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Medical CT imaging often encounters metallic implants or some metal interventional therapy apparatus. These metallic objects
can produce metal artifacts in reconstruction images, which severely degrade image quality. In this paper, we analyze the difference
between polychromatic projection data and Radon transform data and develop an analytical method to reduce metal artifacts.
Approximate features of metal artifacts can be obtained by a simplified energy spectrum function of x-ray beam. The developed
method can reduce most artifacts, and preserve more original details. It does not require prior knowledge of x-ray energy spectrum
and original projection data, avoiding iterative calculation and saving reconstruction time. Simulation experimental results show
that the method can greatly remove metal artifacts.

1. Introduction

X-ray CT imaging plays an indispensable role in clinical
diagnosis and interventional therapy. However, due to beam-
hardening caused by some metallic implants in patients
or some metallic interventional therapy apparatus, such as
dental fillings, orthopaedic implants, or microwave ablation
needle, there are strong streak or star-shape artifacts in
reconstruction images [1–3], which are usually called metal
artifacts. They seriously degrade image quality and bring
trouble to clinical applications. Although many metal artifact
reduction (MAR)methodswere developed, their applications
in clinical settings are not totally successful because of
the complexity of their forming cause and characteristics.
Currently there is no standard solution [4, 5].Therefore, how
to reduce metal artifacts still remain a challenging problem
in x-ray medical CT imaging.

The effects of x-ray beam-hardening, the photon starva-
tion, and the partial volume can all result in metal artifacts
[6]. In the past few decades, a large number of MAR
algorithms have been proposed to correct or reduce metal
artifacts. Interpolation was widely used for data completion
[7–10], where missing projection data are approximated
by an interpolation technique. But due to the inaccuracy

of data interpolation, additional fringe artifacts and other
deformations were introduced in a new reconstruction image
[10, 11]. The missing data became more accurate by use of
forward projections of a prior image [12, 13]. A combination
method of normalization and interpolation was proposed to
remove most of the artifacts [11]. However, since artifacts are
very strong for some cases, some pixels are often classified
into wrong types, leading to unsatisfactory results. In order
to correct beam-hardening, some iterative algorithms were
proposed, which reconstructed images from some processed
projections [14–16]. They can suppress some artifacts, but
there is still no satisfactory result for all images. Recently,
there were some researches about the deep learning strategy
to reduce metal artifacts [17, 18]. One of their drawbacks
is that there is no common CT image database for model
training, and another is that somemild artifacts typically still
remain.

The forming cause of metal artifacts is mainly the high
attenuation of metallic objects, which leads to x-ray beam-
hardening and aggravates the scattering phenomenon for the
polychromatic x-ray beam spectrum. For low-atom number
metals, satisfactory results were achieved by correcting beam-
hardening [19–25]. Some dual-energy correction [21] and
statistical iterative correction [23, 24] were proposed to
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reduce beam-hardening effects. The former required longer
postprocessing and higher doses of radiation, while the latter
needed more prior information about the energy spectrum
of the incident x-ray and the energy-dependent attenuation
coefficient of the materials. Park et al. [25] put forward
a MAR method by giving the approximate expression of
metal artifacts, where choosing the approximate alternative
of energy spectrum is very critical to obtain more accurate
geometrical characterizations of artifacts.

For a polychromatic x-ray spectrum CT imaging, this
paper analyzes the geometrical features of metal artifacts in
a two-dimensional fan-beam system, constructs an approx-
imate energy spectrum function, and gives an approximate
expression ofmetal artifacts by using an excess photon energy
relation. The artifacts can be analytically expressed as the
approximate mathematical equation in this method.

The rest of this paper is organized as follows. In Section 2,
we summarize some background knowledge about Radon
transform and the projection expression for a polychromatic
x-ray spectrum. In Section 3, an analytical MAR method is
developed by looking for geometrical characterizations of
metal artifacts. In Section 4, we give numerical simulations
to verify the effectiveness of the developed method. Finally,
conclusions will be made and some related issues will be
discussed.

2. Background Knowledge

In this section, we give Radon transform of a two-
dimensional (2D) function and projection expressions for a
polychromatic x-ray spectrum. This section will give theo-
retical basis for finding the relations between single-energy
projection data and polychromatic projection data in next
section.

Mathematically, 2D Radon transforms can be seen as a
line integral process from one 2D function to another. Let𝑅 denote Radon transform. For 𝑓(𝑋) and a line 𝐿, 𝑅 can be
expressed as follows:

𝑅𝑓 (𝐿) = ∫
𝐿
𝑓 (𝑋) 𝑑𝑙, (1)

or

𝑅𝑓 (𝑟, 𝜑) = ∫
𝐿(𝑟,𝜑)

𝑓 (𝑥, 𝑦) 𝑑𝑙, (2)

where 𝑋 = (𝑥, 𝑦) is a reconstructed point, 𝐿 = 𝐿(𝑟, 𝜑) :𝑋 ⋅ 0 = 𝑟, 0 = (cos𝜑, sin 𝜑), 𝑑𝑙 is a arc length on 𝐿, 𝜑 is a
projection angle, and 𝑟 is a sampling variable along a detector
direction. In fact, (2) is also called ray sum, line integral, or
the projection under single energy [26].

When 𝜑 is fixed and 𝑟 is (−∞,+∞) in (2), 𝑅𝑓(𝑟, 𝜑) is
a set of parallel projections shown in Figure 1. For all 𝜑 ∈[0, 𝜋), 𝑅𝑓(𝑟, 𝜑) is usually called parallel-beam projections in
CT imaging. The expression of a fan-beam projection for
single energy is similar to (2) by converting the parameters
of parallel-beam scan mode to those of fan-beam scan mode.

For CT system with a polychromatic x-ray spectrum, the
projection expression above will become difficult. Let 𝐼0,𝐸 and
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Figure 1: Radon transform of 𝑓(𝑥, 𝑦) under 𝜑.
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Figure 2: An example of x-ray energy spectrum when x-ray tube
operates at 120 KV, where a horizontal axis is x-ray energy, and a
longitudinal axis is a normalized output.

𝐼𝐸 denote the incident x-ray intensity and the transmitted
intensity at an energy 𝐸, respectively. Let 𝑓(𝑋, 𝐸) denote
the linear attenuation coefficient of the detected object at𝐸. To emphasize an energy-dependent nature of material
attenuation, Lambert-Beer law [27, 28] can be written as
follows:

𝐼𝐸 = 𝐼0,𝐸 exp {−∫
𝐿
𝑓 (𝑋, 𝐸) 𝑑𝑙} . (3)

X-ray beam produced by x-ray tube operating at 120 KV
generally covers a broad spectrum, which is with two sharp
peaks in an example shown in Figure 2 by a solid line. The
spectrum distribution shows that the range of the output x-
ray photon energy is [20 keV, 120 keV], where energy photons
less than 20 keV are absorbed by somematerials in x-ray tube
[29].
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Projection data for a polychromatic x-ray source can be
expressed as follows:

𝑝 (𝑟, 𝜑) = −ln ∫ 𝐼𝐸dE
∫ 𝐼0,𝐸dE

= − ln (∫ 𝜂 (𝐸) exp {−∫
𝐿
𝑓 (𝑋, 𝐸) 𝑑𝑙} 𝑑𝐸) ,

(4)

where 𝜂(𝐸) = 𝐼0,𝐸/ ∫ 𝐼0,𝐸1𝑑𝐸1 represents a normalized x-ray
beam energy spectrum [25, 30]. When metallic implants in
patients or some metallic interventional therapy apparatus
exist in some CT scanned slices, 𝑝(𝑟, 𝜑) will include beam-
hardening effects. Thus, projection data are not accurate for
the scanned slices and not equal to the ideal projections𝑅𝑓(𝑟, 𝜑) above.
3. An Analytical MAR method

In this section, we first analyze the forming cause of metal
artifacts based on aforementioned knowledge, then construct
the approximate function of an energy spectrumdistribution,
and finally give geometrical features of metal artifacts in 2D
fan-beam system.

In CT scan system with a polychromatic x-ray source,
beam-hardening leads to the significant difference between
raw projection 𝑝(𝑟, 𝜑) and Radon transform 𝑅𝑓(𝑟, 𝜑). If we
only consider metal artifacts caused by beam-hardening,
the difference expression 𝑝(𝑟, 𝜑) − 𝑅𝑓(𝑟, 𝜑) corresponds to
projections of metal artifacts.

We remark the aforementioned function 𝑓(𝑋) as 𝑓𝐸󸀠(𝑋)
at fixed energy 𝐸󸀠 for a polychromatic x-ray beam. Then,𝑓𝐸󸀠(𝑋) is the corrected objective function. Let 𝑅−1 denote
some exact CT reconstruction algorithm, such as filtering-
back-projection (FBP) algorithm or backprojection-filtering
(BPF) algorithm. So, 𝑅−1𝑝(𝑋) is a reconstructed image with
metal artifacts, and 𝑅−1[𝑝 − 𝑅𝑓𝐸󸀠](𝑋) seen as metal artifacts
is a reconstruction result from a difference part between pro-
jection data and Radon transform data. Obviously 𝑅−1𝑝(𝑋)
can be expressed as follows:

𝑅−1𝑝 (𝑋) = 𝑓𝐸󸀠 (𝑋) + 𝑅−1 [𝑝 − 𝑅𝑓𝐸󸀠] (𝑋) . (5)

It is assumed that metallic objects have the same attenua-
tion coefficient in a reconstruction image, which is reasonable
for most cases in clinic applications. In this case, metal arti-
facts mainly depend on some geometrical features of metal
regions, a normalized energy spectrum function, and metal
attenuations about x-ray. Let 𝑓𝐸(𝑋) denote a reconstruction
image withmetal artifacts 𝑅−1𝑝(𝑋); that is, 𝑝(𝑟, 𝜑) = 𝑅𝑓𝐸(𝑋),
where 𝐸 is a variable. According to (4) and (5), 𝑅−1[𝑝 −𝑅𝑓𝐸󸀠](𝑋) can be written as follows:

𝑅−1 [𝑝 − 𝑅𝑓𝐸󸀠] (𝑋)
= 𝑅−1 {− ln(∫𝜂 (𝐸) exp {−𝑅 (𝑓𝐸 − 𝑓𝐸󸀠) (𝑟, 𝜑)} 𝑑𝐸)} . (6)

The water and bone beam-hardening corrections can
usually be used in current medical CT imaging systems

[30]. In this paper, we only consider beam-hardening effects
of metallic objects, since their attenuation coefficients have
more dependency on x-ray energy than soft tissues and
bones. LetΩ denote a metal domain, which can include some
small metal regions.Then,𝑓𝐸−𝑓𝐸󸀠 = 0 outside ofΩ. Since the
probability of photoelectric interactions is roughly inversely
proportional to the cubic of excess photon energy [31],𝑓𝐸−𝑓𝐸󸀠
in Ω can be approximated as

𝑓𝐸 − 𝑓𝐸󸀠 ≈ 𝑤 (𝐸) (𝐸 − 𝐸󸀠) , (7)

where 𝑤(𝐸) depends on 𝐸 and attenuation coefficients of
metal regions.

So, according to (7), (6) can be rewritten as

𝑅−1 [𝑝 − 𝑅𝑓𝐸󸀠] (𝑋)
≈ 𝑅−1 {− ln(∫ 𝜂 (𝐸) exp {−𝑤 (𝐸) (𝐸 − 𝐸󸀠)𝑅𝜆(Ω) (𝑟, 𝜑)} 𝑑𝐸)} , (8)

where 𝜆(Ω) is a characteristic function for the metal domainΩ.
Because the normalized energy spectrum function 𝜂(𝐸) is

unknown, 𝑅−1[𝑝 − 𝑅𝑓𝐸󸀠](𝑋) can not be accurately obtained.
We choose a following alternative function in order to give a
specific and relatively accurate expression of 𝜂(𝐸):

𝜂󸀠 (𝐸) = {{{
𝐴 sin (𝜔 (𝐸 − 𝐸󸀠 + 𝜃)) if 󵄨󵄨󵄨󵄨󵄨𝐸 − 𝐸󸀠󵄨󵄨󵄨󵄨󵄨 ≤ ℎ
0, otherwise

(9)

where ℎ is a variable. It is worth noting that the selections
of an amplitude 𝐴, a frequency 𝜔, and a phase 𝜃 are generally
related toℎ. An example 𝜂󸀠(𝐸) is shown inFigure 2 by a dotted
line, where it is the smoother one. In fact, by choosing ℎ, we
can make an approximate spectrum distribution 𝜂󸀠(𝐸) satisfy
the following relationship:

ln(∫ [𝜂 (𝐸) − 𝜂󸀠 (𝐸)]
⋅ exp {−𝑤 (𝐸) (𝐸 − 𝐸󸀠) 𝑅𝜆(Ω) (𝑟, 𝜑)} 𝑑𝐸) ≈ 1.

(10)

This means that we can use ln(∫ 𝜂󸀠(𝐸)exp{−𝑤(𝐸)(𝐸 −
𝐸󸀠)𝑅𝜆(Ω)(𝑟, 𝜑)}𝑑𝐸) to approximately replace
ln(∫ 𝜂(𝐸)exp{−𝑤(𝐸)(𝐸 − 𝐸󸀠)𝑅𝜆(Ω)(𝑟, 𝜑)}𝑑𝐸). So, (8) can
be further approximated as

𝑅−1 [𝑝 − 𝑅𝑓𝐸󸀠] (𝑋) ≈ 𝑅−1 {−ln(∫𝜂󸀠 (𝐸)
⋅ exp {−𝑤 (𝐸) (𝐸 − 𝐸󸀠)𝑅𝜆(Ω) (𝑟, 𝜑)} 𝑑𝐸)} .

(11)

Through a series of mathematical derivations on the
right side in (11) and supposing that 𝑤(𝐸) is approximately
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Figure 3: Implementation flow chart of the developed MARmethod.

independent of 𝐸, 𝑅−1[𝑝 − 𝑅𝑓𝐸󸀠](𝑋) is finally deduced as
follows:

𝑅−1{{{{{
− ln[[

[
𝐴 exp {−𝑤ℎ𝑅󸀠}

√(𝑤𝑅󸀠)2 + 𝜔2 sin (𝛾 − (𝜔ℎ + 𝜔𝜑)) − 𝐴

⋅ exp {−𝑤ℎ𝑅󸀠}
√(𝑤𝑅󸀠)2 + 𝜔2 sin (𝛾 − (−𝜔ℎ + 𝜔𝜑))]]

]
}}}}}

,
(12)

where 𝑅󸀠 = 𝑅𝜆(Ω)(𝑟, 𝜑), cos 𝛾 = 𝑤𝑅󸀠/√(𝑤𝑅󸀠)2 + 𝜔2. Accord-
ing to (5), the corrected objective function 𝑓𝐸󸀠(𝑋) can be
obtained by the following equation:

𝑓𝐸󸀠 (𝑋) = 𝑅−1𝑝 (𝑋) − 𝑅−1 [𝑝 − 𝑅𝑓𝐸󸀠] (𝑋) . (13)

Equation (13) is the analytical MAR algorithm expression
given by approximate geometrical features of metal artifacts
in (12).

4. Implementation of MAR Method and
Numerical Simulation Experiments

Based on the aforementioned derivation of MAR method,
implementations of the developed MAR technique mainly

includes three steps. Firstly, raw CT images are reconstructed
using FBP algorithm from the polychromatic projection data.
Then, metallic objects are segmented from the images to
obtain a metal domain and its characteristic function, and an
approximate artifact image can be reconstructed using FBP
algorithm. Finally, the corrected objective image is given by
subtracting the artifact image from the raw image. Its specific
implementation steps are shown in Figure 3.

To verify the effectiveness of the developedMARmethod,
numerical simulations are performed on VC++ 6.0 platform,
where all steps in the method are coded in C language.
Fan-beam CT system parameters are as follows: the distance
between x-ray source and a center of rotation is 1100mm,
the distance between x-ray source and a linear-array detector
is 1600mm, and the length of a detector cell is 0.87mm.
Projection data are generated by using the circular trajectory
equidistant fan-beam CT scan mode, where the number of
detector cells is 512 and the number of 360 degree full-scan
projection angles is 660.The size of image matrix is 512 × 512.

We select a modified digital mandibular phantom, as
shown in Figure 4. Its structure definitions are shown in
Table 1, which are firstly given by Lemmens et al. [32].
Three circles with maximum gray values mean the implanted
mercury objects. Bone components and soft tissues in the
phantom are set according to the parameters reported by
ICRU44 [33]. Their attenuation coefficients are obtained
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Figure 4: The digital mandibular phantom, where the display
window is [0.0, 4.5].

Figure 5: The projection data with beam-hardening effects.

Table 1: Definitions of the digital mandibular phantom structures.

Structure sequence Number Material Dense(g/cm3)
1 Mercury 13.6
2 Bone 2.9
3 Bone 2.7
4 Soft tissue 0.8
5 Soft tissue 0.6
6 Soft tissue 0.2

by XCOM software [34]. A polychromatic x-ray beam is
generated by simulations, where x-ray tube operates at 120
kVp. The polychromatic projection data are obtained shown
in Figure 5.

Figure 6: The reconstructed artifact image using (12).

According to the implementation flowchart in Figure 3,
we select the threshold value 3000HU [35, 36] to segment
the metallic parts and then calculate the projection data of
the characteristic function. According to (10), the parameters
in the approximate energy spectrum function 𝜂󸀠(𝐸) are
designed as 𝐴 = 𝜋/4ℎ, 𝜔 = 𝜋/2ℎ, 𝐸󸀠 = 65Kev, ℎ =55Kev, 𝜃 = ℎ and the optimized parameter 𝑤 = 0.042.
According to (12), an artifact image is reconstructed as shown
in Figure 6, where geometrical features of metal artifacts
are clearly observed. The objective image is obtained by
subtracting the artifact image, as shown in Figure 7(a), where
CT image reconstruction takes about 85 seconds using the
proposed MAR method on a computer with CPU 3.40GHz.
For comparison, we give a reconstruction result using the
linear interpolation MAR in Figure 7(b). We can find that the
developed methods can reduce most artifacts, and preserve
more original details. In facts, if the materials with lower
density than the mercury are implanted in the phantom, the
better corrected results can be obtained.

5. Conclusion and Discussion

In this paper, for CT scan system with a polychromatic x-
ray source, we propose the analytical method for reducing
metal artifacts. This method can directly obtain the corrected
image by reconstructing features of metal artifacts without
any prior information with ray energy spectrum, largely
remove structural features of the artifacts, and better retain
the original information. So, the developed method can
obtain high-resolution CT images and provide more accurate
information for clinical applications.

A good alternative expression of the probability of the
photoelectric interaction is very important in the developed
method. However, due to random noises from x-ray beam
generation process and detection process of linear-array
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(a) (b)

Figure 7:The corrected images: (a) is a reconstruction result using the developed analytical MARmethod in (13), and (b) is a reconstruction
result using linear interpolation MARmethod, where the display window is [0.0, 0.6] for displaying the details clearly.

detectors in an actual CT system, photoelectric interactions
are very difficult. If more knowledge in random system
analyzation could be applied in the photoelectric interaction,
the better expression may be designed. How to express the
photoelectric interactions using the random process will be a
challenging and meaningful work.
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