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Data placement considerably affects the I/O performance of distributed storage systems such as HDFS. An ideal placement
algorithm should keep the I/O load evenly distributed among different storage nodes. Most of the existing placement algorithms
with I/O load balance guarantee depend on the information of data popularity to make the placement decisions. However, the
popularity information is typically not available in the data placement phase. Furthermore, it usually varies during the data lifecycle.
In this paper, we propose a new placement algorithm called Balanced Distribution for Each Age Group (BEAG), whichmakes data
placement decisions in the absence of the popularity information. This algorithm maintains multiple counters for each storage
node, with each counter representing the amount of data belonging to a certain age group. It ensures that the data in each age group
are equally scattered among the different storage nodes. As the popularity variance of the data belonging to the same age group is
considerably smaller than that of the entire data, BEAG significantly improves the I/O load balance. Experimental results show that
compared to other popularity independent algorithms, BEAG decreases the I/O load standard deviation by 11.6% to 30.4%.

1. Introduction

In the big data era, distributed storage systems have attracted
considerable attention [1–3]. In a distributed storage system,
the data placement algorithm considerably affects the overall
I/O performance. An ideal data placement algorithm should
not only generate a balanced usage of disk space but also
a balanced distribution of the I/O load among the different
storage nodes.

The balanced usage of disk space is easy to achieve,
but to guarantee a balanced distribution of the I/O load is
extremely difficult. The I/O load caused by one data file is
equal to the product of its size and popularity. Data popularity
typically follows a skewed distribution such as Zipf. Hot files
are frequently accessed, while cold ones are rarely accessed.
Therefore, storage nodes assigned with more hot files are
prone to be overloaded, while the other nodes may be idle,
causing the entire system to be underutilized [4, 5]. Even
worse, the popularity of each data file, measured by the
average number of requests accessing the file per unit time,

is typically not available in the data placement phase and
dynamically changes during the entire data lifecycle.

To achieve the I/O load balance, many data placement
algorithms for distributed storage systems have been pro-
posed. According to whether the popularity information
is taken as the necessary prerequisite for making place-
ment decisions, the existing data placement algorithms can
be divided into two categories: popularity-dependent algo-
rithms and popularity-independent algorithms.

Popularity-dependent algorithms take data popularity
information as the necessary prerequisite for making place-
ment decisions. They mainly include two steps. First, the I/O
load caused by each data file is calculated as the product of
the data file size and its popularity. Second, an optimization
algorithm is used to minimize the variance of the I/O load
assigned to each storage node.

A popularity-independent algorithm makes data place-
ment decisions without using any popularity information.
A typical popularity-independent algorithm is the pseudo-
random algorithm based on hash computations. It takes the
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file identifier as the input of a hash function and takes the
output of the function as the destination storage node. Such a
placement algorithm is extremely easy to implement in engi-
neering applications. A finely designed hash function ensures
the balanced usage of disk space. However, its drawback is
the poor level of I/O load balance as the distribution of data
popularity is highly skewed. Moreover, even if the placement
result was accidently desirable within a certain time period,
it may be unsatisfactory in another time period as the data
popularity changes dynamically.

The contributions of this paper include the following.
Firstly, it presents the idea of making data placement deci-
sions depending on the information of the data creation
time instead of the data popularity. It takes advantage of the
discipline existing in many applications in which the popu-
larity variance of the data belonging to the same age group is
considerably smaller than that of the entire data. Secondly, it
proposes a practical algorithm realizing the abovementioned
idea. The algorithm maintains multiple counters for each
storage node, with each counter representing the amount
of data created within a certain time period. It ensures that
the data created within each time period are equally scat-
tered among the different storage nodes. Thirdly, extensive
experiments have been conducted showing that the proposed
algorithm achieves 11.6% to 30.4% reduction of the standard
deviation of the I/O load.

The rest of this paper is organized as follows. Section 2
summarizes the related work. In Section 3, we elaborate the
BEAGalgorithm. Section 4 presents the experimental results,
and Section 5 concludes this paper.

2. Related Work

I/O load balance is an important method to improve the
I/O performance of distributed storage systems [6].The level
of I/O load balance is considerably affected by the data
placement algorithm. Designing a data placement algorithm
with the ideal I/O load balance guarantee is very challenging,
as data popularity follows an extremely skewed distribution.

Many data placement algorithms have been proposed
to achieve the I/O load balance. According to whether
the data popularity information is taken as the necessary
prerequisite for making placement decisions, the existing
data placement algorithms can be divided into two cat-
egories: popularity-dependent algorithms and popularity-
independent algorithms.

The popularity-dependent algorithms can be further
divided into two subclasses: static popularity-dependent
algorithms and dynamic popularity-dependent algorithms.
Static popularity-dependent algorithms assume that the pop-
ularity of each data file is known in advance and will
never change in the future. Dynamic popularity-dependent
algorithms assume that there is a popularity monitor that
periodically collects the popularity information of each data
file. The algorithms dynamically make data migration deci-
sions according to the information provided by the popularity
monitor, thereby improving the level of I/O load balance.
However, their main drawback is the high overhead. On one

hand, to figure out the optimal data migration plan requires
complex computations. On the other hand, to execute the
data migration plan causes additional I/O load competing for
the scarce I/O bandwidth resources.

SP [7] is a static popularity-dependent algorithm. First,
the average I/O load assigned for each storage node is
calculated according to the size and the popularity of each
data file. Second, the data files are sorted in the descending
order of their sizes. Third, the data files are assigned to the
storage nodes in the abovementioned order.The data files will
not be assigned to a new storage node until the current storage
node is assigned with its I/O load reaching the average value
calculated in advance.

CDRM [8] is a dynamic popularity-dependent algorithm.
It continuously monitors the data popularity variance and
updates the blocking probability on each storage node. On
the basis of the blocking probability, it dynamically replicates
data on the idle storage nodes to improve the level of I/O load
balance.

Kari et al. [9] also proposed a dynamic popularity-
dependent algorithm that migrates data from one node to
another for load balance or in the event of a system failure
or upgrades. The main contribution is the maximization of
the number of simultaneous transfers to minimize the data
migration time. Further, Sha et al. [10] proposed a dynamic
popularity-dependent algorithm for mapreduce applications.

DRS [11] is a dynamic popularity-dependent algorithm
based onMarkovmodel. It constructs a transition probability
matrix based on the file accessing times in a period and cal-
culates the stationary probability distribution of the system. It
utilizes the results to distinguish different data types and then
increases extra replicas for hot data, cleaning up these extra
replicas when the data cool down.

Kinesis [12] is a popularity-independent algorithm. It
adopts a hash-based replica placement strategy. It devises
𝑘 independent hash functions and generates 𝑘 candidate
storage nodes for each data file. Among the 𝑘 storage nodes,
only 𝑟 (𝑟 < 𝑘) nodes will be finally selected to store a replica
of the file.

Xie andChen [13] also proposed a hash-based popularity-
independent algorithm. It offers an elastic distributed storage
system with power proportionality. When the system load
decreases, some of the storage nodes will be powered off to
reduce energy consumption.

Wang et al. [14] proposed a placement strategy dealing
with the data placement problem among multiple data
centers.

3. BEAG Placement Algorithm

3.1. Main Idea. Data popularity directly reflects the pressure
on the I/O load. However, its value is typically not available
in the data placement phase. Therefore, we need another
variable whose value is easily obtainable and can reflect data
popularity, perhaps in an indirect way. The age of data is a
good alternative. It represents how long the data has been
created. On one hand, the age of the data is extremely easy to
obtain. To calculate the age, the only required information is
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the creation time of the data, which has already been recorded
in the existing storage systems. On the other hand, the age
of the data is correlated with the data popularity in statistics.
The popularity variance of the data belonging to the same
age group is considerably smaller than that of the entire
dataset.

The main idea of the BEAG algorithm can be stated
as follows. The algorithm calculates the age of each data
file according to its creation time. All of the data are then
classified into multiple groups according to their age. The
algorithm ensures not only that all of the data are equally
scattered among the different storage nodes but also that
the data in each age group are equally scattered, preventing
that some nodes store more new data while other nodes
store more old data. As the popularity variance of each age
group is considerably smaller than that of the entire dataset,
the algorithm can obtain a better I/O load balance than the
pseudorandom algorithms.

3.2. Elaboration of the Algorithm. To equally distribute the
data in each age group among the different storage nodes,
the algorithm should maintain an array of counters for each
storage node. Each counter represents the amount of data
allocated to the storage node within a certain age group. The
algorithm keeps the counter arrays for different storage nodes
approximately the same all the time.

The BEAG placement algorithm mainly contains three
subalgorithms. The first one is called the initialization subal-
gorithm. It is responsible for the initialization of the counter
arrays and the placement of the initial set of data files. The
second one is called the in-progress subalgorithm. It keeps
running all the time after the completion of the initialization
subalgorithm. It is responsible for handling all the possible
events that can change the data placement. Such events
include the creation of a new file, deletion of an existing
file, joining of a new node, and the exit of an existing node.
The last one is called the self-refreshing subalgorithm. It
also keeps running all the time after the completion of the
initialization subalgorithm, but it will not change the data
placement results while changing only the values of the
counter arrays. With the passage of time, the age group that
a data file belongs to changes. Therefore, the counter arrays
should be updated in time.

We focus on distributed storage systems that use the
architecture adopted by HDFS [15], that is, the master-slave
architecture. There are two types of nodes in the system: a
name node and multiple data nodes. The name node, also
called the metadata node, is responsible for making the data
placement decisions and maintaining the mapping of data
files and data nodes. A data node, also called a storage node,
is responsible for storing data and handling access requests.
The proposed placement algorithm, BEAG, runs on the name
node.

3.2.1. Initialization Subalgorithm. The initialization subalgo-
rithm works in two stages. In the first stage, it initializes
the counter arrays. In the second stage, it determines the
placement of the initial set of data files.

To initialize the counter array for each storage node, the
initialization subalgorithm needs to determine the number of
counters contained in each counter array as well as the age
group that each counter corresponds to. Let 𝑁 denote the
number of counters contained in each counter array; then,
the data files are divided into 𝑁 age groups. To describe the
𝑁 age groups, we just require (𝑁− 1) positive numbers as the
division points. Let 𝐴 = {𝑎𝑖 | 1 ≤ 𝑖 ≤ 𝑁 − 1} denote the
set of division points. The first age group contains the data
whose age is not greater than 𝑎1. The last age group contains
data older than 𝑎𝑁−1. The 𝑗th (1 < 𝑗 < 𝑁) age group contains
the data whose age is between 𝑎𝑗−1 and 𝑎𝑗. We call the value
(𝑎𝑗 − 𝑎𝑗−1) the age span of the 𝑗th age group. Note that the age
span of the first age group is equal to 𝑎1 and that of the last
age group is positive infinity. Moreover, we take “day” rather
than “year” as the measurement unit for the age of the data.
As the data age greater than 𝑎𝑁−1 is not differentiated from
the point of view of the age group, we call 𝑎𝑁−1 the maximum
differentiable age.

To determine the (𝑁 − 1) division points, we choose an
exponential function; that is, 𝑎𝑖 = 2𝑖. The first age group only
contains the data files created no more than two days back,
the second age group contains the data files created more
than two days but not more than four days back, the third
age group contains the data files created more than four days
but not more than eight days back, and so on.

The above method for age group division has two advan-
tages. First, only a small 𝑁 is required to obtain the ideal
maximumdifferentiable age. For example,𝑁 = 20means that
the maximum differentiable age is 219 days, that is, more than
1,436 years. For realistic storage systems, the data lifecycle is
only tens or hundreds of years long. Therefore, irrespective
of the type of storage systems, we can always divide the data
into 20 age groups. Second, the popularity variance is very
small for each age group. Although the age span increases
exponentially with an increase in the number of groups, the
popularity variance does not increase. As the popularities
of old data usually fall in the range between zero and a
small positive number, the popularity variance is not very
large.

After determining the number of counters in each
counter array and the age group that each counter cor-
responds to, the initialization subalgorithm assigns each
counter with zero for all the storage nodes. The next step is
to solve the placement of the initial set of data files. For each
data file, the algorithm calculates its age, that is, the difference
between the current time and the file’s creation time. Note
that the initial files can be created at different times, as they
may be stored earlier in other devices or systems. According
to the age of the file, the algorithm determines which age
group it belongs to.The files are then grouped into 𝑁 subsets
on the base of age. We independently distribute each subset.
For each subset, each storage node maintains a counter
to record the amount of data assigned to it. Files in the
subset are distributed one by one. Every time a file in the
subset is distributed to the storage node with the minimum
counter. Eventually, files in each subset (or age group) are
approximately equally distributed to different storage nodes.
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Data: Data file set 𝐹; storage node set 𝑆.
Result: Mapping of the data file set 𝐹 to the storage node set 𝑆; counter arrays 𝐶.
Initialize each element 𝐶[𝑖][𝑗] with 0, each element 𝐴[𝑘] with 2𝑘, and each element 𝐹𝑘 with 0
while there is an unhandled file𝑓 in 𝐹 do

Query the file’s creation time 𝑡𝑐
Calculate the file’s age 𝑡𝑎
𝑘 = 1
while 𝑘 is between 1 and𝑁 − 1 do

if 𝑡𝑎 < 𝐴[𝑘] then
break;

end
𝑘 + +

end
𝐹𝑘 = 𝐹𝑘 ∪ {𝑓}

End
while 𝑘 is between 1 and𝑁do

while there is an unhandled file𝑓in𝐹𝑘 do
𝑚𝑖𝑛 fl 𝐶[1][𝑘]
𝑠𝑛 = 1
𝑖 = 2
while 𝑖is between 2 and𝑀 do

if 𝐶[𝑖][𝑘] < 𝑚𝑖𝑛 then
𝑠𝑛 fl 𝑖
𝑚𝑖𝑛 = 𝐶[𝑠𝑛][𝑘]

end
𝑖 + +

end
Place the file 𝑓 on the storage node 𝑠𝑛
𝐶[𝑠𝑛][𝑘] fl 𝐶[𝑠𝑛][𝑘] + 𝑆𝑖𝑧𝑒(𝑓)

end
End

Algorithm 1: Initialization subalgorithm.

The initialization subalgorithm can be described as
Algorithm 1.The symbol 𝑀 represents the number of storage
nodes in the system. 𝑁 represents the number of counters in
each counter array. As discussed above, 20 is an acceptable
value for 𝑁. 𝐶 is a 𝑀 × 𝑁 matrix. The element 𝐶[𝑖][𝑗]
represents the value of the 𝑗th counter for the 𝑖th storage
node. 𝐴 represents the set of division points. 𝐹 represents the
initial set of data files, 𝑆 represents the set of storage nodes,
and 𝑀 represents the number of storage nodes in 𝑆.

3.2.2. In-Progress Subalgorithm. After the initialization, the
storage system may exist for a long time such as tens of
years. During its lifetime, new data placement decisions are
required to be made under the following four circumstances.
Firstly, a new file is created into the system. Secondly, an
existing data file is required to be deleted from the system.
Thirdly, a new node joins into the system. Finally, an existing
node leaves from the system. The in-progress subalgorithm
mainly handles the abovementioned four types of events. It
contains four reactors with each one handling a different type
of event. Whenever an event takes place, the corresponding
reactor is activated.

The file-creation reactor (Algorithm 2) is used to handle
the event of the creation of a new file. The age of a new file is

Data: Newly created file 𝑓
Result: Destination storage node for 𝑓
Initialize 𝑚𝑖𝑛 with 𝐶[1][1], 𝑠𝑛 with 1 and 𝑖 with 2
while 𝑖is between 2 and𝑀 do

if 𝐶[𝑖][1] < 𝑚𝑖𝑛 then
𝑠𝑛 fl 𝑖
𝑚𝑖𝑛 = 𝐶[𝑠𝑛][1]

end
end
Place the file 𝑓 on the storage node 𝑠𝑛
𝐶[𝑠𝑛][1] fl 𝐶[𝑠𝑛][1] + 𝑆𝑖𝑧𝑒(𝑓)

Algorithm 2: File-creation reactor.

equal to zero, which falls in the range of the first age group.
Firstly, the reactor checks the first counter in each counter
array to find out the minimum one. Secondly, the reactor
places the file into the storage node with the minimum first
counter. Finally, the counter is increased by the size of the file.

The file-deletion reactor (Algorithm 3) is used to handle
the event of the deletion of a file. Firstly, the reactor queries
the creation time of the file and calculates its age. Secondly,
the reactor checks which age group the file belongs to and
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Data: File 𝑓 to delete
Result: Renewal of the counter array
Initialize 𝑘 with 1
Query the file’s creation time 𝑡𝑐
Calculate the file’s age 𝑡𝑎
while 𝑘is between 1 and𝑁 − 1 do

if 𝑡𝑎 < 𝐴[𝑘] then
break;

end
𝑘 + +

end
Query the holding storage node 𝑠𝑛
Delete 𝑓 from the storage node 𝑠𝑛
𝐶[𝑠𝑛][𝑘] fl 𝐶[𝑠𝑛][𝑘] − 𝑆𝑖𝑧𝑒(𝑓)

Algorithm 3: File-deletion reactor.

which storage node the file is placed on. Thirdly, the reactor
deletes the file from the storage node and decreases the
corresponding counter for the storage node by the size of the
file.

The node-joining reactor (Algorithm 4) is used to handle
the event of a new node joining into the storage system. The
system has to assign an equal I/O load to the new node as
that assigned to the other nodes. For each age group, the
reactor first calculates the total amount of the corresponding
counters, the average amount before the new node joining,
and the average amount after the new node joining. The
difference between the average before and the average after
is the amount of data required to migrate from each existing
node to the new node. Next, the reactor migrates the required
amount of data belonging to the age group from each existing
node to the new node. The corresponding counter for each
existing node is decreased, while that of the new node is
increased by the amount of the migrated data.

The node-leaving reactor (Algorithm 5) is used to handle
the exit of a node.Without any loss of generality, suppose that
the node numbered 𝑀 leaves from the system. For each age
group, the reactor first calculates the average amount of data
required to migrate to each left nodes and divides the files
in the age group into approximately equal (𝑀 − 1) subsets.
Then, the reactor migrates each subset to each left node and
increases the corresponding counter by the amount of the
migrated data.

3.2.3. Self-Refreshing Subalgorithm. With the passage of time,
the age of each file increases and the age group that it belongs
to changes. Therefore, the counter arrays need to be updated
in time. Otherwise, the in-progress algorithm will make
incorrect decisions.

As we take “day” as the unit for the data age, the data age
of each file has to be updated every day, and thus, the self-
refreshing algorithm is triggered every day. Suppose that the
files are sorted in the descending order of the creation time,
thus the ascending order of the data age. It is noted that the
files are required to be ordered only once. With the passage
of time, all the files will become older and their orders will

remain the same. Suppose that 𝑘𝑗 (1 ≤ 𝑗 ≤ 𝑁 − 1) represents
the largest order number of the file belonging to the 𝑗th age
group.We know that the age of the 𝑘𝑗th file is not greater than
𝑎𝑗 and that of the (𝑘𝑗+1)th file is greater than 𝑎𝑗 . Once the self-
refreshing algorithm is triggered, the most important task is
to update the values of each 𝑘𝑗. Once the value of each 𝑘𝑗 is
determined, the value of each counter𝐶[𝑖][𝑗] can be deduced,
that is, the total number of files stored in the node 𝑖 with the
global order no bigger than 𝑘𝑗.

The self-refreshing algorithm can be described as
Algorithm 6: The symbol 𝐹 represents the set of files stored
in the storage system.

3.3. Complexity Analysis. First, the time complexity of the
initialization subalgorithm is 𝑂(|𝐹|(|𝑆| + 𝑁)). |𝐹| represents
the number of the files and |𝑆| represents the number of
the storage nodes. Since 𝑁, that is, the number of the age
groups, is typically not greater than 20, the time complexity
of the initialization subalgorithm can be written as𝑂(|𝐹|⋅|𝑆|).
Second, the time complexity of the file creation process is
𝑂(|𝑆|) and that of the file deletion is𝑂(1).Third, both the time
complexity of the node joining process and that of the node
leaving process are 𝑂(|𝑆|). Finally, the time complexity of the
self-refreshing subalgorithm is 𝑂(|𝐹|). Therefore, BEAG is a
light-weight solution to the data placement problem.

4. Evaluation

We implemented the BEAG data placement algorithm and
compared it with both the pseudorandom algorithm and
Kinesis [12]. We chose the standard deviation of the I/O
load assigned to each storage node as the criterion for
the performance evaluation. Let 𝑀 denote the number of
storage nodes and 𝐿 𝑖 (1 ≤ 𝑖 ≤ 𝑀) denote the I/O load
assigned to the 𝑖th storage node. The standard deviation of
the I/O load assigned to each storage node is denoted by 𝛿(𝐿)
and calculated as follows: 𝛿(𝐿) = √∑(𝐿 𝑖 − 𝐿)2/𝑀. In this
expression, 𝐿 = ∑ 𝐿 𝑖/𝑀. The I/O load assigned to the 𝑖th
storage node 𝐿 𝑖 is equal to the sum of the I/O load generated
by each data file placed onto the storage node, and the I/O
load generated by each data file is equal to the product of
its size and popularity. Note that all of the three algorithms,
that is, BEAG, Kinesis, and the pseudorandom algorithm,
make placement decisions without using any popularity
information, and the popularity is only used to evaluate the
performance afterwards. Here a smaller 𝛿(𝐿) means a higher
level of I/O load balance.

The method of performance evaluation described above
requires convincing I/O workload generators. We used two
types of I/O workload generators. One is called Reproducer,
which reproduces the file creation and access process on the
basis of the metadata collected from a real-world application
(i.e., the blog system of ScienceNet.cn). The other is called
Medisyn [16] designed by Hewlett Packard Labs, which relies
on a simulation model to describe the process of file creation
and access in video-on-demand applications.

The evaluation mainly includes four steps. First, we
use the I/O workload generator to get each file’s age, size,
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Data: New storage node
Result: Data migration; renewal of the counter array
Initialize 𝑗 with 1
𝑀 fl 𝑀 + 1
while 𝑗is between 1 and𝑁 do

𝐶[𝑀][𝑗] fl 0
𝑠𝑢𝑚 fl 0
𝑖 = 1
while 𝑖is between 1 and𝑀 − 1 do

𝑠𝑢𝑚 fl 𝑠𝑢𝑚 + 𝐶[𝑖][𝑗]
𝑖 + +

end
𝑎V𝑔𝑜𝑙𝑑 = 𝑠𝑢𝑚/(𝑀 − 1)
𝑎V𝑔𝑛𝑒𝑤 = 𝑠𝑢𝑚/𝑀
𝑑𝑒𝑙𝑡𝑎 = 𝑎V𝑔𝑜𝑙𝑑 − 𝑎V𝑔𝑛𝑒𝑤
𝑖 fl 1
while 𝑖is between 1 and𝑀 − 1 do

select a subset of files s𝑢𝑏𝑠𝑒𝑡𝑖𝑗 from the 𝑖th
storage node belonging to the 𝑗th age group with
the total size of the files in 𝑠𝑢𝑏𝑠𝑒𝑡𝑖𝑗
approximately equal to 𝑑𝑒𝑙𝑡𝑎;
migrate the files in 𝑠𝑢𝑏𝑠𝑒𝑡𝑖𝑗 from the 𝑖th storage
node to the new storage node;
𝐶[𝑖][𝑗] fl 𝐶[𝑖][𝑗] − 𝑆𝑖𝑧𝑒(𝑠𝑢𝑏𝑠𝑒𝑡𝑖𝑗)
𝐶[𝑀][𝑗] fl 𝐶[𝑀][𝑗] + 𝑆𝑖𝑧𝑒(𝑠𝑢𝑏𝑠𝑒𝑡𝑖𝑗)
𝑖 + +

end
𝑗 + +

end

Algorithm 4: Node-joining reactor.

Data: Leaving storage node
Result: Data migration; renewal of the counter array
Initialize 𝑖 with 1
while 𝑖is between 1 and𝑁 do

𝑎V𝑔 fl 𝐶[𝑀][𝑖]/(𝑀 − 1)
Divide the files belonging to the 𝑖th age group on the
𝑀th node into (𝑀 − 1) subsets, with the total size of
the files in each subset approximately equal to 𝑎V𝑔;
𝑗 fl 1
while 𝑗is between 1 and𝑀 − 1 do

migrate the 𝑗th subset from the 𝑀th node to the
𝑗th node;
𝐶[𝑖][𝑗] fl 𝐶[𝑖][𝑗] + 𝑆𝑖𝑧𝑒(𝑠𝑢𝑏𝑠𝑒𝑡𝑗)
𝑗 + +

end
𝑖 + +

end
𝑀 fl 𝑀 − 1

Algorithm 5: Node-leaving reactor.

and popularity. Second, we, respectively, employ the three
algorithms to map the files into the storage nodes. Third,
we calculate the I/O load assigned to each storage node
by summing up the I/O load generated by each file placed
on it. Finally, we evaluate the performance through the

standard deviation of the I/O load assigned to each storage
node.

4.1. Evaluation on Real-World Datasets. The I/O workload
generator Reproducer generates a number of tuples in the
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Data: Counter arrays and each file’s age
Result: Renewal of the counter arrays
Increase the age of each file by one day
Set each element 𝐶[𝑖][𝑗] with 0
𝑖 := 1
𝑗 := 1
while 𝑗is between 1 and𝑁 − 1 do

while 𝑖 < |𝐹| do
ifthe age of the 𝑖th file is larger than𝑎𝑗 then

break
end
𝑖++

end
𝑘𝑗 = 𝑖 − 1
if 𝑗 == 1 then

𝑘𝑗−1 = 0
end
𝑘 = 𝑘𝑗−1 + 1
while 𝑖is between𝑘𝑗−1 + 1to𝑘𝑗 do

Query the number 𝑠𝑛 of the node that holds the 𝑖th file 𝑓𝑖
𝐶[𝑠𝑛][𝑗] = 𝐶[𝑠𝑛][𝑗] + 𝑆𝑖𝑧𝑒(𝑓𝑖)
𝑖 + +

end
End

Algorithm 6: Self-refreshing subalgorithm.

form of ⟨𝑡𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛, 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠⟩. In the tuple, 𝑡𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 represents
the file’s creation time, 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 denotes the file’s current pop-
ularity, and 𝑠 represents the size of the file. The file’s creation
time is recorded in the system and can be directly obtained.
The file’s current popularity is expressed with the number of
the access requests on the observed day. Once again, note
that 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is only used for the performance evaluation,
and all of the three algorithms make placement decisions
without using any popularity information. In the experiment,
we developed a web crawler to collect the publication time
and download times of 4,301 articles from the blog system of
ScienceNet.cn. By analyzing their publication time, we found
that the articles’ ages fell in the range between one day and
2,865 days. Therefore, we divided the files into 12 age groups,
with the 𝑖th group containing the files ranging from 2𝑖−1 to 2𝑖
days in age.

Firstly, we analyzed the data popularity distribution. The
aim was to compare the popularity variance of the data in the
same age group and that of the entire dataset.

Secondly, we compared the proposed algorithmwith both
Kinesis and the pseudorandom algorithm. We adopted 𝛿(𝐿),
that is, the standard deviation of the I/O load assigned to each
storage node, as the metric for the I/O load balance.

4.1.1. Popularity Distribution Analysis. We used the stan-
dard variance for describing the variance of data popu-
larity. For the data files as a whole, the standard vari-
ance of data popularity was calculated as 𝛿(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =
√∑(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑓𝑗) − 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡)2/|𝑆|. Here, 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑓𝑗) represents
the current popularity of the file 𝑓𝑗, 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 represents the

average current popularity of the files in 𝐹, and |𝐹| represents
the number of files contained in the file set. For the data
files divided into multiple age groups, we first computed the
standard variance of data popularity in each age group.Then,
we obtained the expectation of the standard variance of the
data popularity by using the following formula: 𝛿(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =
∑(𝛿𝑖(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡)|𝐹𝑖|)/|𝐹|. Here, 𝛿𝑖(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡) represents the stan-
dard variance of the data popularity in the 𝑖th age group and
|𝐹𝑖| represents the number of files contained in the age group.

Through the analysis of the data generated by the I/O
workload generator Reproducer, we obtained 𝛿(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡), that
is, the standard deviation of the popularity for the files
as a whole, was equal to 60.6, and 𝛿(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡), that is, the
expectation of the standard deviation of the popularity for the
files divided into multiple age groups, was equal to 10.3. The
above results validated our assumption that the popularity
variance of the data in the same age group was considerably
smaller than that in the entire data fileset.

For a further comparison of the popularity diversity in the
entire file set and that in each age group, we computed the
ratio of the maximal popularity to the minimal popularity.
A larger ratio means a higher level of diversity. The results
are listed in Table 1. In the table, 𝐹𝑖 represents the file subset
composed of files belonging to the 𝑖th age group and 𝐹
represents the entire file set. This shows that the diversity of
the data popularity in each age group is considerably smaller
than that in the entire file set.

4.1.2. Performance Comparison. In the experiment, we
assumed a storage system composed of 10 storage nodes.
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Table 1: Comparison of popularity diversity in each file set.

File set Max(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡)/Min(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
𝐹1 92.7
𝐹2 91.8
𝐹3 82.0
𝐹4 47.0
𝐹5 46.0
𝐹6 35.5
𝐹7 21.0
𝐹8 28.5
𝐹9 96.5
𝐹10 30.5
𝐹11 16.0
𝐹12 10.5
𝐹 1437.5

Table 2: Comparison of three algorithms (Ten Storage Nodes).

Algorithm 𝐿𝑜𝑎𝑑𝑚𝑎𝑥/𝐿𝑜𝑎𝑑𝑚𝑖𝑛 𝛿(𝐿)
Pseudorandom 15230.7/4253.6 3993.9
Kinesis 16533.0/4467.0 3592.8
BEAG 13343.0/4541.4 2778.7

We, respectively, used the pseudorandom algorithm, Kinesis,
and BEAG to place the files onto the storage nodes. The
comparison results of the three algorithms are shown in
Table 2. 𝐿𝑜𝑎𝑑𝑚𝑎𝑥 represents the amount of the I/O load on
the most loaded storage node, while 𝐿𝑜𝑎𝑑𝑚𝑖𝑛 represents the
amount of the I/O load on the least loaded storage node.The
unit of I/O load is KB/s.

The BEAG algorithm yielded the best I/O load balance,
with the standard deviation of I/O load assigned to each stor-
age node 𝛿(𝐿) decreasing by 30.4% and 22.7%, respectively,
compared with the pseudorandom algorithm and Kinesis.

4.2. Evaluation on Synthetic Datasets. The I/O workload
generator Medisyn can also generate a number of tuples in
the form of ⟨𝑡𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛, 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠⟩. It does not recur in any
realistic systems, while depending on a stochastic model
to simulate the process of file creation and access. It was
demonstrated that themodel could correctly describe the I/O
workload characteristics for video-on-demand applications.
In this model, the file creation process obeys the Poisson
distribution, the popularity among different files obeys the
Zipf distribution, the popularity evolution process for each
file obeys the log-normal distribution, and the size of the
file also obeys the Zipf distribution. The Poisson distribution
is described with the parameter 𝜆, the Zipf distribution is
described with the parameter 𝛼, and the log-normal distri-
bution is described with two parameters 𝜇 and 𝛿. Moreover,
we need two parameters |𝐹| and 𝐿. |𝐹| represents the total
number of files, and 𝐿 represents the total I/O load.

4.2.1. Popularity Distribution Analysis. With 𝜆=0.5, 𝛼=0.8,
|𝐹|=45,000, 𝑇=180,000,000, 𝜇=3, and 𝛿=3, we generated

Table 3: Comparison of popularity diversity in each file set.

File set Max(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡)/Min(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
𝐹1 49.7
𝐹2 13.1
𝐹3 26.2
𝐹4 56.8
𝐹5 57.7
𝐹6 601.2
𝐹7 106.4
𝐹8 185.1
𝐹9 310.7
𝐹10 462.3
𝐹11 169.7
𝐹12 332.2
𝐹 113585.8

45,000 tuples with the form ⟨𝑡𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛, 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠⟩. By analyzing
the data age, we found that the ages fell in the range of
0 to 2499 days. Therefore, we divided the files into 12
age groups. For the entire dataset, the standard variance
of the data popularity was calculated as 𝛿(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =
√∑(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑓𝑗) − 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡)2/|𝑆|. For the data files divided
into multiple age groups, we first computed the standard
variance of the data popularity in each age group. Then,
we obtained the expectation of the standard variance of
the data popularity through the formulation 𝛿(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =
∑(𝛿𝑖(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡)|𝐹𝑖|)/|𝐹|.

Through the analysis of the synthetic data, we obtained
𝛿(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡), that is, the standard deviation of the popularity
for the files as a whole, was equal to 27.0, and 𝛿(𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡), that
is, the expectation of the standard deviation of the popularity
for the files divided into multiple age groups, was equal to
4.6. The above results also validated our assumption that
the popularity variance of the data in the same age group
was considerably smaller than that in the entire data file
set.

Once again, for a further comparison of the popularity
diversity in the entire file set and that in each age group, we
computed the ratio of the maximal popularity to the minimal
popularity; the results are listed in Table 3. In the table, 𝐹𝑖
represents the file subset composed of the files belonging to
the 𝑖th age group, and 𝐹 represents the entire file set.The table
shows that the diversity of the data popularity in each age
group was also considerably smaller than that in the entire
file set.

4.2.2. Performance Comparison. In the experiment, we
assumed a storage system composed of 100 storage nodes.
We, respectively, used the pseudorandom algorithm, Kinesis,
and BEAG to place the 45,000 files onto the storage nodes.
The comparison results of the three algorithms are shown in
Table 4. The unit of I/O load is KB/s.

The BEAG algorithm yielded the highest level of I/O load
balance, with the standard deviation of the I/O load assigned
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Table 4: Comparison of three algorithms (100 Storage Nodes).

Algorithm 𝐿𝑜𝑎𝑑𝑚𝑎𝑥/𝐿𝑜𝑎𝑑𝑚𝑖𝑛 𝛿(𝐿)
Pseudorandom 16266.8/498.0 1610.1
Kinesis 10572.3/647.6 1594.9
BEAG 10174.7/1013.7 1410.0

to each storage node 𝛿(𝐿) decreasing by 12.4% and 11.6%,
respectively, compared with the pseudorandom algorithm
and Kinesis.

5. Conclusion

Most traditional data placement algorithms for distributed
storage systems depend on the information of data popularity
for making placement decisions to realize the I/O load
balance. However, data popularity is usually unknown in the
data placement phase and changes dynamically during the
data lifecycle. We proposed a new data placement algorithm
without using any popularity information. The algorithm
makes use of the correlation between a file’s creation time and
its popularity. It ensures that the data created in each time
period are evenly scattered among different storage nodes.
Compared to other popularity independent algorithms, the
proposed algorithm guarantees a higher level of load balance,
with the I/O load standard deviation decreasing by 11.6% to
30.4%. However, the algorithm only considers homogenous
storage systems. In the future, we plan to extend it to
heterogeneous environments.
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