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The probability-based filtering method has been extensively used for solving the simultaneous localization and mapping (SLAM)
problem.Generally, the standard filter utilizes the systemmodel and prior stochastic information to approximate the posterior state.
However, in the real-time situation, the noise statistics properties are relatively unknown, and the system is inaccurately modeled.
Thus the filter divergence might occur in the integration system. Moreover, the expected accuracy might be challenging to be
reached due to the absence of the responsive time-varying of both the process and measurement noise statistic which naturally can
enlarge the uncertainty in the continuous system. Consequently, the traditional strategy needs to be improved aiming to provide
an ability to estimate those properties. In order to accomplish this issue, the new adaptive filter is proposed in this paper, termed
as an adaptive smooth variable structure filter (ASVSF). Sequentially, the improved SVSF is derived and implemented; the process
and measurement noise statistics are estimated by utilizing the maximum a posteriori (MAP) creation and the weighted exponent
concept, and the covariance correction step is added based on the divergence suppression concept. In this paper theASVSF is applied
to overcome the SLAM problem of an autonomous mobile robot; henceforth it is abbreviated as an ASVSF-SLAM algorithm. It is
simulated and compared to the classical algorithm. The simulation results demonstrated that the proposed algorithm has better
performance, stability, and effectiveness.

1. Introduction

The position tracking is an unavoidable part of localization
that needs to be noticed. In most cases of mobile robot
navigation, a robot should have the ability to locate its
position and gather certain information related to the features
of the environment automatically. This task is well-known as
simultaneous localization andmapping (SLAM) [1–15] which
was first proposed by Smith, Self, and Cheeseman in 1988.
The SLAM-based mobile robot navigation has intensively
received attention because of some challenging factors that
need to be solved such as wide uncertainty, system complex-
ity, inaccurate systemmodel, limited prior information, noise
statistics of the process and measurement, computational
cost, and filter divergence. Essentially, those reasons lead to
the probability-based estimation [5, 8–12, 16, 17] that has

been proposed in many cases of the robot navigation. The
most popular method is the Extended Kalman Filter (EKF)
[3, 5–12, 16–23] which is a nonlinear version of Kalman Filter
(KF) [3, 5, 6, 9, 12, 17, 20, 24, 25]. Nevertheless, it has many
incompatibilities and difficulties such as the deviant solution
from the state trajectory, less optimal state estimation, and
large estimation error due to the linearization process and
computational cost [12, 19].This limitationmakes its practical
application becomes limited nowadays.

In order to address these problems, many nonlinear esti-
mation methods have been approached, such as Unscented
Kalman Filter (UKF) [3, 4, 6, 26], Cubature Kalman Filter
[3, 6, 17, 20, 27], and Smooth Variable Structure Filter (SVSF)
[1, 2, 13, 18, 21–23, 25, 28–34]. Essentially, these methods have
been reducing the EKF problem in various solutions. For
this reason, many researchers have switched to use one of
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thosemethods rather than using EKF.The stable performance
has also been demonstrated in some cases of solving SLAM-
based navigation problem as presented in [1–13, 21, 22]. Most
of the mentioned filters above require the accurate system
model and known stochastic prior information. However, in
the real-case application, the system is inaccurately modeled,
and the prior knowledge of the noise statistics is unknown
or partially known. An inaccuracy of modeling the system
might enlarge the estimation error [4, 26, 35]. The internal
and external uncertainties also might affect the change of
the statistical characteristic which undoubtedly leads to the
divergences of the filter performance [4, 24, 26, 35].

Regarding these possibilities, the error estimation has
been approached for providing the responsive online approx-
imation to the change of noise statistics. This strategy is well-
known as the adaptive filter algorithm which modifies the
conventional method with the specific attempt and combina-
tion. Mehra et al. classified the adaptive approaches into four
categories: Bayesian,Maximum-Likelihood, Correlation, and
Covariance Matching. And the similar types are utilized as
well in this paper called MAP estimation and Covariance
Correction. It is approached to enhance SVSF capability. Rel-
atively, the SVSF is a new predictor-corrector estimator based
on the sliding mode concept [2, 18, 21, 28]. Referring to some
pieces of literature, it has been experiencing fast and signifi-
cant development. The SVSF was first initiated in 2007 [1, 21,
28]whichwas a derived form referring to its successor termed
a Variable Structure Filter (VSF) [34, 36] and Extended Vari-
able Structure Filter (EVSF) [1, 2, 34].Thenwe proceed with a
presence of new form that revises the original SVSF by adding
the error covariancematrix without affecting its accuracy and
stability [1, 25, 28, 32]. As a common formof the filtering tech-
nique, it was then enhanced by involving the time-varying
boundary layer width to replace its previous characteristic
[23, 28, 32, 37], and even now there has been existing new
second-order SVSF which satisfies both first and second
sliding condition [28, 38]. Thus, it is not surprising that the
SVSF has been regarded for having a better and robust per-
formance to model uncertainty compared to other existing
filters nowadays. Furthermore, the effectiveness of SVSF has
also been variously shown in different applications on either
the linear [25, 28] or nonlinear system [2, 18, 22, 28–32, 38]
such as for the state and parameter estimation [18, 28], signal
processing [28], fault detection and diagnosis [28], and target
tracking [25, 28, 30]. Additionally, the characteristic of SVSF
also allows it to be combined with a certain filtering method
as the effort to obtain the optimal solution [34, 37, 39–41].

For these reasons, the SVSF is used in this experiment.
However, as a standard filter, the SVSF is originally not
designed with the ability to estimate the noise statistics
properties which easily changes due to the uncertainties in
the integration system. Therefore, the SVSF estimator was
modified and improved in this paper. First, the improved
SVSF was derived based on the one-step smoothing tech-
nique [24, 42, 43]. Then by referring to the prior knowledge,
the noise statistics parameter of SVSF was estimated based
on the maximum a posteriori (MAP) creation [4, 14, 15, 24,
26, 27, 35] and weighted exponent concept [4, 24, 26, 27].
It aims to produce the time-varying of those parameters.
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Figure 1: Smooth variable structure filter concept.

Second, to provide the ability against the filter divergence,
the ASVSF was completed by the ability to correct the error
covariance referring to the concept of divergence suppression
[4, 44, 45]. In this paper the proposed method is applied
for solving the SLAM problem of a wheeled mobile robot;
henceforth it is termed as the ASVSF-SLAMalgorithm.Then,
by simulating and comparing to the conventional of SVSF-
SLAM algorithm, it can be noted that the proposed method
has better stability and accuracy refers to the benchmark in
terms of Root Mean Square Error (RMSE) of estimated path
and map. In this case, RMSE is used as the best measure
to know the residual or deviation value which represents
the difference between the actual and estimated values [28].
Besides that, this validation can also be readily observed from
the small gap between a reference trajectory and the predicted
result represented graphically.

The remaining parts of this paper are organized as follows.
Section 2 contains SVSF. Section 3 presents the adaptive
SVSF with the derivation of the improved SVSF, subopti-
mal MAP estimator, modified SVSF, unbiased suboptimal
MAP estimator and its time-varying, and the divergence
suppression method for covariance correction step. Section 4
presents an ASVSF-SLAM algorithm which is expanded
with the discussion of the motion model, direct point-based
observation, and inverse point-based observation. Section 5
presents some number of comparative result and discussion.
Section 6 presents the conclusion.

2. Smooth Variable Structure Filter
The SVSF is new estimator based on sliding mode concept
which has been becoming increasingly popular due to its
robustness and stability to disturbance and uncertainty. It
utilizes a switching gain to converge the estimate within a
boundary of the true state value [28, 34, 41]. The analogy of
SVSF process can be seen in Figure 1.

Considering that it is applied to nonlinear system, the
dynamic model is described as below:𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘−1 (1)

𝑧𝑘 = ℎ (𝑥𝑘) + V𝑘 (2)
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where 𝑘 is discrete time index, 𝑥 ∈ R𝑛 is the state vector,𝑢 is the control vector, 𝑧 ∈ R𝑚 is the measurement vector,𝑤 ∈ R𝑛 and V ∈ R𝑚 are small adaptive process and
measurement noise, respectively, and 𝑓(.) and ℎ(.) are the
nonlinear function and measurement model, respectively.
The SVSF predicts the state estimate 𝑥𝑘|𝑘−1 obtained using the
previous estimate state 𝑥𝑘−1|𝑘−1 and control vector 𝑢𝑘

𝑥𝑘|𝑘−1 = 𝑓 (𝑥𝑘−1|𝑘−1, 𝑢𝑘) (3)

using the partial derivative of𝑓(.)with respect to𝑥𝑘−1|𝑘 which
is denoted by 𝐹𝑥; the a priori state error covariance matrix
expressed by 𝑃𝑘|𝑘−1 ∈ R𝑛𝑥𝑛 can be calculated as follows:

𝑃𝑘|𝑘−1 = 𝐹𝑥𝑃𝑘−1|𝑘−1𝐹𝑥
𝑇 + 𝑄𝑘−1 (4)

Next, by utilizing the predicted state estimate 𝑥𝑘|𝑘−1, the
corresponding predicted measurement 𝑧̂𝑘|𝑘−1 and the mea-
surement error 𝑒𝑧,𝑘|𝑘−1 can be calculated as follows:

𝑧̂𝑘|𝑘−1 = ℎ̂ (𝑥𝑘|𝑘−1) (5)

𝑒𝑧,𝑘|𝑘−1 = 𝑧𝑘 − 𝑧̂𝑘|𝑘−1 (6)

Referring to [34, 41], it is considered that

𝐴 = (󵄨󵄨󵄨󵄨𝑒𝑧,𝑘|𝑘−1
󵄨󵄨󵄨󵄨𝑎𝑏𝑠 + 𝛾 󵄨󵄨󵄨󵄨𝑒𝑧,𝑘−1|𝑘−1

󵄨󵄨󵄨󵄨𝑎𝑏𝑠) (7)

𝜓𝑘 = (𝐴−1𝐻𝑃𝑘|𝑘−1𝐻𝑇𝑆−1
𝑘 )−1

(8)

𝑆𝑘 = 𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅𝑘 (9)

𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]

=
{{{{{{{{{

1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≥ 1
𝜓−1𝑒𝑧,𝑘|𝑘−1 𝑖𝑓 − 1 < 𝜓−1𝑒𝑧,𝑘|𝑘−1 < 1
−1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≤ −1

(10)

and then the SVSF gain𝐾𝑆𝑉𝑆𝐹
𝑘 is calculated as below:

𝐾𝑆𝑉𝑆𝐹
𝑘 = 𝐻+ {𝐴 ∘ 𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]} [𝑒𝑧,𝑘|𝑘−1]−1

(11)

where . indicates the diagonal term, 𝛾 refers to the conver-
gence rate with element 0 < 𝛾𝑖𝑖 ≤ 1, 𝜓 refers to the boundary
layer width, 𝑅𝑘 is the measurement error covariance matrix,
and 𝐻 is linear measurement matrix, whereas .+ and ∘
refer to the pseudo-inverse and Schur matrix multiplication,
respectively.

Utilizing the equation above, the updated state 𝑥𝑘|𝑘,
updated state error covariance matrix 𝑃𝑘|𝑘, and new cor-
responding measurement error 𝑒𝑧,𝑘+1|𝑘+1 are described as
follows:

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑘|𝑘−1 (12)

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑆𝑉𝑆𝐹
𝑘 𝐻)𝑃𝑘|𝑘−1 (𝐼 − 𝐾𝑆𝑉𝑆𝐹

𝑘 𝐻)𝑇

+ 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑅𝑘𝐾𝑆𝑉𝑆𝐹

𝑘

𝑇
(13)

𝑒𝑧,𝑘|𝑘 = 𝑧𝑘 − ℎ̂ (𝑥𝑘|𝑘) (14)

Equations (1)–(14) summarize all steps of SVSF. Note that the
estimation process is stable and converges to the existence
subspace if the following condition is satisfied [28]:

󵄨󵄨󵄨󵄨𝑒𝑧,𝑘−1|𝑘−1
󵄨󵄨󵄨󵄨𝑎𝑏𝑠 > 󵄨󵄨󵄨󵄨𝑒𝑧,𝑘|𝑘

󵄨󵄨󵄨󵄨𝑎𝑏𝑠 (15)

3. Adaptive SVSF

As can be analysed from the SVSF presented above, the noise
statistic parameter is always constant for all processes and
considered well-known initially. However, in the real appli-
cation, it is impossible to define those parameters accurately
by means they are partially known or even unknown. It
might degrade the filtering performance. For these reasons,
the adaptive SVSF algorithm is proposed in this paper.
The process was initially started by reconsidering the prior
information of the dynamic nonlinear system modelled as
described in (1) and (2). Secondly, it is considered that the
process noise 𝑤𝑘, measurement noise V𝑗, and initial state
vector 𝑥0 are assumed to be mutually uncorrelated for any
discrete time index 𝑗 or 𝑘; then the mean 𝐸[.] and covariance
cov[.] of the process and measurement noise can be defined
as follows:

𝐸 [𝑤𝑘] = 𝑞𝑘,
cov [𝑤𝑘, 𝑤𝑗] = 𝑄𝑘𝛿𝑘𝑗

𝐸 [V𝑘] = 𝑟𝑘,
cov [V𝑘, V𝑗] = 𝑅𝑘𝛿𝑘𝑗

cov [𝑤𝑘, V𝑗] = 0

(16)

where 𝛿 refers to Kronecker delta function.
The prior information above is initially assumed to be not

equal to zero. Additionally, 𝑄𝑘 and 𝑅𝑘 are positive definite
symmetric matrix; then the MAP estimates of 𝑞𝑘, 𝑄𝑘, 𝑟𝑘, 𝑅𝑘,
and𝑋𝑘 can be obtained by calculating the maximum value of
the following conditional probability density function:

𝐿 = 𝑝 [𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅 | 𝑍𝑘] (17)

where 𝑋𝑘 = [𝑥1, 𝑥2, . . . , 𝑥𝑘] and 𝑍𝑘 = [𝑧1, 𝑧2, . . . , 𝑧𝑘].
Next, applying the Bayes rule and referring to the property
of the conditional probability, where 𝐿 is proportional to𝑝[𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅, 𝑍𝑘]/𝑝[𝑍𝑘] thus since its marginal likelihood𝑝[𝑍𝑘] plays no role in the optimization, then
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𝐿 = 𝑝 [𝑍𝑘 | 𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅] 𝑝 [𝑋𝑘 | 𝑞, 𝑄, 𝑟, 𝑅]
⋅ 𝑝 [𝑞, 𝑄, 𝑟, 𝑅] (18)

where 𝑝[𝑞, 𝑄, 𝑟, 𝑅] is regarded to be constants obtained
from the prior information. Then a posteriori distribution𝑝[𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅 | 𝑍𝑘] can be calculated by multiplying 𝑝[𝑍𝑘 |𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅] with 𝑝[𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅 | 𝑍𝑘] as derived below:

𝑝 [𝑋𝑘 | 𝑞, 𝑄, 𝑟, 𝑅] = 𝑝 [𝑥0] 𝑘∏
𝑖=1

𝑝 [𝑥𝑖 | 𝑥𝑖−1, 𝑞, 𝑄]
= 1

(2𝜋)𝑛/2 󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨1/2 exp [−12 󵄩󵄩󵄩󵄩𝑥0 − 𝑥0

󵄩󵄩󵄩󵄩2

𝑃0
−1]

⋅ 𝑘∏
𝑖=1

1
(2𝜋)𝑛/2 |𝑄|1/2 exp [−12 󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑓 (𝑥𝑖−1) − 𝑞󵄩󵄩󵄩󵄩2

𝑄−1]
= 1

(2𝜋)𝑛/2 󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨1/2 exp [−12 󵄩󵄩󵄩󵄩𝑥0 − 𝑥0

󵄩󵄩󵄩󵄩2

𝑃0
−1]

× 1
(2𝜋)𝑛𝑘/2 |𝑄|𝑘/2 exp[−12

⋅ 𝑘∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑓 (𝑥𝑖−1) − 𝑞󵄩󵄩󵄩󵄩2

𝑄−1]
= 1

(2𝜋)𝑛/2 (2𝜋)𝑛𝑘/2 󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨−1/2 |𝑄|−𝑘/2

⋅ exp{−12 [󵄩󵄩󵄩󵄩𝑥0 − 𝑥0
󵄩󵄩󵄩󵄩2

𝑃0
−1

+ 𝑘∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑓 (𝑥𝑖−1) − 𝑞󵄩󵄩󵄩󵄩2

𝑄−1]}
= 1

(2𝜋)(𝑛𝑘+𝑛)/2

󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨−1/2 |𝑄|−𝑘/2

⋅ exp{−12 [󵄩󵄩󵄩󵄩𝑥0 − 𝑥0
󵄩󵄩󵄩󵄩2

𝑃0
−1

+ 𝑘∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑓 (𝑥𝑖−1) − 𝑞󵄩󵄩󵄩󵄩2

𝑄−1]}

(19)

𝑝 [𝑍𝑘 | 𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅] = 𝑘∏
𝑖=1

𝑝 [𝑧𝑖 | 𝑥𝑖, 𝑟, 𝑅]

= 𝑘∏
𝑖=1

1
(2𝜋)𝑚/2 |𝑅|1/2 exp [−12 󵄩󵄩󵄩󵄩𝑧𝑖 − ℎ (𝑥𝑖) − 𝑟󵄩󵄩󵄩󵄩2

𝑅−1]

= 1
(2𝜋)𝑚𝑘/2

|𝑅|−𝑘/2 exp[−12
𝑘∑

𝑖=1

󵄩󵄩󵄩󵄩𝑧𝑖 − ℎ (𝑥𝑖)

− 𝑟󵄩󵄩󵄩󵄩2

𝑅−1]

(20)

𝑝 [𝑍𝑘 | 𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅] 𝑝 [𝑋𝑘 | 𝑞, 𝑄, 𝑟, 𝑅] 𝑝 [𝑞, 𝑄, 𝑟, 𝑅]
== 1

(2𝜋)𝑚𝑘/2
|𝑅|−𝑘/2 exp[−12

⋅ 𝑘∑
𝑖=1

󵄩󵄩󵄩󵄩𝑧𝑖 − ℎ (𝑥𝑖) − 𝑟󵄩󵄩󵄩󵄩2

𝑅−1] × 1
(2𝜋)(𝑛𝑘+𝑛)/2

󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨−1/2

⋅ |𝑄|−𝑘/2 exp{−12 [󵄩󵄩󵄩󵄩𝑥0 − 𝑥0
󵄩󵄩󵄩󵄩2

𝑃0
−1

+ 𝑘∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑓 (𝑥𝑖−1) − 𝑞󵄩󵄩󵄩󵄩2

𝑄−1]} × 𝑝 [𝑞, 𝑄, 𝑟, 𝑅]

(21)

Now supposing that

𝐶 = 1
(2𝜋)𝑚𝑘/2

1
(2𝜋)(𝑛𝑘+𝑛)/2

󵄨󵄨󵄨󵄨𝑃0
󵄨󵄨󵄨󵄨−1/2𝑝 [𝑞, 𝑄, 𝑟, 𝑅]

⋅ exp [12 󵄩󵄩󵄩󵄩𝑥0 − 𝑥0
󵄩󵄩󵄩󵄩2

𝑃0
−1

]
(22)

then (21) can be simplified as follows:

𝐿 = 𝐶 |𝑅|−𝑘/2 |𝑄|−𝑘/2 exp{−12 [ 𝑘∑
𝑖=1

󵄩󵄩󵄩󵄩𝑧𝑖 − ℎ (𝑥𝑖) − 𝑟󵄩󵄩󵄩󵄩2

𝑅−1

+ 𝑘∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑓 (𝑥𝑖−1) − 𝑞󵄩󵄩󵄩󵄩2

𝑄−1]}
(23)

Furthermore, to find the maximized parameter of the pos-
terior distribution, firstly, take a logarithm as the monotonic
function to simplify the calculation; secondly, find the first
derivative of 𝐿 with respect to 𝑞𝑘, 𝑄𝑘, 𝑟𝑘, and 𝑅𝑘 separately;
then finally end it by equating it with zero. These steps are
organized and derived as follows.

For ln(𝐿) is equal to
ln (𝐶) − 𝑘2 ln |𝑅| − 𝑘2 ln |𝑄|

− 12 [ 𝑘∑
𝑖=1

󵄩󵄩󵄩󵄩𝑧𝑖 − ℎ (𝑥𝑖) − 𝑟𝑖󵄩󵄩󵄩󵄩2

𝑅−1

+ 𝑘∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑓 (𝑥𝑖−1) − 𝑞𝑖−1
󵄩󵄩󵄩󵄩2

𝑄−1]
(24)

Then 𝑞𝑘, 𝑟𝑘, 𝑄𝑘, 𝑅̂𝑘 are

𝑞𝑘 = 𝜕 ln (𝐿)𝜕𝑞 = 1𝑘
𝑘∑

𝑖=1

(𝑥𝑖|𝑘 − 𝑓 (𝑥𝑖−1|𝑘)) (25)
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𝑄𝑘 = 𝜕 ln (𝐿)𝜕𝑄 = 1𝑘
𝑘∑

𝑖=1

(𝑥𝑖|𝑘 − 𝑓 (𝑥𝑖−1|𝑘) − 𝑞𝑖−1)
⋅ (𝑥𝑖|𝑘 − 𝑓 (𝑥𝑖−1|𝑘) − 𝑞𝑖−1)𝑇

(26)

𝑟𝑘 = 𝜕 ln (𝐿)𝜕𝑟 = 1𝑘
𝑘∑

𝑖=1

(𝑧𝑖 − ℎ (𝑥𝑖|𝑘)) (27)

𝑅̂𝑘 = 𝜕 ln (𝐿)𝜕𝑅 = 1𝑘
𝑘∑

𝑖=1

(𝑧𝑖 − ℎ (𝑥𝑖|𝑘) − 𝑟𝑖)
⋅ (𝑧𝑖 − ℎ (𝑥𝑖|𝑘) − 𝑟𝑖)𝑇

(28)

3.1. Suboptimal MAP Noise Estimator. The complicated mul-
tistep smoothing term (𝑥𝑖|𝑘 and 𝑥𝑖−1|𝑘) in (25)-(28) might
cause inefficiency of the MAP estimate; therefore to find the
conventional and efficient recursive form the simplification is
needed. Note that the recursive update process only utilizes
the estimate value at time 𝑘 − 1 and 𝑘; thus the simplification
can be conducted by replacing 𝑥𝑖−1|𝑘 with 𝑥𝑖−1|𝑖 in (25) and
(26) and 𝑥𝑖|𝑘 with 𝑥𝑖|𝑖 in (27)-(28). Therefore, the suboptimal
of MAP noise estimator can be expressed as follows:

𝑞𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝑥𝑖|𝑖 − 𝑓 (𝑥𝑖−1|𝑖)) (29)

𝑄𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝑥𝑖|𝑖 − 𝑓 (𝑥𝑖−1|𝑖) − 𝑞𝑖−1)
⋅ (𝑥𝑖|,𝑖 − 𝑓 (𝑥𝑖−1|𝑖) − 𝑞𝑖−1)𝑇

(30)

𝑟𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝑧𝑖 − ℎ (𝑥𝑖|𝑖)) (31)

𝑅̂𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝑧𝑖 − ℎ (𝑥𝑖|𝑖) − 𝑟𝑖) (𝑧𝑖 − ℎ (𝑥𝑖|𝑖) − 𝑟𝑖)𝑇 (32)

As can be analysed from the sequence equations above the
estimate value of 𝑥𝑖−1|𝑖 is not provided by the SVSF.Therefore,
modifying the original formof SVSF is needed to compute the
noise statistics estimator effectively

3.2. Modified SVSF. The process of modifying the SVSF can
be done by calculating the one-step smoothing of the SVSF
gain and its corresponding estimate value using the fixed
point smoothing algorithm [24, 42, 43]. This process can be
summarized as follows:

𝑥𝑘|𝑘−1 = 𝑓 (𝑥𝑘−1|𝑘−1) + 𝑞𝑘−1 (33)

𝑃𝑘|𝑘−1 = 𝐹𝑥𝑃𝑘−1|𝑘−1𝐹𝑥
𝑇 + 𝑄𝑘−1 (34)

𝑧̂𝑘|𝑘−1 = ℎ̂ (𝑥𝑘|𝑘−1) + 𝑟𝑘 (35)

𝑒𝑧,𝑘|𝑘−1 = 𝑧𝑘 − 𝑧̂𝑘|𝑘−1 (36)

𝐴 = (󵄨󵄨󵄨󵄨𝑒𝑧,𝑘|𝑘−1
󵄨󵄨󵄨󵄨𝑎𝑏𝑠 + 𝛾 󵄨󵄨󵄨󵄨𝑒𝑧,𝑘−1|𝑘−1

󵄨󵄨󵄨󵄨𝑎𝑏𝑠) (37)

𝑆𝑘 = 𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅𝑘 (38)

𝜓𝑘 = (𝐴−1𝐻𝑃𝑘|𝑘−1𝐻𝑇𝑆−1
𝑘 )−1

(39)

𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]

=
{{{{{{{{{

1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≥ 1
𝜓−1𝑒𝑧,𝑘|𝑘−1 𝑖𝑓 − 1 < 𝜓−1𝑒𝑧,𝑘|𝑘−1 < 1
−1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≤ −1

(40)

𝐾𝑆𝑉𝑆𝐹
𝑘 = 𝐻+ {𝐴 ∘ 𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]} [𝑒𝑧,𝑘|𝑘−1]−1

(41)

𝑥𝑘−1|𝑘 = 𝑥𝑘−1|𝑘−1 + 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑘|𝑘−1 (42)

Then considering that the prior state 𝑥𝑘−1|𝑘 replaces the term
of𝑥𝑘−1|𝑘−1 in the normal SVSF, the remaining part ofmodified
SVSF is chained as follows:

𝑥𝑘|𝑘−1 = 𝑓 (𝑥𝑘−1|𝑘) + 𝑞𝑘−1 (43)

𝑧̂𝑘|𝑘−1 = ℎ̂ (𝑥𝑘|𝑘−1) + 𝑟𝑘 (44)

𝑒𝑧,𝑘|𝑘−1 = 𝑧𝑘 − 𝑧̂𝑘|𝑘−1 (45)

𝑆𝑘 = 𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅𝑘 (46)

𝐴 = (󵄨󵄨󵄨󵄨𝑒𝑧,𝑘|𝑘−1
󵄨󵄨󵄨󵄨𝑎𝑏𝑠 + 𝛾 󵄨󵄨󵄨󵄨𝑒𝑧,𝑘−1|𝑘−1

󵄨󵄨󵄨󵄨𝑎𝑏𝑠) (47)

𝜓𝑘 = (𝐴−1𝐻𝑃𝑘|𝑘−1𝐻𝑇𝑆−1
𝑘 )−1

(48)

𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]

=
{{{{{{{{{

1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≥ 1
𝜓−1𝑒𝑧,𝑘|𝑘−1 𝑖𝑓 − 1 < 𝜓−1𝑒𝑧,𝑘|𝑘−1 < 1
−1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≤ −1

(49)

𝐾𝑆𝑉𝑆𝐹
𝑘 = 𝐻+ {𝐴 ∘ 𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]} [𝑒𝑧,𝑘|𝑘−1]−1 (50)

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑘|𝑘−1 (51)

𝑃𝑘|𝑘

= (𝐼 − 𝐾𝑆𝑉𝑆𝐹
𝑘 𝐻)𝑃𝑘|𝑘−1 (𝐼 − 𝐾𝑆𝑉𝑆𝐹

𝑘 𝐻)𝑇

+ 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑅𝑘𝐾𝑆𝑉𝑆𝐹

𝑘

𝑇

(52)

𝑒𝑧,𝑘|𝑘 = 𝑧𝑘 − ℎ̂ (𝑥𝑘|𝑘) (53)

Now, the estimate values 𝑥𝑖|𝑖 and 𝑥𝑖−1|𝑖 can be adopted from
(51) and (42), respectively

3.3. Unbiased Suboptimal MAP Noise Estimator. Next, to
guarantee that the recursive process and measurement noise
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statistics are unbiased, the modified suboptimal MAP noise
estimators are then derived referring to unbiased estimation.

First, by substituting (43) into (51), the general term 𝑥𝑖|𝑖 −𝑓(𝑥𝑖−1|𝑖) in (29) and (30) can be rewritten as follows:

𝑥𝑖|𝑖 − 𝑓 (𝑥𝑖−1|𝑖) = 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑖 + 𝑞𝑖−1 (54)

Similarly, replacing 𝑥𝑖|𝑖 with (51), the general term 𝑧𝑖 − ℎ(𝑥𝑖|𝑖)
in (31) and (32) can be written as follows:

𝑧𝑖 − ℎ (𝑥𝑖|𝑖) = 𝑧𝑖 − ℎ (𝑥𝑖|𝑖−1 + 𝐾𝑆𝑉𝑆𝐹
𝑖 𝑒𝑧,𝑖) (55)

Note that 𝑒𝑧,𝑖 = 𝑒𝑧,𝑖|𝑖−1, and the suboptimal MAP estimation
(28)-(31) can be rearranged as follows:

𝑞𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑖 + 𝑞𝑖−1) (56)

𝑄𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑖𝑒𝑧,𝑖

𝑇𝐾𝑆𝑉𝑆𝐹
𝑘

𝑇) (57)

𝑟𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 ) 𝑒𝑧,𝑖 + 𝑟𝑖 (58)

𝑅̂𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 ) 𝑒𝑧,𝑖𝑒𝑧,𝑖

𝑇 (𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 )𝑇 (59)

Since the innovation 𝑒𝑧 and its covariance 𝑒𝑧𝑒𝑧
𝑇 are contained

in the process and measurement noise estimator, therefore,

𝑒𝑧,𝑖 = ℎ (𝑥𝑖|𝑖−1) + V𝑖 − 𝑟𝑖 (60)

and referring to state error covariance in (52), we have

𝐾𝑆𝑉𝑆𝐹
𝑖 𝑒𝑧,𝑖𝑒𝑧,𝑖

𝑇𝐾𝑆𝑉𝑆𝐹
𝑖

𝑇 = 𝑃𝑖|𝑖 − 𝑃𝑖|𝑖−1 + 𝑃𝑖|𝑖−1𝐻𝑇𝐾𝑖
𝑆𝑉𝑆𝐹𝑇

+ 𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 𝑃𝑖|𝑖−1

(61)

Next, considering that the expectations are

𝐸 [𝑒𝑧,𝑖] = 0 (62)

𝐸 [𝑒𝑧,𝑖𝑒𝑧,𝑖
𝑇] = 𝐻𝑃𝑖|𝑖−1𝐻𝑇 + 𝑅𝑖 (63)

then by substituting (60)-(63) into (56)-(59), we have

𝐸 [𝑞𝑘] = 𝑞𝑘 (64)

𝐸 [𝑟𝑘] = 𝑟𝑘 (65)

𝐸 [𝑄𝑘] = −𝑄𝑘 + 𝐸[1𝑘
𝑘∑

𝑖=1

(𝑃𝑖|𝑖 + 𝑃𝑖|𝑖−1𝐻𝑇𝐾𝑖
𝑆𝑉𝑆𝐹𝑇

+ 𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 𝑃𝑖|𝑖−1 − 𝐹𝑖−1𝑃𝑖−1|𝑖−1𝐹𝑖−1

𝑇)]
(66)

𝐸 [𝑅̂𝑘] = 𝑅𝑘 + 𝐸[1𝑘
𝑘∑

𝑖=1

(𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 𝑒𝑧,𝑖𝑒𝑧,𝑖

𝑇𝐻𝑇𝐾𝑖
𝑆𝑉𝑆𝐹𝑇

− 𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 𝑒𝑧,𝑖𝑒𝑧,𝑖

𝑇

− 𝑒𝑧,𝑖𝑒𝑧,𝑖
𝑇𝐻𝑇𝐾𝑖

𝑆𝑉𝑆𝐹𝑇𝐻𝑃𝑖|𝑖−1𝐻𝑇)]
(67)

Note that 𝑞𝑘, 𝑟𝑘, 𝑄𝑘, 𝑅𝑘 are the representation of the subop-
timal MAP estimation in (56)-(59); thus the unbiased MAP
estimation can be summarized as follows:

𝑞𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝐾𝑆𝑉𝑆𝐹
𝑖 𝑒𝑧,𝑖 + 𝑞𝑖−1) (68)

𝑟𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 ) 𝑒𝑧,𝑖 + 𝑟𝑖 (69)

𝑄𝑘 = 1𝑘
𝑘∑

𝑖=1

(𝑃𝑖|𝑖−1 − 𝐹𝑖−1𝑃𝑖−1|𝑖−1𝐹𝑖−1
𝑇) (70)

𝑅̂𝑘 = 1𝑘
𝑘∑

𝑖=1

[2 ((𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 ) 𝑒𝑧,𝑖𝑒𝑧,𝑖

𝑇 (𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑖 )𝑇)

− 𝑒𝑧,𝑖𝑒𝑧,𝑖
𝑇 + 𝐻𝑃𝑖|𝑖−1𝐻𝑇]

(71)

3.4. Time-Varying Unbiased Noise Estimator and Weighting
Exponentially. The time-varying noise estimator is proposed
in this paper. According to the unbiased suboptimal MAP
estimator calculated in (68)-(71), then the time-varying
unbiased noise estimators are derived as follows:

𝑞𝑘 = 𝑞𝑘−1 + 1𝑘 (𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑘) (72)

𝑟𝑘 = 𝑟𝑘−1 + 1𝑘 [(𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 ) 𝑒𝑧,𝑘] (73)

𝑄𝑘 = 𝑘 − 1𝑘 𝑄𝑘−1 + 1𝑘 [𝑃𝑘|𝑘−1 − 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇] (74)

𝑅̂𝑘 = 𝑘 − 1𝑘 𝑅̂𝑘−1

+ 1𝑘 [2 ((𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 ) 𝑒𝑧,𝑘𝑒𝑧,𝑘

𝑇 (𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 )𝑇)

− 𝑒𝑧,𝑘𝑒𝑧,𝑘
𝑇 + 𝐻𝑃𝑘|𝑘−1𝐻𝑇]

(75)

The following alternative forms (76)-(79) are regarded as the
modified form of the time-varying unbiased noise statistics
estimator (72)-(75). It is calculated by referring to the fading
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memory weighted exponent method and by utilizing the
weighting coefficient 𝑑𝑘 to replace the exponential 1/𝑘.

𝑞𝑘 = 𝑞𝑘−1 + 𝑑𝑘 (𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑘) (76)

𝑟𝑘 = 𝑟𝑘−1 + 𝑑𝑘 [(𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 ) 𝑒𝑧,𝑘] (77)

𝑄𝑘 = (1 − 𝑑𝑘) 𝑄𝑘−1 + 𝑑𝑘 [𝑃𝑘|𝑘−1 − 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇] (78)

𝑅̂𝑘 = (1 − 𝑑𝑘) 𝑅̂𝑘−1

+ 𝑑𝑘 [2 ((𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 ) 𝑒𝑧,𝑘𝑒𝑧,𝑘

𝑇 (𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 )𝑇)

− 𝑒𝑧,𝑘𝑒𝑧,𝑘
𝑇 + 𝐻𝑃𝑘|𝑘−1𝐻𝑇]

(79)

where the residual measurement 𝑒𝑧,𝑘 = 𝑒𝑧,𝑘|𝑘−1 and weighting
coefficient can be written.

𝛽𝑖 = 𝑑𝑘𝑏𝑖−1, 𝑖 = 1, . . . , 𝑛
𝑑𝑘 = (1 − 𝑏)(1 − 𝑏𝑘)

(80)

𝑏 is fading factor satisfying 0 < 𝑏 < 1 and 𝛽𝑖 is the 𝑖-th
weighting factor, which is defined as 𝛽𝑖 = 𝛽𝑖−1𝑏 and satisfied∑𝑘

𝑖=1 𝛽𝑖.

3.5. Addition of Divergence Suppression Method. Next, to
prevent the occurrence of filter divergence, the covariance
correction based on the divergence suppression concept is
involved [4]. First, the convergence condition is derived
referring to the covariance matching creation as described
below:

V𝑇
𝑘 V𝑘 ≤ 𝑆.𝑡𝑟 [𝐸 (V𝑇

𝑘 V𝑘)] (81)

where 𝑆 is an adjustable coefficient presetting which is
satisfied (𝑆 ≥ 1) and the residual sequence V𝑘 = 𝑧𝑘−ℎ(𝑥𝑘,𝑘−1).
Executing (81), if the convergence condition is satisfied,
(76)-(79) are applied; otherwise, the correction method of
the covariance 𝑃𝑘|𝑘−1 is suggested against the divergence
occurrence.

𝑃𝑘|𝑘−1 = 𝜆𝑘.𝑃𝑘|𝑘−1 (82)

where 𝜆𝑘 is known as the adaptive weighting coefficient
which is calculated based on the fading factor formula [44,
45] as summarized as follows:

𝐶0,𝑘 = {{{{{{{

V𝑇
𝑘 V𝑘 𝑘 = 1
𝜌𝐶0,𝑘 + V𝑇

𝑘
V𝑘1 + 𝜌 𝑘 > 1 (83)

𝑁𝑘 = 𝑡𝑟 (𝐶0,𝑘 − 𝑅)𝑇 (84)

𝑀𝑘 = 𝑡𝑟 (𝑃𝑘,𝑘−1) (85)

𝜆0 = 𝑡𝑟 [𝑁𝑘]𝑡𝑟 [𝑀𝑘] (86)

𝜆𝑘 = {{{
𝜆0 𝜆0 ≥ 1
1 𝜆0 < 1 (87)

where 𝑡𝑟(.) refers to the matrix trace and 𝜌 is the forgetful
factor satisfied 0 < 𝜌 ≤ 1 (typically to be set 0.95). Note that
increasing the factor will create a smaller proportion of the
information before time 𝑘 [4]. It causes the residual vector
effect to become prominent so that the filter tracking ability
will increase.

Up to this point, the adaptive SVSF can be summarized as
follows.

ASVSF Algorithm

(1) Modified SVSF

𝑥𝑘|𝑘−1 = 𝑓 (𝑥𝑘−1|𝑘−1) + 𝑞𝑘−1

𝑃𝑘|𝑘−1 = 𝐹𝑥𝑃𝑘−1|𝑘−1𝐹𝑥
𝑇 + 𝑄𝑘−1

(88)

(2) Covariance Correction

𝐶0,𝑘 = {{{{{{{

V𝑇
𝑘 V𝑘

𝜌𝐶0,𝑘 + V𝑇
𝑘
V𝑘1 + 𝜌

𝑁𝑘 = 𝑡𝑟 (𝐶0,𝑘 − 𝑅)𝑇
𝑀𝑘 = 𝑡𝑟 (𝑃𝑘,𝑘−1)
𝜆0 = 𝑡𝑟 [𝑁𝑘]𝑡𝑟 [𝑀𝑘]
𝜆𝑘 = {{{

𝜆0 𝜆0 ≥ 1
1 𝜆0 < 1

𝑃𝑘|𝑘−1 = 𝜆𝑘.𝑃𝑘|𝑘−1

(89)

(3) Modified SVSF

𝑧̂𝑘|𝑘−1 = ℎ̂ (𝑥𝑘|𝑘−1) + 𝑟𝑘
̆𝑒𝑧,𝑘|𝑘−1 = 𝑧𝑘 − 𝑧̂𝑘|𝑘−1

𝐴 = (󵄨󵄨󵄨󵄨 ̆𝑒𝑧,𝑘|𝑘−1
󵄨󵄨󵄨󵄨𝑎𝑏𝑠 + 𝛾 󵄨󵄨󵄨󵄨𝑒𝑧,𝑘−1|𝑘−1

󵄨󵄨󵄨󵄨𝑎𝑏𝑠)
𝑆𝑘 = 𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅𝑘

𝜓𝑘 = (𝐴−1𝐻𝑃𝑘|𝑘−1𝐻𝑇𝑆−1
𝑘 )−1
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𝑠𝑎𝑡 [𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1]

=
{{{{{{{{{{{

1 𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1 ≥ 1
𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1 𝑖𝑓 − 1 < 𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1 < 1
−1 𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1 ≤ −1

𝐾𝑆𝑉𝑆𝐹
𝑘 = 𝐻+ {𝐴 ∘ 𝑠𝑎𝑡 [𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1]} [ ̆𝑒𝑧,𝑘|𝑘−1]−1

𝑥𝑘−1|𝑘 = 𝑥𝑘−1|𝑘−1 + 𝐾𝑆𝑉𝑆𝐹
𝑘 ̆𝑒𝑧,𝑘|𝑘−1

(90)

(4) Improved SVSF

𝑥𝑘|𝑘−1 = 𝑓 (𝑥𝑘−1|𝑘) + 𝑞𝑘−1

𝑧̂𝑘|𝑘−1 = ℎ̂ (𝑥𝑘|𝑘−1) + 𝑟𝑘
𝑒𝑧,𝑘|𝑘−1 = 𝑧𝑘 − 𝑧̂𝑘|𝑘−1

𝑆𝑘 = 𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅𝑘

𝐴 = (󵄨󵄨󵄨󵄨𝑒𝑧,𝑘|𝑘−1
󵄨󵄨󵄨󵄨𝑎𝑏𝑠 + 𝛾 󵄨󵄨󵄨󵄨𝑒𝑧,𝑘−1|𝑘−1

󵄨󵄨󵄨󵄨𝑎𝑏𝑠)
𝜓𝑘 = (𝐴−1𝐻𝑃𝑘|𝑘−1𝐻𝑇𝑆−1

𝑘 )−1

𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]

=
{{{{{{{{{

1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≥ 1
𝜓−1𝑒𝑧,𝑘|𝑘−1 𝑖𝑓 − 1 < 𝜓−1𝑒𝑧,𝑘|𝑘−1 < 1
−1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≤ −1

𝐾𝑆𝑉𝑆𝐹
𝑘 = 𝐻+ {𝐴 ∘ 𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]} [𝑒𝑧,𝑘|𝑘−1]−1

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑘|𝑘−1

𝑃𝑘|𝑘

= (𝐼 − 𝐾𝑆𝑉𝑆𝐹
𝑘 𝐻)𝑃𝑘|𝑘−1 (𝐼 − 𝐾𝑆𝑉𝑆𝐹

𝑘 𝐻)𝑇

+ 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑅𝑘𝐾𝑆𝑉𝑆𝐹

𝑘

𝑇

𝑒𝑧,𝑘|𝑘 = 𝑧𝑘 − ℎ̂ (𝑥𝑘|𝑘)

(91)

(5) Time-Varying Noise Statistic

𝑞𝑘 = 𝑞𝑘−1 + 𝑑𝑘 (𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑘)

𝑟𝑘 = 𝑟𝑘−1 + 𝑑𝑘 [(𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 ) 𝑒𝑧,𝑘]

𝑄𝑘 = (1 − 𝑑𝑘) 𝑄𝑘−1 + 𝑑𝑘 [𝑃𝑘|𝑘−1 − 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇]

𝑅̂𝑘 = (1 − 𝑑𝑘) 𝑅̂𝑘−1
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Figure 2: Kinematic configuration of wheeled mobile robot.

+ 𝑑𝑘 [2 ((𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 ) 𝑒𝑧,𝑘𝑒𝑧,𝑘

𝑇 (𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 )𝑇)

− 𝑒𝑧,𝑘𝑒𝑧,𝑘
𝑇 + 𝐻𝑃𝑘|𝑘−1𝐻𝑇]

(92)

The ASVF applies an improved/modified SVSF involving the
divergence suppression method aiming to correct the state
error covariance. Additionally, it is also completed by the
time-varying unbiased MAP estimator so that ASVSF is able
to estimate the noise statistics recursively.

4. Adaptive SVSF-Based SLAM Algorithm

The proposed method is approached to address the SLAM
problem for the mobile robot. The used robot contains
two driven wheels. By supposing this, it is simulated and
initially located in certain planar environment. Then the
kinematic configuration of the robotmovement can be shown
in Figure 2.

Assuming that 𝑥𝑟 and 𝑦𝑟 are the spatial position and 𝜃𝑟 is
the orientation of the robot, then the robot state vector can be
expressed as 𝑥𝑅 = [𝑥𝑟, 𝑦𝑟, 𝜃𝑟]𝑇.

The robot moves based on the odometry and differential
steering system, therefore, since the control vector contains
two control vectors represented by 𝑢 = [𝑢𝑟, 𝑢𝑙]𝑇 for right
wheel 𝑢𝑟 and left wheel velocity 𝑢𝑙, respectively, then the
motion model is expressed as follows:

𝑥𝑅,𝑘 = {{{
𝑥𝐴

𝑅 , V𝑟 = V𝑙

𝑥𝐵
𝑅, V𝑟 ̸= V𝑙

(93)

𝑥𝐴
𝑅 = [[[

[

𝑥𝐴
𝑟,𝑘

𝑦𝐴
𝑟,𝑘

𝜃𝐴
𝑟,𝑘

]]]
]

= [[[
[

𝑥𝐴
𝑟,𝑘−1

𝑦𝐴
𝑟,𝑘−1

𝜃𝐴
𝑟,𝑘−1

]]]
]

+ V
[[[
[

cos (𝜃𝐴
𝑟,𝑘−1)

sin (𝜃𝐴
𝑟,𝑘−1)0

]]]
]

(94)
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𝑥𝐵
𝑅 = [[[

[

𝑥𝐵
𝑟,𝑘

𝑦𝐵
𝑟,𝑘

𝜃𝐵
𝑟,𝑘

]]]
]

= [[[
[

𝑥𝐵
𝑟,𝑘−1

𝑦𝐵
𝑟,𝑘−1

𝜃𝐵
𝑟,𝑘−1

]]]
]

+ [[[[
[

(𝑅𝑟 + 𝑤𝑟2 ) (sin (𝜃𝐵
𝑟,𝑘−1 + 𝛼) − sin (𝛼))

(𝑅𝑟 + 𝑤𝑟2 ) (− cos (𝜃𝐵
𝑟,𝑘−1 + 𝛼) + cos (𝛼))

𝛼
]]]]
]

(95)

where 𝑘 is time index, 𝑅𝑟 is the radius caused by the motion
with 𝑅𝑟 = V𝑙/𝛼, 𝑤𝑟 is width of the robot, and .𝐴. and .𝐵. are
the different motion condition with respect to the measured
velocity V = [V𝑟, V𝑙]𝑇. In fact, the robot motion is always
followed by unavoidable small noise. Thus the measured
right-wheel V𝑟 and left-wheel velocity can be regarded as
follows with existence of the small perturbation 𝑛 = [𝑛𝑟, 𝑛𝑙]𝑇:

V = 𝑢 + 𝑛 (96)

𝑛𝑟 = 𝜁1𝑢𝑟 + 𝜁2 (𝑢𝑙 − 𝑢𝑟)
𝑛𝑙 = 𝜁1𝑢𝑙 + 𝜁2 (𝑢𝑙 − 𝑢𝑟) (97)

where 𝜁1 is the move factor and 𝜁2 is the turn factor.

4.1. Direct Point-Based Observation Model. The state
vector is composed not only by robot state vector

𝑥𝑅 but also by the landmark state represented by𝑥𝑖
𝐿 = [𝑥𝑖

𝐿,𝑥, 𝑥𝑖
𝐿,𝑦]𝑇and the full state vector can be denoted by

𝑥 = [𝑥𝑟, 𝑦𝑟, 𝜃𝑟, 𝑥1
𝐿,𝑥, 𝑥1

𝐿,𝑦, . . . , . . . , 𝑥𝑚
𝐿,𝑥, 𝑥𝑚

𝐿,𝑦]𝑇, where 𝑥𝑖
𝐿,𝑥 and

𝑥𝑖
𝐿,𝑦 represent the 𝑖-th landmark position for 𝑖 = 1, 2, . . . , 𝑚.
Figure 3 illustrates that the robot is measuring the 𝑖-th

detected landmark by utilizing the laser scanner.The position
of the laser scanner is denoted by 𝑥𝑅

𝑙𝑠 = [𝑥𝑙𝑠,𝑦𝑙𝑠]𝑇; then the
direct point-based observation model can be calculated as
follows:

[𝑥𝑙𝑠𝑦𝑙𝑠

] = [𝑥𝑟𝑦𝑟

] + 𝑑𝑙𝑠 [cos (𝜃𝑟)
sin (𝜃𝑟)] (98)

[𝛿𝑖
𝐿

𝛽𝑖
𝐿

] = [[[[
[

√(𝑥𝑖
𝐿,𝑥 − 𝑥𝑙𝑠)2 + (𝑥𝑖

𝐿,𝑦 − 𝑦𝑙𝑠)2

arctan(𝑥𝑖
𝐿,𝑦 − 𝑦𝑙𝑠𝑥𝑖
𝐿,𝑥 − 𝑥𝑙𝑠

)
]]]]
]

(99)

where 𝑑𝑙𝑠 is the displacement of laser scanner and 𝛿𝑖
𝐿 and 𝛽𝑖

𝐿

are the distance and bearing sensed by laser scanner. Up to
this point, we have satisfied the measurement function ℎ(.).
Similarly, by considering that themeasurement is followed by
small perturbation denoted by 𝑟 = [𝑟𝛿, 𝑟𝛽]𝑇, we have

𝑧𝑖 = [𝛿𝑖
𝐿

𝛽𝑖
𝐿

] + [𝑟𝛿𝑟𝛽] (100)

Then, since (93)-(100) are derived completely, both state
transition in (33) and measurement function in (35) are
satisfied. Next, 𝐻+can be calculated as follows:

𝐹𝑝𝑠,𝑖 =
[[[[[[[[[
[

1 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0
0 1 0 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0
0 0 1 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0
0 0 0 0 ⋅ ⋅ ⋅ 0 1 0 0 ⋅ ⋅ ⋅ 0
0 0 0 0 ⋅ ⋅ ⋅⏟⏟⏟⏟⏟⏟⏟

2𝑖−2

0 0 1 0 ⋅ ⋅ ⋅⏟⏟⏟⏟⏟⏟⏟
2𝑚−2𝑖

0

]]]]]]]]]
]

(101)

𝐻𝑝𝑠,𝑖 = 𝐻𝑟𝑝𝑠𝑥,𝑖

{{{
𝐻𝑟𝑝𝑠𝑥,𝑖 = 𝐻𝑇 (𝐻𝐻𝑇)−1 , rows of 𝐻 are linearly independent

𝐻𝑟𝑝𝑠𝑥,𝑖 = (𝐻𝐻𝑇)−1 𝐻𝑇, columns of 𝐻 are linearly independent
(102)

𝐻+ = 𝐹𝑝𝑠,𝑖
𝑇𝐻𝑝𝑠,𝑖 (103)

where 𝐻 is the Jacobian matrix of ℎ(.) with respect to the
predicted state in (33)-(53).

4.2. Inverse Point-Based Observation. Generally, new
observed landmark must be initialized and added to the
state vector. In this experiment, an inverse point-based
observation model initiates the mapping process by utilizing

the information of the current robot and landmark position
which can be written as follows:

𝑥𝑛𝑒𝑤
𝐿 = ℎ−1 (𝑥𝑅,𝑘, 𝑧𝑖

) (104)

[𝑥𝑛𝑒𝑤
𝐿,𝑥𝑥𝑛𝑒𝑤
𝐿,𝑦

]
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Figure 3: Graphical representation of landmark detection.

= [𝑥𝑟𝑦𝑟

]

+ 𝛿𝑖
𝐿
[
[
cos (𝜃𝑟) cos (𝛽𝑖

𝐿) − sin (𝜃𝑟) sin (𝛽𝑖
𝐿)

sin (𝜃𝑟) cos (𝛽𝑖
𝐿) + cos (𝜃𝑟) sin (𝛽𝑖

𝐿)]]
(105)

At this point, the derivation of SVSF and SLAM algorithm
used for wheeled mobile robot are fully formulated. There-
fore, by chaining them we have ASVSF-SLAM algorithm.

4.3. Adaptive SVSF Based SLAM Algorithm

begin algorithm

(i) Initialization

𝑥0, 𝑃0, 𝑒𝑧,0, 𝑞0, 𝑄0𝑟0, 𝑅0, 𝛾 (106)

(ii) Prediction update

(one-step smoothing method)

𝑥̆𝑘|𝑘−1 = 𝑓 (𝑥𝑘−1|𝑘−1) + 𝑞𝑘−1

𝑃𝑘|𝑘−1 = 𝐹𝑥𝑃𝑘−1|𝑘−1𝐹𝑥
𝑇 + 𝑄𝑘−1

(107)

(iii) Observation and Update

for all feature observation

if correspondence is found before seen landmark

calculate a posteriori measurement error

𝑧̂𝑘|𝑘−1 = ℎ̂ (𝑥̆𝑘|𝑘−1) + 𝑟𝑘
̆𝑒𝑧,𝑘|𝑘−1 = 𝑧𝑘 − 𝑧̂𝑘|𝑘−1

(108)

Covariance correction

V𝑘 = ̆𝑒𝑧,𝑘|𝑘−1

V𝑇
𝑘 V𝑘 ≤ 𝑆.𝑡𝑟 [𝐸 (V𝑇

𝑘 V𝑘)]

𝐶0,𝑘 = {{{{{{{

V𝑇
𝑘 V𝑘 𝑘 = 1
𝜌𝐶0,𝑘 + V𝑇

𝑘
V𝑘1 + 𝜌 𝑘 > 1

𝑁𝑘 = 𝑡𝑟 (𝐶0,𝑘 − 𝑅)𝑇
𝑀𝑘 = 𝑡𝑟 (𝑃𝑘,𝑘−1)
𝜆0 = 𝑡𝑟 [𝑁𝑘]𝑡𝑟 [𝑀𝑘]
𝜆𝑘 = {{{

𝜆0 𝜆0 ≥ 1
1 𝜆0 < 1

𝑃𝑘|𝑘−1 = 𝜆𝑘.𝑃𝑘|𝑘−1

(109)

Compute one-step smoothing SVSF gain

𝐴 = (󵄨󵄨󵄨󵄨 ̆𝑒𝑧,𝑘|𝑘−1
󵄨󵄨󵄨󵄨𝑎𝑏𝑠 + 𝛾 󵄨󵄨󵄨󵄨𝑒𝑧,𝑘−1|𝑘−1

󵄨󵄨󵄨󵄨𝑎𝑏𝑠)
𝑆𝑘 = 𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅̂𝑘

𝜓𝑘 = (𝐴−1𝐻𝑃𝑘|𝑘−1𝐻𝑇𝑆−1
𝑘 )−1

𝑠𝑎𝑡 [𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1]

=
{{{{{{{{{{{

1 𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1 ≥ 1
𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1 𝑖𝑓 − 1 < 𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1 < 1
−1 𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1 ≤ −1

𝐾𝑆𝑉𝑆𝐹
𝑘 = 𝐻+ {𝐴 ∘ 𝑠𝑎𝑡 [𝜓−1 ̆𝑒𝑧,𝑘|𝑘−1]} [ ̆𝑒𝑧,𝑘|𝑘−1]−1

(110)

Calculate the smoothed state 𝑥𝑘−1|𝑘

𝑥𝑘−1|𝑘 = 𝑥𝑘−1|𝑘−1 + 𝐾𝑆𝑉𝑆𝐹
𝑘 ̆𝑒𝑧,𝑘|𝑘−1 (111)
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Conduct the improved SVSF

𝑥𝑘|𝑘−1 = 𝑓 (𝑥𝑘−1|𝑘) + 𝑞𝑘−1

𝑧̂𝑘|𝑘−1 = ℎ̂ (𝑥𝑘|𝑘−1) + 𝑟𝑘
𝑒𝑧,𝑘|𝑘−1 = 𝑧𝑘 − 𝑧̂𝑘|𝑘−1

𝑆𝑘 = 𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅̂𝑘

𝐴 = (󵄨󵄨󵄨󵄨𝑒𝑧,𝑘|𝑘−1
󵄨󵄨󵄨󵄨𝑎𝑏𝑠 + 𝛾 󵄨󵄨󵄨󵄨𝑒𝑧,𝑘−1|𝑘−1

󵄨󵄨󵄨󵄨𝑎𝑏𝑠)
𝜓𝑘 = (𝐴−1𝐻𝑃𝑘|𝑘−1𝐻𝑇𝑆−1

𝑘 )−1

𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]

=
{{{{{{{{{

1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≥ 1
𝜓−1𝑒𝑧,𝑘|𝑘−1 𝑖𝑓 − 1 < 𝜓−1𝑒𝑧,𝑘|𝑘−1 < 1
−1 𝜓−1𝑒𝑧,𝑘|𝑘−1 ≤ −1

𝐾𝑆𝑉𝑆𝐹
𝑘 = 𝐻+ {𝐴 ∘ 𝑠𝑎𝑡 [𝜓−1𝑒𝑧,𝑘|𝑘−1]} [𝑒𝑧,𝑘|𝑘−1]−1

(112)

Update state and covariance

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑘|𝑘−1

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑆𝑉𝑆𝐹
𝑘 𝐻)𝑃𝑘|𝑘−1 (𝐼 − 𝐾𝑆𝑉𝑆𝐹

𝑘 𝐻)𝑇

+ 𝐾𝑆𝑉𝑆𝐹
𝑘 𝑅𝑘𝐾𝑆𝑉𝑆𝐹

𝑘

𝑇

(113)

Estimate noise statistics

𝑒𝑧,𝑘 = 𝑒
𝑧,𝑘|𝑘−1

𝑞𝑘 = 𝑞𝑘−1 + 𝑑𝑘 (𝐾𝑆𝑉𝑆𝐹
𝑘 𝑒𝑧,𝑘)

𝑟𝑘 = 𝑟𝑘−1 + 𝑑𝑘 [(𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 ) 𝑒𝑧,𝑘]

𝑄𝑘 = (1 − 𝑑𝑘) 𝑄𝑘−1 + 𝑑𝑘 [𝑃𝑘|𝑘−1 − 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇]

𝑅̂𝑘 = (1 − 𝑑𝑘) 𝑅̂𝑘−1

+ 𝑑𝑘 [2 ((𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 ) 𝑒𝑧,𝑘𝑒𝑧,𝑘

𝑇 (𝐼 − 𝐻𝐾𝑆𝑉𝑆𝐹
𝑘 )𝑇)

− 𝑒𝑧,𝑘𝑒𝑧,𝑘
𝑇 + 𝐻𝑃𝑘|𝑘−1𝐻𝑇]

(114)

Update the prior measurement error

𝑒𝑧,𝑘|𝑘 = 𝑧𝑘 − ℎ̂ (𝑥𝑘|𝑘) (115)

end if
end for

(iv) MapManagement
for all nonassociated new feature

Initialize a new feature

𝑥𝑛𝑒𝑤
𝐿 = ℎ−1 (𝑥𝑅,𝑘, 𝑧𝑖

) (116)

Increment the state vector by adding 𝑥𝑛𝑒𝑤
𝐿 to the

current state vector 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑥𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = [𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑥𝑛𝑒𝑤
𝐿 ] (117)

Jump 𝑥𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 to Observation and Update Pro-
cess

Time Increment

𝑘 = 𝑘 + 1 (118)

end for
end begin

5. Result and Discussion

In order to verify the effectiveness and accuracy, the pro-
posed method was simulated. It was compared with classical
algorithm in term of RMSE of the estimated path and map.
Ideally, the absence of noise in both process andmeasurement
gives the reference trajectory as the base, while the presence
of these noises following the process and measurement will
obviously give the difference to both expected path and map.
Henceforth this difference is termed as the residual values.
Based on it the RMSE can be calculated to qualitatively
represent the filter performance referring to definition of
SLAM which are locating the robot current location (path)
when a robot detects new feature in the environment and
mapping all observed features in the environment (map).
Therefore, on the other hand it can be defined that by
knowing the different between the actual and predicted
position of the path and map, the effectiveness and accuracy
of the proposed method can be validated. Initially, some
parameters related to the robot and the proposed algorithm
were defined as can be seen below:

𝑤𝑟 = 33 cm,
𝑑𝑙𝑠 = 14 cm,
𝛾 = 15𝑒 − 2

and 𝑒𝑧,0 = [0.1; 0.5𝜋180 ]
(119)

Furthermore, the initial state and its error covariance were
defined as follows:

𝑥𝑜 = [[[[
[

0
0

35𝜋180
]]]]
]

,

𝑃𝑜 = [[[[[
[

1.52 0 0
0 12 0
0 0 (2.5𝜋180 )2

]]]]]
]

(120)



12 Mathematical Problems in Engineering

Reference

Real Trajectory
Real Landmark Position

Simulation Result

True Path
True Landmark
SVSF-SLAM Path
SVSF-SLAM Landmark
ASVSF-SLAM Path
ASVSF-SLAM Landmark

−300

−200

−100

0

100

200

300
y-

ax
is 

(c
m

)

0 100 200 300 400 500−100
x-axis (cm)

0 100 200 300 400 500−100
x-axis (cm)

−300

−200

−100

0

100

200

300

y-
ax

is 
(c

m
)

Figure 4: SVSF and ASVSF-SLAM algorithm.

According to the initial noise statistic there would be two
different simulation cases presented in this paper. Both can
be shown below.

(i) 1st Test: the initial process and measurement noise are
considered as follows:

𝑞𝑜 = [
[
0.03𝜋180

]
]

,

𝑄𝑜 = [[
[
(0.03)2 0

0 ( 𝜋180)
2
]]
]

,

𝑟𝑜 = [
[

0.2
3𝜋180

]
]

,

𝑅̂𝑜 = [[
[
(0.2)2 0

0 ( 3𝜋180)
2
]]
]

(121)

Then the result of SVSF-SLAM and SVSF-SLAM algorithm
can be compared based on Figure 4.

Figure 4 illustrates the performance of SVSF and ASVSF-
SLAM algorithm applied for autonomous robot. It depicts
that the ASVSF-SLAM algorithm provides better solution
proven by the successful in following the reference path. For
more detail, it can be analysed by the result shown in Figure 5.

Figure 5 shows the RMSE of different algorithm perfor-
mances in estimating the path. Comparing to the conven-
tional approach, ASVSF-SLAMalgorithmhas better accuracy
pointed by the smaller RMSE in all benchmarks. Further-
more, in an effort to provide more comparative result, the
different RMSE of estimated map is also presented as shown
in Figure 6.

Figure 6 shows the different quality of SVSF/ASVSF-
SLAM algorithm in estimating the location of the landmark.
According to this figure, the proposed method shows less
optimal results in the estimated map for x-coordinate, but it
still shows better results in estimating the y-coordinate land-
mark compared with SVSF-SLAM algorithm. Thus, ASVSF-
SLAM algorithm can still guarantee the filter stability. To
confirm this statement, Table 1 is presented.

In average, the proposed method gives higher quality in
estimating path and landmark. It is significantly shown by the
better achievement compared to SVSF-SLAM algorithm in
almost all benchmark.

(ii) 2st Test: the initial process andmeasurement noise are
considered as follows:

𝑞𝑜 = [
[
0.08
5𝜋180

]
]

,

𝑄𝑜 = [[
[
(0.08)2 0

0 ( 5𝜋180)
2
]]
]

,
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Table 1: RMSE of SVSF and ASVSF-SLAM algorithm.

Algorithm x-Pose
(cm)

y-Pose
(cm)

Heading
(rad)

Landmark
x-Coordinate (cm)

Landmark
y-Coordinate (cm)

SVSF-SLAM 5.5823 9.7952 0.1045 11.2296 14.4148
ASVSF-SLAM 4.6835 2.3872 0.0989 13.2414 11.5277
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Figure 5: RMSE of estimated path.
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Figure 6: RMSE of estimated map.
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Figure 7: SVSF and ASVSF-SLAM algorithm.

𝑟𝑜 = [
[

0.8
3𝜋180

]
]

,

𝑅̂𝑜 = [[
[
(0.8)2 0

0 ( 3𝜋180)
2
]]
]

(122)

Like the previous experiment, the general performance of
SVSF and ASVSF-SLAM algorithm is evaluated from the
graphical performance shown in Figure 7.

Figure 7 depicts that the increment of initial noise statistic
does not affect the stability of ASVSF-SLAM.Therefore, it can
be noted that the proposedmethod providesmore stable filter
compared with SVSF-SLAM algorithm. For the 2nd Test, the
SVSF and ASVSF-SLAM performance are also compared in
terms of RMSE. It is depicted by Figure 8.

According to Figure 8, ASVF-SLAM algorithm shows its
effectiveness in locating current robot position. It is proven
by the smaller RMSE for the all benchmark. Then, it can be
noted that the accuracy of ASVSF-SLAM algorithm is guar-
anteed even though there exists a noise statistic increment.
Additionally, the result of estimated map is also presented as
shown in Figure 9.

Similarly, Figure 9 shows that the SVSF-SLAM has better
solution of estimatingmap for x-coordinate, pointed by small
different, while the proposed method shows better solution

in estimating y-coordinate significantly. Therefore, ASVSF-
SLAM performed well-enough in estimating the landmark.
It is confirmed by Table 2.

This table shows clearly that the ASVSF-SLAM algorithm
provides a stable filter. Additionally, according to the result
of 1st and 2nd Test presented above, it can be noted that
the ASVSF-SLAM has better quality in providing solution
under noise statistics increment. The presence of one-step
smoothing and time-varying of the noise statistic does not
damage the characteristic of SVSF. But instead, it precisely
increases the accuracy of SVSF proven by the achievement
in Figures 5 and 8.

6. Conclusion

In this paper the ASVSF algorithm is proposed to solve
the SLAM dynamic problem since there exist the inac-
curate model, dynamic system uncertainty, and unknown
noise statistics. The recursive time-varying noise estimator
is derived based on MAP creation and weighted exponent
which tunes the SVSF by utilizing the one-step smoothing
method. It results in the enhanced SVSF. Additionally, to
provide the ability of avoiding filter divergences, the ASVSF
also applied implies a covariance correction process adopted
from the divergence suppression concept. The ASVSF was
implemented for solving SLAM problem as the proposed
algorithm named as ASVSF-SLAM algorithm. It was simu-
lated and compared to the SVSF-SLAM.The simulated results
in terms of RMSE of estimated path and map were analysed
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Table 2: RMSE of SVSF and ASVSF-SLAM algorithm.

Algorithm x-Pose
(cm)

y-Pose
(cm)

Heading
(rad)

Landmark
x-Coordinate (cm)

Landmark
y-Coordinate (cm)

SVSF-SLAM 5.9065 10.0448 0.1099 10.8078 13.6891
ASVSF-SLAM 4.6835 2.3872 0.0989 11.4657 11.0790
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Figure 8: Estimated path.
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Figure 9: RMSE of estimated map.
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and it has been showing the effectiveness and robustness of
the ASVSF-SLAM algorithm.
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