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*is paper proposes a near-optimal air-to-ground missile guidance law with impact angle and impact velocity constraints based
on sequential convex programming. A realistic aerodynamic model is introduced into the problem formulation, such that
traditional optimization theory cannot obtain an analytical solution to the optimization problem under state constraints. *e
original problem is considered as an optimization problem, and the angle of attack is replaced with the angle of attack rate as a new
control variable to reconstruct the problem and simplify the solving process. Next, the independent variable is changed in the
differential equations to linearize and discretize the problem such that the reconstructed problem can be solved using sequential
convex programming. *e results obtained by numerical simulations confirmed that the proposed algorithm is valid and faster
than the general-purpose nonlinear optimal control problem solver. Finally, it was verified that different impact angles and impact
velocities were achieved.

1. Introduction

Inmodern warfare, the objectives of the guidance law are not
only limited to zero miss distance interception but also
include target interception at a certain impact angle and
impact velocity. *e impact angle constraint in a terminal
interception engagement is critical for a homing missile
attacking modern warships, tanks, and ballistic missiles.
Additionally, it can increase the effectiveness and lethality of
the missile’s warhead and realize an escape from the limited
defense zone of the target [1, 2]. *e impact velocity con-
straint at a terminal homing guidance is crucial to the
visibility of seekers and for precise and successful mission
execution [3, 4]. *e guidance law with impact angle and
impact velocity constraints has the advantage of effectively
destroying a target.

*e guidance law considering the impact angle and im-
pact velocity constraints has been widely investigated in
previous decades. Li et al. [5] used graph theory to derive the
impact angle and time constraint guidance law. Sliding mode

theory [6–9] and proportional navigation [10–12] have been
introduced to achieve the desired impact angle. Optimal
control theory has also been implemented to solve optimal
guidance law problems under an impact angle constraint
[13–18], but a limit has not been set on the terminal velocity
owing to the complicated form of the aerodynamic co-
efficients. Kim et al. [19] converted the guidance law to a
polynomial form and used polynomial coefficients to con-
strain the impact time and impact angle. Later, Tahk et al. [20]
extended the polynomial form of the guidance law to control
the impact velocity with another polynomial coefficient,
which is clearly not an optimal solution. Moreover, the drag
coefficient in the guidance law design was considered as a
constant, which is unrealistic and apparently invalid for
variable aerodynamic coefficients.

Owing to the time-varying and complicated form of the
aerodynamic terms in the velocity dynamic equation, it is
hard to obtain an analytical form of the optimal guidance law
for velocity control. Hence, computational guidance [21]
was introduced to handle the optimal real-time control
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problems or trajectory optimization problems with
velocity constraints. Cheng et al. [22] used the Newton–
Kantorovich/pseudospectral approach to solve the convex
model of ascent trajectory optimization problems, while the
drag coefficient is easily considered as constant. Convex
optimization [23–29] is increasingly becoming attractive in
computational guidance owing to its efficiency and re-
liability. Liu et al. [30] considered a more realistic form of lift
and drag, then used the drag polar curve to turn the drag and
lift into a single variable to control the impact velocity, and
finally used second-order convex programming (SOCP) to
solve the control variable. However, the drag polar curve was
not exactly accurate, which caused the real flight trajectory
and impact velocity to deviate from the simulations.
Moreover, to maintain the equilibrium of the original
problem and transformed problem, an additional term must
be added to the objective function.*e independent variable
altitude chosen by Liu makes it impossible to handle a wavy
trajectory, which is contrary to the monotonically in-
dependent variable.

In this study, the realistic form of aerodynamic co-
efficients is introduced to precisely control the impact angle
and impact velocity. *e drag and lift coefficients are set as
functions of the angle of attack and flight Mach number,
which are obtained by curve fitting based on the flight
parameters. To overcome the inherent shortcoming of
traditional optimization theory, whereby the analytical
solution to the realistic velocity control problem cannot be
obtained, the sequential convex programming algorithm is
proposed to handle the time-varying nonlinear optimiza-
tion problem. A new control variable and an independent
variable are introduced to reformulate the original problem
as an optimization problem. Additionally, convexification
and discretization render the problem solvable using se-
quential convex programming. *e main novelty of this
study is the derivation of a realistic model for velocity
control. Moreover, sequential convex programming is
proposed to numerically solve the optimization problem in
a nonanalytical manner. *e numerical solutions con-
firmed the validity and effectiveness of the proposed
approach.

*e rest of this paper is organized as follows: in Section 2,
the near-optimal problem is formulated and transformed
into a linearized form.*en, in Section 3, the linearized form
of the near-optimal problem is discretized and solved using
sequential convex programming. *e numerical simulations
are presented in Section 4. Finally, the conclusions drawn
from this study are presented in Section 5.

2. Problem Formulation

In this section, we formulate an optimization problem for an
air-to-ground aerodynamically controlled missile impacting
a target at a desired impact angle and impact velocity with
minimal control effort and according to the state inequality
constraints on the aerodynamic limitation. Unlike other
simplified dynamic and kinematic equations, the drag and
lift terms are introduced into the mathematical model.

2.1. Control Effort Optimization Interception Problem.
First, let us consider the planar interception engagement of
an aerodynamically controlledmissile.*e aerodynamic and
kinematic equations are expressed as follows:

_x � V cos θ,

_y � V sin θ,

_V � −
D

m
− g sin θ,

_θ �
L

mV
−

g cos θ
V

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where x, y, V, and θ denote the missile longitudinal range,
altitude, velocity, and flight path angle, respectively; g is the
gravitational acceleration; D is the drag force; and L is the lift
force, which can be calculated as follows:

D �
1
2

CD(α, M)ρV
2
Sref ,

L �
1
2

CL(α, M)ρV
2
Sref ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where ρ � ρ0e− y/hs is the atmospheric density; Sref is the
reference area of the missile; and CD and CL are the drag and
lift coefficients, respectively, both of which depend on the
angle of attack α and Mach number M. In some optimi-
zation problems [30], the drag polar curve [31] has been used
to simplify the problem, but this approach is not sufficiently
precise for guidance law design. For the control effort op-
timization problem considered in this study, the aero-
dynamic coefficients are approximated by fitting the data to
all flight envelopes, as follows [32]:

CD � 0.4136 − 0.008152α + 0.0112M + 0.00422α2

+ 0.002126Mα,

CL � − 0.2128 + 0.2284α + 0.07589M + 0.04997Mα.

⎧⎪⎪⎨

⎪⎪⎩

(3)

In summary, the aerodynamic and kinematic equations
can be rearranged as follows:

_x � V cos θ,

_y � V sin θ,

_V � −
CD(α, M)ρ − y/hs( )

0 V2Sref

2m
− g sin θ,

_θ �
CL(α, M)ρ − y/hs( )

0 VSref

2m
−

g cos θ
V

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

In this study, the Mach number M can be calculated
through the missile velocity. Consequently, the angle of
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attack α is assumed to be the only control variable for the
control optimization problem.

*e physical constraints that must be satisfied in the
problem are as follows:

(1) Engagement kinematics: it is expressed by equation
(4) with initial conditions x(t0), y(t0), V(t0), θ(t0),
and α(0), which are the current values of these
variables from the navigation system:

θ t0( 􏼁 � θ∗0 ,

V t0( 􏼁 � V
∗
0 ,

x t0( 􏼁 � x0,

y t0( 􏼁 � y0.

(5)

(2) Control constraint: owing to the physical constraint
of the missile, the angle of attack during the en-
gagement is limited as follows:

|α(t)|≤ αmax, (6)

where αmax is the maximum angle of attack.
(3) Terminal constraints: to impact the target from a

specified direction θ∗f and specified velocity V∗f, we
require t(tf) � 0, x(tf) � xf, and y(tf) � yf,
where the final impact time tf is free and xf and yf

are the target coordinates. *erefore, the terminal
constraints are expressed as follows:

θ tf􏼐 􏼑 � θ∗f,

V tf􏼐 􏼑 � V
∗
f,

x tf􏼐 􏼑 � xf,

y tf􏼐 􏼑 � yf.

(7)

In addition to satisfying all of these constraints, the
optimization objective also consists of minimizing the
control energy; then, the following performance index
should be minimized, as follows:

J � 􏽚
tf

t0

α(t)
2dt. (8)

Now, the energy optimization problem can be rewritten
as follows:

Problem 1. Minimize equation (8) subject to equations
(4)–(7).

2.2. Choice of New Control and New Independent Variable.
*e dynamic and kinematic equations expressed by
equation (4) are highly nonlinear in terms of both the
state variables and control variable. *is causes high-

frequency jitters when applying successive linearization
to the kinematic and dynamic equations. *e control
variable α acting on the aerodynamic coefficients is highly
nonlinear and coupled with the state variable such that it
becomes complicated to obtain a numerical optimization
solution to Problem 1. To simplify Problem 1 and
eliminate the jitter phenomena, we define the angle of
attack rate _α as a new control input and consider the
missile longitudinal range x as a new independent var-
iable. Note that _x is positive-defined, owing to the limits
on the flight path angle |θ|≤ π/2, which means that x

monotonically increases during the engagement. *e
following state equation is added to the original
equations:

_α � u. (9)

It is known that the angle of attack rate cannot be ar-
bitrarily large; thus, it is limited by the physical characteristic
of the missile, as follows:

|u|≤ _αmax, (10)

where _αmax is the maximum allowable angle of attack rate.
By adding the angle of attack rate dynamics expressed

in equation (9) to equation (4) and changing the in-
dependent variable, the augmented equations of the dy-
namic and kinematic equations can be reformed as
follows:

x′ � f(x) + B(x)u, (11)

where x is the state vector given as x � [y; V; θ; α] and the
quotation mark denotes that the differentiations are now
with respect to x. *e column vectors f(x) ∈ R4 and
B(x) ∈ R4 are expressed as follows:

f(x) �

tan θ

−
CDρ0e− y/hs VSref

2m cos θ
−

g tan θ
V

CLρ0e− y/hs Sref
2m cos θ

−
g

V2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B(x) �

0

0

0

1
V cos θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

Next, with x as the independent variable, the state,
initial, and terminal constraints in equations (5)–(7) can be
written as follows:
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|α(x)|≤ αmax, (13)

θ x0( 􏼁 � θ∗0 ,

V x0( 􏼁 � V
∗
0 ,

y x0( 􏼁 � y0,

(14)

θ xf􏼐 􏼑 � θ∗f,

V xf􏼐 􏼑 � V
∗
f,

y xf􏼐 􏼑 � yf.

(15)

Finally, with x as the independent variable, the per-
formance index can be written as follows (using dt � dx/ _x):

J � 􏽚
xf

x0

α2

V cos θ
dx. (16)

Remark 1. *e original control variable angle of attack acts on
the aerodynamic coefficients, is of high order, and is coupled
with the states. *is form is complicated for optimal control
theory and numerical optimization. With the angle of attack
rate as the new control variable, the control variable is now a
first-order term, which benefits the numerical optimization.

2.3. Reformulated Optimization-Control Problem. With the
original dynamic and kinematic equations in equation (4)
replaced by the augmented dynamics and new independent
variable, Problem 1 can be reformulated into a new opti-
mization-control problem, as follows:

Problem 2. Minimize equation (16) subject to equations
(10)–(15).

Lemma 1. If there exists an optimization solution to Problem
2 given by [x∗, u∗] � [y∗, V∗, θ∗, α∗, u∗], then, [x∗, y∗, V∗,

θ∗, α∗] is a feasible solution to Problem 1.

Proof. Problem 2 is given by introducing a new control
variable and new independent variable to the original system in
equation (4). *e original control constraint on α becomes a
boundary condition on the new state variable. *e angle of
attack rate is introduced as a new control variable into equation
(9) and as a constraint on the angle of attack rate in equation
(10). *us, the set of feasible controls for Problem 2 are strictly
constrained in the set of feasible controls for Problem 1.
Obviously, Problem 2 is merely a relaxation of Problem 1.
Additionally, the optimization of Problem 2 satisfies all con-
straints of Problem 1 and clearly defines a feasible solution to
Problem 1. However, a feasible solution to Problem 1 does not
necessarily define a solution to the original Problem 1, and the
equivalence of the dynamics and kinematics with and without
_α � u is demonstrated by the numerical simulations.

Remark 2. Lemma 1 considers a relationship between the
solution of the original Problem 1 and the relaxed Problem 2.
*e nonlinear and coupled control in equation (4) is avoided

by introducing a new control variable and new independent
variable. Consequently, a feasible solution to Problem 1 can
be obtained by solving the problem. *e numerical simu-
lations validate the effectiveness of the relaxed
transformation.

3. Convexification and SCP Method

Problem 2 is still a highly nonlinear optimization problem
with nonlinear differential state equation constraints and an
objective function, which adds complexity when applying a
convex-optimization solver to obtain the solution. However,
except for the differential state equations and objective
function, all other constraints on the state variables and
control variables are linear and convex. *erefore, the
nonlinear part must be converted to tractable formulations
for convex programming. A small-disturbance-based line-
arization method is used to partially linearize the terms that
are unrelated to the control [30]. Subsequently, a sequence of
convex-optimization problem, specifically to a sequence of
SOCP problem, is introduced to approximate Problem 2.
*e numerical simulations in Section 4 demonstrate that the
accuracy of the successive linearization approximation of
Problem 2 is acceptable.

3.1. SuccessiveLinearApproximation. First, let x(k), u(k)􏼈 􏼉 be
the kth successive solution, which has already been ob-
tained. For the fast convergence of the successive solution,
we linearize the term f(x) at x(k) in equation (11) but
approximate B(x) with B(x(k)) to avoid the presence of u(k)

in the resulting linearized system. *en, we convert
equation (11) to the following partially linearized system:

x′ � A x
(k)

􏼐 􏼑x + B x
(k)

􏼐 􏼑u + C x
(k)

􏼐 􏼑, (17)

where x(k) � y(k) V(k) θ(k) α(k)􏽨 􏽩
T
and

A x
(k)

􏼐 􏼑 �
df

dx
x

(k)
􏼐 􏼑 �

0 0 a13 0

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B x
(k)

􏼐 􏼑 �

0

0

0

b4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

c x
(k)

􏼐 􏼑 � f x
(k)

􏼐 􏼑 − A x
(k)

􏼐 􏼑x
(k)

�

c1

c2

c3

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)
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*e coefficients are defined as follows, and subscript k of
the state variables is ignored for simplicity:

a13 �
1

cos2 θ
,

a21 �
CDρ0e− y/hs VSref

2m cos θhs

,

a22 � −
CDρ0e− y/hs Sref

2m cos θ
−

CV
Dρ0e− y/hs VSref

2m cos θ
+

g tan θ
V2 ,

a23 � −
CDρ0e− y/hs VSref sin θ

2m cos2 θ
−

g

V cos2 θ
,

a24 � −
Cα

Dρ0e
− y/hs VSref

2m cos θ
,

a31 � −
CLρ0e− y/hs Sref

2m cos θhs

,

a32 �
2g

V3 +
CV

L ρ0e− y/hs Sref

2m cos θ
,

a33 �
CLρ0e− y/hs Sref sin θ

2m cos2 θ
,

a34 �
Cα

Lρ0e
− y/hs Sref

2m cos θ
,

b4 �
1

V cos θ
,

c1 � tan θ −
θ

cos2 θ
,

c2 � −
2g tan θ

V
−

yCDρ0e− y/hs VSref

2m cos θhs

+
CDρ0e− y/hs VSref sin θθ

2m cos2 θ
+

gθ
V cos2 θ

+
CV

Dρ0e
− y/hs V2Sref

2m cos θ
+

Cα
Dρ0e

− y/hs VSrefα
2m cos θ

,

c3 �
CLρ0e− y/hs Sref

2m cos θ
−
3g

V2 +
yCLρ0e− y/hs Sref

2m cos θhs

−
CLρ0e− y/hs Sref sin θθ

2m cos2 θ
−

CV
L ρ0e

− y/hs VSref

2m cos θ
−

Cα
Lρ0e

− y/hs Srefα
2m cos θ

,

C
V
D �

dCD

dV
,

C
α
D �

dCD

dα
,

C
V
L �

dCL

dV
,

C
α
L �

dCL

dα
.

(19)

Additionally, a trust region must be added to maintain
the validity of the proposed linearization, as follows: x − x

(k)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δ, (20)
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where δ ∈ R4 is a constant vector, and the inequality is
applied componentwise.

Next, minimizing the preceding performance index
expressed in equation (16) is equivalent to minimizing the
following objective function:

J � 􏽚
xf

x0

ηdx. (21)

With an additional constraint expressed as follows:
α2

V cos θ
≤ η, (22)

where η is a slack variable. Obviously, the performance index
in equation (16) is a linear integrand. *e inequality con-
straint in equation (22) can be approximated using a
“lagging” technique, as follows:

α2 ≤w
(k)η, (23)

where w(k) � V(k) cos θ(k).
In summary, the optimization-control problem ap-

proximating Problem 2 is presented as follows.

Problem 3. Minimize equation (21) subject to equations
(13), (15), (17), (20), and (23).

*e derived Problem 3 can be very efficiently solved
using a convex-optimization algorithm because the dis-
cretization problem will yield a standard SOCP problem,
which has been mathematically defined in the literature [33],
as follows:

Minimize

f
T
x. (24)

According to

Aix + bi

����
����2≤ c

T
i x + di, i � 1, . . . , m, (25)

Fx � g, (26)

where x ∈ Rn is the optimization variable, and the problem
parameters include f ∈ Rn, F ∈ Rp×n, g ∈ Rp, Ai ∈ Rni×n,
bi ∈ Rn, and di ∈ Rn. Note that, when Ai � 0, the second-
order cone constraints are reduced to general linear
constraints.

For Problem 3, in the fixed interval [x0, xf], the per-
formance index in equation (21) can be discretized into a
linear form of equation (24). *e inequality constraints in
equations (13), (20), and (23) are converted to a sequence of
second-order cone constraints. *e dynamic and kinematic
equations expressed by equation (17) and the terminal
constraints in equation (15) are transformed to linear
constraints.

Remark 2. *e trapezoidal rule is implemented to discretize
the performance index in equation (21) and the differential
equations in equation (17) at the n + 1 uniformly distributed
discretized point in [x0, xf]; then, the step length is
e � (xf − x0)/n. *erefore, the performance index can be
discretized to a linear form, as follows:

J � 􏽚
xf

x0

ηdx � 􏽘
n

i�2

e

2
ηi− 1 + ηi( 􏼁. (27)

Similarly, the differential equations in equation (17) can
be discretized and rearranged as follows:

Hi− 1xi− 1 − Hixi + Gi− 1ui− 1 + Giui + Ci− 1 + Ci � 0, (28)

where the coefficients are expressed as follows:

Hi− 1 � I +
e

2
Ai− 1 x

(k)
􏼐 􏼑;

Hi � I −
e

2
Ai x

(k)
􏼐 􏼑;

Gi− 1 �
e

2
Bi− 1 x

(k)
􏼐 􏼑;

Gi �
e

2
Bi x

(k)
􏼐 􏼑;

Ci− 1 � −
e

2
Ci− 1 x

(k)
􏼐 􏼑;

Ci � −
e

2
Ci x

(k)
􏼐 􏼑.

(29)

In summary, the nonlinear integrand performance index
and differential equations can be transformed into the
convex constraints in equation (26).

3.2. Sequential Convex Programming. We already known
that Problem 3 is an approximation to Problem 2. For the
sake of obtaining an accurate solution to Problem 2, we
propose the following sequential convex programming by
solving a sequence of convex programming problems de-
fined by Problem 3 to approximate the exact solution to
Problem 2. *e detail procedures are as follows:

(1) Set k � 0; initialize the states y(x0) � y0, V(x0) �

V0, θ(x0) � θ0, α(x0) � 0, y(xf) � yf, V(xf) � V∗f,
θ(xf) � θ∗f, and α(xf) � 0. Note that the initial
states in the convex-optimization algorithm do not
need to satisfy the constraints; therefore, we can
generate x(0) by linearly interpolating between the
initial condition and the final condition.

(2) For k> 1, compute the x(k− 1)-dependent parameters
in equations (17) and (28) using x(k− 1). *en,
Problem 3 can be transformed into a SOCP problem
and solved with the initial states x(k− 1) and preceding
calculated parameters. *erefore, we can obtain the
solution x(k), u(k)􏼈 􏼉.

(3) Check the following convergence condition:

sup
x0<x<xf

x
(k)

− x
(k− 1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ξ, (30)

where ξ ∈ R4 is the prescribed tolerance value for
convergence. If the preceding convergence condition
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is satisfied, go to Step (4); otherwise, set k � k + 1 and
go to Step (2).

(4) *e solution to Problem 2 is determined as x∗ � x(k)

and u∗ � u(k).

Remark 4. In equations (17) and (23), and during the dis-
cretization process, the parameters x(k) and w(k) depend on
the solution but are unknown before the problem is solved.
However, we can approximate their values based on the
solution obtained in the previous solution procedure. *e
first solution is given as the initial condition in Step (1) and
does not need to satisfy all of the constraints in Problem 3,
but rather the different initial states will influence the it-
eration times to converge in the sequential convex
programming.

Remark 5. *e theoretical proof for the convergence of the
sequential convex programming is very challenging owing to
the presence of various constraints, nonlinear dynamics, and
kinematics. Lu and Liu [34] and Wang and Grant [35, 36]
provided several examples of sequential convex pro-
gramming convergence. *e numerical simulations pre-
sented in the next part demonstrate the convergence and
validity of the proposed algorithm.

4. Numerical Simulations

In this section, first, we verify the equivalence of the original
problem and new problem with the new control variable by
comparison to the nonlinear solver. Simultaneously, the
convergence and validity of the proposed sequential convex
programming algorithm are also be verified. Next, the ef-
fectiveness of the proposed algorithm is presented for dif-
ferent impact angles and impact velocities, respectively.

To begin with, we set the trust region as δ �

5000 100 50π/180 20π/180􏼂 􏼃 in equation (19) and the
convergence condition as ξ � 5 1 0.1π/180 0.1π/180􏼂 􏼃 in
equation (30). *e simulations are implemented in MAT-
LAB R2017b on a laptop computer equipped with Intel Core
i5-8250U 1.6GHz and 8GB RAM. *e convex pro-
gramming problems are solved using MOSEK [37] in
CVX [38].

*e vertical interception engagement of an air-to-
ground missile is considered as follows. *e missile
initial position [x0, y0] � [0, 8000]; the target position
[xf, yf] � [18000, 0]; the missile initial velocity
V(t0) � 200m/s. *e initial flight path angle θ(t0) � 0∘;
the initial angle of attack α(t0) � 0∘. Additionally, the
limits on the angle of attack and angle of attack rate are
αmax � 20∘ and _αmax � 4∘/s, respectively.

4.1. Validity and Convergence of Proposed Algorithm. In this
part, we set the impact angle θ∗f � − 60∘ and impact velocity
V∗f � 250m/s. To validate the equivalence and validity of the
proposed algorithm, we used the independent Gauss
Pseudospectral Optimization Software (GPOPS) [39] to
directly solve the original Problem 1.

*e performance index values of the proposed algorithm
in each iteration are presented in Figure 1(a). *is indicates
that, for the considered problem, the sequential algorithm
converged in 13 steps without an initial guess. To further
illustrate the converge process, more quantitative results are
presented in Table 1 and reveal that the difference between
each iteration can decrease below the tolerance value. If
looser tolerance is used or an appropriate initial guess is
made, fewer steps are required for convergence. Each step
requires approximately 0.3–0.5 s of CPU time. In summary,
the proposed algorithm requires 5.73 s to solve Problem 3,
while the GPOPS requires 43.32 s to solve the original
Problem 1. *e calculation time substantially decreases if a
high-performance CPU is used; therefore, the proposed
algorithm can be effectively used online in practical
situations.

Figures 1(b)–1(e) shows the trajectory profiles, flight
path angle profiles, velocity profiles, and angle of attack
profiles obtained by the proposed algorithm and GPOPS,
respectively. As can be seen, both the proposed sequential
convex programming and GPOPS successfully satisfied the
impact angle and impact velocity constraints and the ad-
ditional constraints. Note that the solution obtained by the
GPOPS is approximately identical to that obtained by the
proposed algorithm, which proves that our approach of
handling and transforming the problem is valid. *erefore,
Problem 3 is equivalent to the original problem, and Lemma
1 is verified. *e small difference between the proposed
algorithm and the GPOPS may have occurred for several
reasons, such as the linearization and approximation of
differential equations or different discretization strategies.
Figure 1(f) shows the value of the angle of attack rate ob-
tained by the proposed method. However, the chattering
phenomena of the new selected control variable, which were
caused by the linearization strategy, did not significantly
influence the angle of attack obtained in this study. In other
words, the actual control variable angle of attack did not
exhibit chattering phenomena and can thus be used in
practical interception engagement. Generally, the proposed
algorithm can obtain a successful solution to the optimi-
zation problem without an initial guess and faster than the
GPOPS.

4.2. Effectiveness of Proposed Algorithm for Different Impact
Angles. To validate that the proposed algorithm can suc-
cessfully achieve the desired impact angles, we set different
impact angle parameters, as follows: θ∗f � − 45∘, − 60∘, − 75∘;
the impact velocity is the same as in the previous situation.
*e simulation results, including the trajectory profiles,
velocity profiles, flight path angle profiles, angle of attack
profiles, and angle of attack rate profiles of the three different
impact angles, are presented in Figure 2. *e flight path
angle in Figure 2(b) confirms that the proposed algorithm
can satisfy different impact angle constraints. Figure 2(c)
shows that the air-to-ground missile can intercept a target
with the desired impact velocity. Additionally, all other
constraints are satisfied. Figure 2(e) shows that the biggest
and smallest angles of attack are proportional to the impact
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Figure 1: (a) Performance index values of each iteration; (b) trajectory profiles; (c) flight path angle profiles; (d) velocity profiles; (e) angle of
attack profiles obtained by proposed algorithm and GPOPS; (f ) angle of attack rate profile obtained by the proposed algorithm.
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Table 1: *e difference of the states between each iteration for Case A.

Iteration number Δ|y| (m) Δ|V|(m/s) Δ|θ| (deg) Δ|α| (deg)

1 1609.9 99.583 34.035 9.9714
2 1153.1 22.390 20.542 4.9468
3 392.14 26.228 5.8535 4.6356
4 109.04 7.3673 2.0949 0.7755
5 172.03 7.4144 3.1740 0.9927
6 24.083 1.4514 0.6722 1.1575
7 12.165 0.4772 0.1826 0.0942
8 6.8327 0.3021 0.1312 0.0663
9 7.9768 0.5660 0.2726 0.3389
10 6.1521 0.5061 0.2743 0.4331
11 6.3616 0.5203 0.2565 0.4382
12 6.4974 0.5345 0.2853 0.4701
13 0.7938 0.0694 0.0382 0.0506
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Figure 2: Continued.
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Figure 2: (a) Trajectory profiles; (b) flight path angle profiles; (c) velocity profiles; (d) attack angle; (e) angle of attack rate profiles of different
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angles. *e angle of attack rate in Figure 2(e) confirms that
the variation of the attack angle, large angle of attack at the
beginning, and large negative angle of attack at the end of the
engagement can achieve a large impact angle, which con-
forms to the physical law.

4.3. Effectiveness of Proposed Algorithm for Different Impact
Velocities. *e velocity constraint is another important part
of the proposed algorithm. In this section, we set the dif-
ferent impact velocities as V∗f � 220m/s, 250m/s, 280m/s;
the impact angle is set as θ∗f � − 60∘. Figure 3 presents the
trajectory profiles, flight path angle profiles, velocity profiles,
attack angles profiles, and angle of attack rate profiles for
different impact velocities. Figures 3(b)–3(e) show that the
proposed algorithm can obtain a maximum impact velocity
and achieve the desired near-vertical impact angle. More-
over, it satisfies the angle of attack and angle of attack rate
constraints. *e trajectory shown in Figure 3(a) indicates
that the missile requires more flight distance to slow down.
*e flight path angle profiles shown in Figure 3(b) result in a
large flight distance for a lower impact velocity. Figure 3(d)
shows that the high impact velocity requires a big angle of
attack at the beginning of flight engagement, which results in
a small flight path angle. According to equation (4), a big
angle of attack is required because the effect of gravity is
countered with the lift generated by the attack angle.
Figure 3(e) shows the angle of attack rate profiles coinciding
with the angle of attack variation and satisfying the maxi-
mum angle of attack rate constraint.

4.4. MaximumVelocity for Near-Vertical Final Impact Angle.
Let us consider a more realistic practical application,
wherein the vertical attack with a maximum velocity sce-
nario is attractive. In this part, the objective function is
selected as follows:

J � − V xf􏼐 􏼑. (31)

*e maximum velocity is achieved when the objective
function is minimized. *e final impact angle is set as
θ∗f � − 89∘. Figure 4 shows the trajectory profiles, flight path
angle profiles, velocity profiles, attack angle profiles, and
angle of attack rate profiles for maximum impact velocity.
In this case, the maximum impact velocity shown in
Figures 4(b)–4(e) indicates that the proposed algorithm can
obtain the maximum impact velocity with the desired
impact angle and can also satisfy the angle of attack and
angle of attack rate constraints. As can be seen in
Figure 4(c), the maximum impact velocity is 273.1m/s. *e
trajectory shown in Figure 4(a) demonstrates that the
missile requires a larger flight distance at the end of the
trajectory to speed up. *e flight path angle profiles in
Figure 4(b) show that the flight path angle is approximately
90° at the end of the trajectory. Figure 4(d) shows that the
angle of attack for achieving the maximum impact velocity
is similar to that in the previous case. As can be seen in
Figure 4(e), the limits on the angle of the attack rate are
satisfied.

5. Conclusion

*is paper proposed a sequential convex programming
algorithm for air-to-ground missile optimization-energy
guidance under impact angle and impact velocity con-
straints and maximum angle of attack limits. *is problem
is formulated as an optimization problem, and the angle of
attack rate is set as a new control variable. Next, the
problem is linearized and discretized to be solved using
sequential convex programming.*e numerical simulation
results are compared with those obtained by the GPOPS to
confirm the validity of the transformation and the opti-
mality of the proposed sequential convex programming
approach. Finally, the simulation results confirmed that the
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Figure 4: (a) Trajectory profiles; (b) flight path angle profiles; (c) velocity profiles; (d) attack angle; (e) angle of attack rate profiles of different
impact velocities.
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proposed algorithm can intercept a target at different
impact angles and impact velocities.
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