for real gas flows,” Computers & Fluids,
vol. 94, no. 94, pp. 58–68, 2014.

[12] NVIDIA, “CUDA C programming guide v8.0,” 2017, https://
docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html.

[13] J. Huang, J. A. Lemkul, P. K. Eastman et al., “Molecular dynam-
ics simulations using the drude polarizable force field on GPUs
with OpenMM: implementation, validation, and benchmarks,”
Journal of Computational Chemistry, vol. 39, no. 21, pp. 1682–
1689, 2018.

[14] S. S. Sawant, O. Tumuklu, R. Jambunathan, and D. A. Levin,
“Application of adaptively refined unstructured grids in DSMC
to shock wave simulations,” Computers & Fluids, vol. 170, pp.
197–212, 2018.

[15] A. Khajeh-Saeed and J. B. Perot, “Computational fluid dynamics
simulations using many graphics processors,” Computing in
Science & Engineering, vol. 14, no. 3, pp. 10–19, 2011.

[16] X. Guo, B. Tang, J. Tao et al., “Large scale GPU accelerated
PPMLR-MHD simulations for space weather forecast,” in Pro-
ceedings of 16th IEEE/ACM International Symposium on Cluster,
pp. 576–581, 2016.

[17] P. S. Tamizharasan and N. Ramasubramanian, “Analysis of
large deviations behavior of multi-GPUmemory access in deep
learning,”
eJournal of Supercomputing, vol. 74, no. 5, pp. 2199–
2212, 2018.

[18] T. Brandvik and G. Pullan, “Acceleration of a 3D Euler solver
using commodity graphics hardware,” in Proceedings of the 46th
AIAA Aerospace Sciences Meeting and Exhibit, 2008.

[19] A. Khajeh-Saeed and J. B. Perot, “Direct numerical simulation
of turbulence using GPU accelerated supercomputers,” Journal
of Computational Physics, vol. 235, no. 4, pp. 241–257, 2013.

[20] X.Wang, Y. Shangguan,N.Onodera,H. Kobayashi, andT. Aoki,
“Direct numerical simulation and large eddy simulation on a
turbulent wall-bounded flow using lattice Boltzmann method
andmultiple GPUs,”Mathematical Problems in Engineering, vol.
2014, Article ID 742432, 10 pages, 2014.

[21] V. N. Emelyanov, A. G. Karpenko, A. S. Kozelkov, I. V. Teterina,
K. N. Volkov, and A. V. Yalozo, “Analysis of impact of general-
purpose graphics processor units in supersonic flowmodeling,”
Acta Astronautica, vol. 135, pp. 198–207, 2017.

[22] J.-L. Zhang, Z.-H. Ma, H.-Q. Chen, and C. Cao, “A GPU-
accelerated implicit meshless method for compressible flows,”
Journal of Computational Physics, vol. 360, pp. 39–56, 2018.

[23] J. Blazek, Computational Fluid Dynamics: Principles and Appli-
cations, Elsevier, 3rd edition, 2015.

[24] R. Chamberlain, “Calculation of three-dimensional jet inter-
action flowfields,” in Proceedings of the 26th Joint Propulsion
Conference, 1990.

[25] M.-S. Liou, “A sequel to AUSM, part II: AUSM+-up for all
speeds,” Journal of Computational Physics, vol. 214, no. 1, pp. 137–
170, 2006.

[26] B. van Leer, “Towards the ultimate conservative difference
scheme. V. A second-order sequel to Godunov’s method,”
Journal of Computational Physics, vol. 32, no. 1, pp. 101–136, 1979.

[27] A. Jameson, W. Schmidt, and E. Turkel, “Numerical solution
of the Euler equations by finite volume methods using Runge
Kutta time stepping schemes,” in Proceedings of the 14th Fluid
and Plasma Dynamics Conference, Palo Alto, Calif, USA, 1981.

[28] R. Yam-Uicab, J. López-Mart́ınez, E. Llanes-Castro, L. Narvaez-
Dı́az, and J. Trejo-Sánchez, “A parallel algorithm for the
counting of ellipses present in conglomerates using GPU,”
Mathematical Problems in Engineering, vol. 2018, Article ID
571463, 17 pages, 2018.

[29] P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet, “A
hybrid MPI-OpenMP scheme for scalable parallel pseudospec-
tral computations for fluid turbulence,” Parallel Computing, vol.
37, no. 6-7, pp. 316–326, 2011.

[30] D. A. Jacobsen, J. C. Thibault, and I. Senocak, “An MPI-
CUDA implementation for massively parallel incompressible
flow computations on multi-GPU clusters,” in Proceedings of
the 48th AIAA Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition, 2010.

[31] B. Baghapour, A. McCall, and C. J. Roy, “Multilevel parallelism
for CFD codes on heterogeneous platforms,” in Proceedings of
the 46th AIAA Fluid Dynamics Conference, 2016.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

Mathematical Problems in Engineering 15

[32] S. Potluri, A. Goswami, D. Rossetti, C. J. Newburn, M. G.
Venkata, and N. Imam, “GPU-centric communication on
NVIDIA GPU clusters with InfiniBand: a case study with
OpenSHMEM,” in Proceedings of the 24th IEEE International
Conference on High Performance Computing, HiPC, pp. 253–
262, 2017.

[33] S. X. Li, Hypersonic Flow Characteristics of Typical Shapes,
National Defense Industry Press, 2007.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

