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This paper proposes a novel 6-DOF robotic crusher that combines the performance characteristics of the cone crusher and parallel
robot, such as interparticle breakage and high flexibility. Kinematics and dynamics are derived from the no-load and crushing parts
in order to clearly describe the whole crushing process. For the no-load case, the kinematic and dynamic equations are established
by using analytical geometry and Lagrange equation. Analytical geometry is mainly used to solve the inverse kinematics and then
establish the velocity relationship between generalized coordinates and actuators. Lagrange equation which takes into account the
weight of the mantle and actuators is used to solve driving forces of actuators. For the crushing case, crushing pressure is related to
the compression ratio and particle size distribution, but the selection and breakage functions should be established first. Because the
trajectorymodel of themantle is difficult to be established by using analytical method, it can be obtained by an eccentric simulation.
The results of input velocities and driving forces of actuators are distinctive due to the eccentric angle and selection of the initial
position. Finally, the proposed approach is verified by a numerical example and then the energy consumption is calculated.

1. Introduction

Crushers are commonly used in the mining, construction,
and recycling industries to crush a variety of raw materials
[1]. Many different types of crushers have been developed
over the years, which play a vital role in reducing the particle
size of granular solids [2]. As one of the typical crushers,
cone crusher is an indispensable piece of equipment [3]. It
is typically used in secondary and tertiary crushing stages in
minerals processing plants [4, 5].Themantle and concave are
the two main crushing parts. The main shaft of the mantle
is suspended on a spherical radial bearing at the top and in
an eccentric at the bottom [6]. The crushing action of the
mantle around the pivot point is an oscillating motion which
can be described with a cyclic function of the eccentric angle.
Previous research of scholars has made the performance
experience a significant improvement, but cone crusher is
inevitably accompanied by high power consumption and
low flexibility due to its own structural characteristics.
Meanwhile, the parallel robot has received a great concern
from many researchers. Compared with serial robot, the
parallel robot is a closed-loop mechanism presenting very

good potential in terms of high stiffness, large payload, and
high speed capability [7–10]. It has been widely used in
many fields, such as medical equipment, entertainment, and
factory automation [11]. The forward kinematic solution is
more complicated than inverse kinematic solution because
of the coupling among actuators. The mantle motion of cone
crusher is usually set in advance and then the motors are
adjusted, which is similar to the inverse kinematic solution.
Contemporary crushers are developing towards intelligence.
This paper proposes a novel 6-DOF robotic crusherwhich has
their respective advantages through combining the perfor-
mance characteristics of the cone crusher and parallel robot.

A novel 6-DOF robotic crusher has achieved both inter-
particle breakage of a cone crusher and high flexibility of
a parallel robot. In order to systematically describe the
performance characteristics of the whole crushing process,
modeling and analysis would be performed from the no-load
and crushing parts. Kinematics and dynamics are essential
research issues in evaluating the performance. For the no-
load case, the inverse kinematic solution which describes
the velocity relationship between generalized coordinates and
actuators is established. It plays a vital role in the design and
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Figure 1: Cross section of a 6-DOF robotic crusher.

component selection [12]. The dynamics of a 6-DOF robotic
crusher are complicated by the existence of multiple closed-
loop chains, which have several effects caused by inertia,
centripetal, and gravity forces [13]. Dynamic modeling can be
used for computer simulation without the need of a real sys-
tem to test various specified tasks, and it plays an important
part in system control [14, 15]. Dynamic equations accounting
for the parallel configuration of a 6-DOF robotic crusher can
be derived in the task-space through the modeling approach
of Lagrange equation which provides a well analytical and
orderly structure. For the crushing case, the crushing process
can be described by a number of crushing zones. The output
from the previous crushing zone is the input for the next
crushing zone. Crushing pressure is generated on the surfaces
of themantle and concave, and it is related to the compression
ratio and particle size distribution.

The trajectory model of the mantle is an essential element
for establishing the kinematic and dynamic equations. But
it is very difficult to be established by using analytical
method. Taking into account the motion characteristics of
cone crusher, a small-scale cone crusher is created and the
model is obtained by an eccentric simulation. Then, the
mathematical calculation tools, MATLAB and Maple, can be
employed to solve the input velocities and driving forces of
the actuators.

2. Mathematical Foundation

2.1. Principle of a 6-DOF Robotic Crusher. 3D geometric
model of a novel 6-DOF robotic crusher is shown in Figure 1,
which consists of a fixed unit (CFU) and a drive unit (CDU).
The CDU has six actuators. Each actuator is made up of
a cylinder and a piston which are connected together by a
prismatic joint.The upper and lower ends of each actuator are
both spherical joint. A coordinate frameO(X,Y,Z) is attached
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Figure 2:The model of CDU.

to the fixed base and the other coordinate frameO1 (X1,Y1,Z1)
is attached to the mantle.

Particles are squeezed and crushed between the mantle
and concave. The transition of the closed side setting (CSS)
and open side setting (OSS) is achieved by the extension and
contraction of six actuators. Themotion of the mantle can be
described by a cyclic function of the eccentric angle 𝜃 which
represents the angle between the eccentric axis and vertical
axis. The final crushed material is excluded from the OSS due
to gravity.

A generalized coordinate vector which describes the
position and orientation of a 6-DOF robotic crusher is
defined as q = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾]T. In Figure 2, the matrix
qp = [𝑥, 𝑦, 𝑧]T denotes the translation vector of the mantle
frame {O1,X1,Y1,Z1} with respect to the reference frame{O,X,Y,Z}. qe = [𝛼, 𝛽, 𝛾]T defines an Euler angles system
representing orientation of the mantle frame {O1,X1,Y1,Z1}
in regard to the reference frame {O,X,Y,Z} [16].
2.2. Kinematic Constraint Equations. Inverse kinematic is to
solve the lengths and velocities of six actuators through the
trajectory model of the mantle. The rotation matrix of frame{O1,X1,Y1,Z1} relative to the reference frame {O,X,Y,Z} is
given by [14]

T = TZTYTX (1)

where

TX = [[[
1 0 00 cos 𝛼 − sin 𝛼0 sin 𝛼 cos 𝛼 ]]] ,
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TY = [[[
cos 𝛽 0 sin 𝛽0 1 0− sin 𝛽 0 cos 𝛽]]] ,

TZ = [[[
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 00 0 1]]]

(2)

From the geometric model of the 6-DOF robotic crusher,
vector Li can be expressed as [16–18]

L𝑖 = p + Ta𝑖 − b𝑖 (3)

where Li(i=1,2,. . .,6) denotes the length vector of each actu-
ator, which is Bi to Ai in O-XYZ. ai(i=1,2,. . .,6) represents
the coordinates ofAi(i=1,2,. . .,6) inO1-X1Y1Z1. bi(i=1,2,. . .,6)
denotes the coordinates of Bi(i=1,2,. . .,6) in O-XYZ.

Differentiate TX, TY, and TZ with respect to time:

ṪX = SiTX𝛼̇,
ṪY = SjTY𝛽̇,
ṪZ = SkTZ𝛾̇

(4)

where

Si = [[[
0 0 00 0 −10 1 0 ]]] ,

Sj = [[[
0 0 10 0 0−1 0 0]]] ,

Sk = [[[
0 −1 01 0 00 0 0]]]

(5)

The velocity vector of six actuators and the corresponding
upper points is given by

V = Q ⋅ Va (6)

where

V = [𝐿̇1 𝐿̇2 𝐿̇3 𝐿̇4 𝐿̇5 𝐿̇6]𝑇 ,
Va = [L̇1 L̇2 L̇3 L̇4 L̇5 L̇6]T (7)

The derivations of (4) and (6) are in the appendix.
Differentiate (3) with respect to time:

L̇𝑖 = ṗ+ (𝛾̇SkTZTYTX + TZ𝛽̇SjTYTX + TZTY𝛼̇SiTX) a𝑖 (8)

Equation (8) can be rewritten as

L̇𝑖 = Hi ⋅ q̇ (9)

where

Hi = [I3×3 TZTYSiTXa𝑖 TZSjTYTXa𝑖 SkTZTYTXa𝑖] (10)

Using (8) and (9) yields

Va = H ⋅ q̇ (11)

where

H

=
[[[[[[[[[[[[

I3×3 TZTYSiTXa1 TZSjTYTXa1 SkTZTYTXa1
I3×3 TZTYSiTXa2 TZSjTYTXa2 SkTZTYTXa2
I3×3 TZTYSiTXa3 TZSjTYTXa3 SkTZTYTXa3
I3×3 TZTYSiTXa4 TZSjTYTXa4 SkTZTYTXa4
I3×3 TZTYSiTXa5 TZSjTYTXa5 SkTZTYTXa5
I3×3 TZTYSiTXa6 TZSjTYTXa6 SkTZTYTXa6

]]]]]]]]]]]]
(12)

Substituting (11) into (6) yields

V = Jq ⋅ q̇ (13)

where Jq presents a Jacobian matrix, which can be described
as

Jq = Q ⋅H (14)

3. Dynamic Modeling

Lagrange equation is used to derive the driving forces of six
actuators for the 6-DOF robotic crusher, which can bewritten
as [19]

d
d𝑡 ( 𝜕𝐿𝜕𝑞̇𝑖) − 𝜕𝐿𝜕𝑞𝑖 = 𝜏𝑖 (15)

where L is the kinetic energy Ek minus the potential
energy Ep. qi denotes the generalized coordinate, and 𝜏i is the
generalized force.

According the principle of virtual work, the generalized
force which is projected along the variation of the generalized
coordinates can be derived as follows [14, 20]:𝜕𝑊 = FT𝛿𝑙 − 𝜏T𝛿q = 0 (16)

whereFdenotes thematrix of six driving forces. Equation (13)
has been employed, and then (16) can be rewritten as

𝜏 = Jq
T (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6)T (17)

3.1. Dynamic Model Components. The kinetic energy of the
mantle includes its translational kinetic energy and rotational
kinetic energy with respect to its center of mass, which can be
written as
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𝐸𝑚𝑘 = 12 q̇pT𝑀𝑢q̇p + 12𝜔O1TIO1𝜔O1 (18)

whereMu denotes the mass of the mantle, 𝜔O1 is the angular
velocity vector of themantle with respect to themantle frame,
and IO1 is the rotational inertia matrix in regard to mass
center of the mantle.

After simplifying deriving, the relation between the angu-
lar velocity and the derivatives of Euler angles with respect to
time can be given by

𝜔O1 = [[[
cos 𝛾 cos𝛽 − sin 𝛾 0
sin 𝛾 cos 𝛽 cos 𝛾 0− sin 𝛽 0 1]]] ⋅ (

𝛼̇̇𝛽̇𝛾) (19)

Substituting (19) into (18) yields

𝐸𝑚𝑘 = 12 q̇TMpq̇ (20)

where

Mp =
[[[[[[[[[[[[

𝑀𝑢 0 0 0 0 00 𝑀𝑢 0 0 0 00 0 𝑀𝑢 0 0 00 0 0 𝐼𝑋 0 −𝐼𝑋 sin 𝛽0 0 0 0 𝐼𝑌cos2𝛼 + 𝐼𝑍sin2𝛼 (𝐼𝑌 − 𝐼𝑍) sin 𝛼 cos 𝛼 cos 𝛽0 0 0 −𝐼𝑋 sin 𝛽 (𝐼𝑌 − 𝐼𝑍) sin 𝛼 cos 𝛼 cos 𝛽 𝐼𝑋sin2𝛽 + 𝐼𝑌sin2𝛼 cos2𝛽 + 𝐼𝑍cos2𝛼 cos2𝛽

]]]]]]]]]]]]
(21)

The potential energy of themantle relative to the horizon-
tal plane passing by the reference frame {O,X,Y,Z} is

𝐸𝑚𝑝 = −𝑀𝑢𝑔𝑍 (22)

In Figure 3, li denotes the length of the ith actuator; gi
represents the length between the lower spherical joint and
the center ofmass. S1 is the length between the lower spherical
joint and the center of mass of a cylinder. S2 is the length
between the upper spherical joint and the center of mass of
a piston [19]. Then, the length gi can be denoted as

𝑔𝑖 = 𝑙𝑐 + 𝑚2𝑚1 + 𝑚2 𝑙𝑖 (23)

where

𝑙𝑐 = 𝑚1𝑠1 − 𝑚2𝑠2𝑚1 + 𝑚2 (24)

The kinetic energy of six actuators can be driven by

𝐸𝑎𝑘 = 12 (𝑚1 + 𝑚2)VT
gV𝑔 (25)

whereVg denotes the matrix of velocity vectors for the center
of mass and can be given by

Vg = [VT
g1,VT

g2,VT
g3,VT

g4,VT
g5,VT

g6]T (26)

The derivation of (26) is in the appendix.
Substituting (26) into (25), then (25) can be denoted as

𝐸𝑎𝑘 = 12 (𝑚1 + 𝑚2) q̇THTTmHq̇ (27)

where

Tm = diag[( 𝑙𝑐𝑙1 + 𝑚2𝑚1 + 𝑚2)2 , ( 𝑙𝑐𝑙1 + 𝑚2𝑚1 + 𝑚2)2 ,
( 𝑙𝑐𝑙1 + 𝑚2𝑚1 + 𝑚2)2 , ( 𝑙𝑐𝑙2 + 𝑚2𝑚1 + 𝑚2)2 ,
( 𝑙𝑐𝑙2 + 𝑚2𝑚1 + 𝑚2)2 , ( 𝑙𝑐𝑙2 + 𝑚2𝑚1 + 𝑚2)2 ,
( 𝑙𝑐𝑙3 + 𝑚2𝑚1 + 𝑚2)2 , ( 𝑙𝑐𝑙3 + 𝑚2𝑚1 + 𝑚2)2 ,
( 𝑙𝑐𝑙3 + 𝑚2𝑚1 + 𝑚2)2 , ( 𝑙𝑐𝑙4 + 𝑚2𝑚1 + 𝑚2)2 ,
( 𝑙𝑐𝑙4 + 𝑚2𝑚1 + 𝑚2)2 , ( 𝑙𝑐𝑙4 + 𝑚2𝑚1 + 𝑚2)2 ,
( 𝑙𝑐𝑙5 + 𝑚2𝑚1 + 𝑚2)2 , ( 𝑙𝑐𝑙5 + 𝑚2𝑚1 + 𝑚2)2 ,
( 𝑙𝑐𝑙5 + 𝑚2𝑚1 + 𝑚2)2 , ( 𝑙𝑐𝑙6 + 𝑚2𝑚1 + 𝑚2)2 ,
( 𝑙𝑐𝑙6 + 𝑚2𝑚1 + 𝑚2)2 , ( 𝑙𝑐𝑙6 + 𝑚2𝑚1 + 𝑚2)2]

(28)

The unit vectors along the axes OX, OY, and OZ are
defined as

X 1 = [1, 0, 0] ,
Y 1 = [0, 1, 0] ,
Z 1 = [0, 1, 0] (29)
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Figure 3: Free body diagram of an actuator.

The potential energy of six actuators relative to the
horizontal plane passing by the reference frame {O,X,Y,Z} is

𝐸𝑎𝑝 = − (𝑚1 + 𝑚2) 𝑔 ⋅ 6∑
𝑖=1

[(ℎ + ℎ1) − 𝑔𝑖 ⋅ (−Z 1)] (30)

Equation (23) has been employed, and then (30) can be
rewritten as𝐸𝑎𝑝 = − (𝑚1 + 𝑚2) 𝑔 [6 (ℎ + ℎ1) + T−hgi ⋅ T−liz] (31)

where

T−hgi = [ 𝑙𝑐𝑙1 + 𝑚2𝑚1 + 𝑚2 , 𝑙𝑐𝑙2 + 𝑚2𝑚1 + 𝑚2 , ⋅ ⋅ ⋅ , 𝑙𝑐𝑙6
+ 𝑚2𝑚1 + 𝑚2]

T−liz = [𝑙1𝑧 𝑙2𝑧 𝑙3𝑧 𝑙4𝑧 𝑙5𝑧 𝑙6𝑧]T𝑙𝑖𝑧 = L𝑖 ⋅ Z 1
(32)

3.2. Dynamic Equations. Using (20) and (27), the kinetic
energy of the 6-DOF robotic crusher can be given by

𝐸𝑘 = 12 q̇TMekq̇ (33)

where

Mek = (𝑚1 + 𝑚2)HTTmH +Mp (34)

The derivation of (33) is in the appendix.

Using (22) and (31), the potential energy of the 6-DOF
robotic crusher can be obtained as follows:

𝐸𝑝 = −𝑀𝑢𝑔− (𝑚1 + 𝑚2) 𝑔 [6 (ℎ + ℎ1) + T−hgi ⋅ T−liz] (35)

Considering (15) and (33), the equations can be derived
as

d
d𝑡 (𝜕𝐿𝜕q̇) = Ṁekq̇ +Mekq̈ (36)

𝜕𝐸𝑘𝜕q = 12 q̇T (𝜕Mek𝜕q ) q̇ (37)

where

Ṁek

= (𝑚1 + 𝑚2) [dHT

d𝑡 TmH +HT dTm
d𝑡 H +HTTm

dH
d𝑡 ]+ Ṁp

(38)

The derivation of (36) and (37) is in the appendix.
Using (15) and (35), the following equations can be given

by

𝜕𝐸𝑝𝜕𝑋 = (𝑚1 + 𝑚2) 𝑔𝑙𝑐 ⋅ T−lixT ⋅ T 13 ⋅ T−liz (39)

𝜕𝐸𝑝𝜕𝑌 = (𝑚1 + 𝑚2) 𝑔𝑙𝑐 ⋅ T−liyT ⋅ T 13 ⋅ T−liz (40)

𝜕𝐸𝑝𝜕𝑍 = −𝑀𝑢𝑔 + (𝑚1 + 𝑚2)
⋅ 𝑔 (𝑙𝑐 ⋅ T−lizT ⋅ T 13 ⋅ T−liz − T−hgi ⋅ T 1) (41)

𝜕𝐸𝑝𝜕𝛼 = − (𝑚1 + 𝑚2)
⋅ 𝑔 [ 6∑
𝑖=1

(− 𝑙𝑐𝑙2𝑖 ) 𝜕𝑙𝑖𝜕𝛼 + T−hgi ⋅ d liz 𝛼] (42)

𝜕𝐸𝑝𝜕𝛽 = − (𝑚1 + 𝑚2)
⋅ 𝑔 [ 6∑
𝑖=1

(− 𝑙𝑐𝑙2𝑖 ) 𝜕𝑙𝑖𝜕𝛽 + T−hgi ⋅ d liz 𝛽] (43)

𝜕𝐸𝑝𝜕𝛾 = − (𝑚1 + 𝑚2)
⋅ 𝑔 [ 6∑
𝑖=1

(− 𝑙𝑐𝑙2𝑖 ) 𝜕𝑙𝑖𝜕𝛾 + T−hgi ⋅ d liz 𝛾] (44)
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Figure 4: Particle trajectory.

where

T−lix = [𝑙1𝑥 𝑙2𝑥 𝑙3𝑥 𝑙4𝑥 𝑙5𝑥 𝑙6𝑥]T ,
T−liy = [𝑙1𝑦 𝑙2𝑦 𝑙3𝑦 𝑙4𝑦 𝑙5𝑦 𝑙6𝑦]T𝑙𝑖𝑥 = L𝑖 ⋅ X 1,𝑙𝑖𝑦 = L𝑖 ⋅ Y 1,
T 1 = [1 1 1 1 1 1]T
T 13 = diag( 1𝑙31 1𝑙32 1𝑙33 1𝑙34 1𝑙35 1𝑙36 )

d liz 𝛼 = [𝜕𝑙1𝑧𝜕𝛼 𝜕𝑙2𝑧𝜕𝛼 𝜕𝑙3𝑧𝜕𝛼 𝜕𝑙4𝑧𝜕𝛼 𝜕𝑙5𝑧𝜕𝛼 𝜕𝑙6𝑧𝜕𝛼 ]T
d liz 𝛽 = [𝜕𝑙1𝑧𝜕𝛽 𝜕𝑙2𝑧𝜕𝛽 𝜕𝑙3𝑧𝜕𝛽 𝜕𝑙4𝑧𝜕𝛽 𝜕𝑙5𝑧𝜕𝛽 𝜕𝑙6𝑧𝜕𝛽 ]T
d liz 𝛾 = [𝜕𝑙1𝑧𝜕𝛾 𝜕𝑙2𝑧𝜕𝛾 𝜕𝑙3𝑧𝜕𝛾 𝜕𝑙4𝑧𝜕𝛾 𝜕𝑙5𝑧𝜕𝛾 𝜕𝑙6𝑧𝜕𝛾 ]T

(45)

3.3. Compressive Breakage Behavior. As shown in Figure 4,
the crushing process can be described by a number of
different crushing zones. The feed material is crushed by the
interparticle breakage and flows through each crushing zone
in the crushing chamber. The material is transformed to the
product by a repeated crushing process and crushed once in
each crushing zone between the mantle and concave.

In Figure 5, crushing pressure p is generated on the
surfaces of the mantle and concave [21]. It is related to
the compression ratio 𝜀 and particle size distribution 𝜎.
Compression ratio represents the proportional relationship
between compression length and height of crushing zone.

Particle size distribution describes the uniformity of the
particle size distribution. The compressive ratio is the largest
value when the material moves to the closed side. Meantime,
the corresponding pressure p is also the largest value of the
same horizontal cross section. Crushing pressure p can be
represented as 𝑝 = 𝑝 (𝜀, 𝜎) (46)

A process model of consecutive crushing events is pre-
sented, as shown in Figure 6. The selection function Si
describes particles of all sizes which enter a crushing process
have some probability of being broken, and the probability
is constantly changing as the particle size changes. A certain
proportion of particles in each size range are selected for
breakage and the remainder passes through the process
unbroken during the crushing events. The breakage function
Bi reflects the particle size distribution of each size range after
particles are broken into smaller fragments.

The process model uses the output from the previous
crushing event as input for the next crushing event. Each
crushing zone corresponds to a crushing event, and the size-
reduction process can be described as

𝑃 = 𝑛∑
𝑖=1

[𝐵𝑖𝑆𝑖 + (𝐼 − 𝑆𝑖)] 𝐹 (47)

where P represents the product size distribution and F is the
feed size distribution. The total number of crushing events is
denoted as n.

Selection and breakage functions can be established by
the compression ratio and particle size distribution through
the analysis of the experimental results. Thus, S and B can be
established as𝑆 = 𝑆 (𝜀, 𝜎) (48)𝐵 = {1 − [𝑎3 + 𝑎4𝜀𝑖]}𝑋𝑎1+𝑎2𝜀𝑖𝑖 + [𝑎3 + 𝑎4𝜀𝑖]𝑋𝑖 (49)
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Figure 5: Pressure distribution of cross section.
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Figure 6: Process model of a 6-DOF robotic crusher with n consecutive crushing events.

Table 1: The parameters of a 6-DOF robotic crusher.

Parameters Values
Mu 182
IX 3.45∗106
IY 3.45∗106
IZ 5.09∗106
m1 1.87
m2 0.35
S1 121.13
S2 112.48

where

𝜎 = √∑𝑛𝑖=1 𝑐𝑖 (𝑑𝑖 − 𝑑)2∑𝑛𝑖 𝑐𝑖𝑑𝑖
𝑋𝑖 = 𝑙𝑏 (𝑥𝑖/𝑥min)𝑙𝑏 (𝑥max/𝑥min)

(50)

where ai are fitted constants. xmin represents the minimum
particle size of different crushing zones, and xmax denotes the
maximum particle size. xi is the particle size distribution of
each size range.

4. Numerical Results and Discussion

In this section, a trajectory model of the mantle is established
by an eccentric simulation. The main purpose is to solve
the input velocities and driving forces of a 6-DOF robotic
crusher. At the same time, it demonstrates the suggested
approach can solve the dynamic problem effectively. Further-
more, the power of six actuators and energy consumption are
calculated.

4.1. Example. The parameters of a 6-DOF robotic crusher
are presented in Table 1. The trajectory model of the mantle
is an essential element for establishing the kinematic and
dynamic equations for the 6-DOF robotic crusher. But it is
very difficult to be established by using analytical method.

A small-scale cone crusher is created in a virtual envi-
ronment by using ADAMS in order to obtain the trajectory
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Table 2: Position and orientation of point O1 relative to the fixed point O1G.

Time AX AY AZ DX DY DZ
0.0000E+00 -3.6704E-16 -2.2204E-16 -1.0644E-16 3.5527E-15 -5.6843E-14 0.0000E+00
1.0000E-02 5.6775E-04 1.3695E-04 -1.3246E-03 1.4558E-03 -2.5174E-01 0.0000E+00
2.0000E-02 1.0441E-03 3.1864E-04 -2.3878E-03 -3.0296E-03 -4.5261E-01 0.0000E+00
3.0000E-02 1.5862E-03 2.8426E-04 -3.5293E-03 -2.6240E-02 -6.6657E-01 0.0000E+00
3.7012E-02 2.0335E-03 1.9493E-04 -4.3315E-03 -2.8522E-02 -8.1314E-01 0.0000E+00... ... ... ... ... ... ...
1.9980E+01 -3.9468E-02 -5.2918E-02 7.5980E-02 -1.7257E+01 1.4016E+01 0.0000E+00
1.9987E+01 -3.9775E-02 -5.2547E-02 7.6331E-02 -1.7122E+01 1.4074E+01 0.0000E+00
1.9990E+01 -3.9957E-02 -5.2380E-02 7.6586E-02 -1.7053E+01 1.4118E+01 0.0000E+00
1.9996E+01 -4.0095E-02 -5.2092E-02 7.6557E-02 -1.6902E+01 1.4104E+01 0.0000E+00
2.0000E+01 -4.0052E-02 -5.1936E-02 7.6583E-02 -1.6836E+01 1.4112E+01 0.0000E+00

／1(／1＇)

XY

Z

Spherical radical
bearing

Mantle liner

Mantle

Eccentric

Figure 7: The model of a small-scale cone crusher.

model of the mantle, which can be shown in Figure 7. The
oscillating motion of the mantle is accomplished by the
eccentric simulation. Position and orientation of point O1
relative to the fixed point O1G can be extracted and shown
in Table 2.

The movement simulation based on ADAMS is carried
out to establish the trajectory model of the mantle for the 6-
DOF robotic crusher. Then, the model of the mantle frame{O1,X1,Y1,Z1} relative to the reference frame {O,X,Y,Z} can
be described as

qe = [[[
0.044 sin (𝜔𝑡)0.044 cos (𝜔𝑡)−0.078 sin (𝜔𝑡)]]] rad

qp = [[[
14.36 cos (𝜔𝑡) − 4.864−14.36 sin (𝜔𝑡)0 ]]]mm

(51)

where 𝜔=1.483rad/s.
The proposed approach is used to solve the kinematic

and dynamic equations. Input velocities and driving forces
of six actuators have the same time period, as shown in
Figures 9 and 10. Input velocities of actuators 4 and 5 are

Figure 8: The dynamic model in ADAMS.

greater than others. Negative value indicates that the actuator
is contracting. The values of driving forces are in the interval[240, 460], and the maximum value is found on actuators
3 and 6. They can be used as a basis for the design and
component selection. The difference of the peak value is
related to the eccentric angle and selection of the initial
position.

4.2. Simulation Verification. Settings of connectors and
motions of 3D model in ADAMS are shown in Figure 8 [22].
In order to validate the proposed approach, driving forces
of six actuators are simulated by using ADAMS, which are
represented in Figure 11. Figures 10 and 11 are obtained by
executing the simulation for 20s. It can be observed that
the calculated and simulated outputs have good agreements,
which indicates the suggested approach of dynamic modeling
is suitably selected.

Compared with the driving forces, the friction of spheri-
cal joints and actuators is negligible. Therefore, power of six
actuators can be expressed as follows according to (13) and
(17):

𝑃𝑜𝑢𝑡 = 𝜏T ⋅ q̇ (52)
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Figure 9: Input velocities of six actuators.
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Figure 10: Driving forces of six actuators.

The derivation of (52) is in the appendix.
Power of six actuators can be described with a cyclic

function of the time, as shown in Figure 12. Power is only
related to the payload consumption when six actuators are
all expanding, and it has nothing to do with the structure.
The energy consumption of the 6-DOF robotic crusher
can be mainly divided into two parts: energy consumption
during breakage E1 and no-load mechanical energy E0. E1 is
obtained by integrating the pressure p over the stroke s and
multiplying the cross-sectional surface area A perpendicular
to the compressed volume. Similarly, E0 can be calculated
by integrating the power of six actuators over the time.
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Figure 11: Driving forces by using ADAMS.
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Figure 12: Power of six actuators.

Therefore, the energy consumption E of the 6-DOF robotic
crusher can be expressed as

𝐸 = 𝐸1 + 𝐸0 = ∫𝑆𝑎𝑐𝑡
0

∫𝐴𝑎𝑐𝑡
0

𝑝 (𝜀, 𝜎) 𝑑𝐴𝑑𝑠 + ∫𝑇
0
𝑃𝑜𝑢𝑡𝑑𝑡 (53)

where T represents the crushing period of particles.

5. Conclusions

A novel 6-DOF robotic crusher was proposed which could
achieve both interparticle breakage of a cone crusher and
high flexibility of a parallel robot.Thekinematic and dynamic
models were derived from the no-load and crushing parts
in order to systematically describe the performance char-
acteristics. For the no-load case, the kinematic model was
established by analytical geometry and Jacobian matrix was
conducted.The dynamic model which takes into account the
weight of the mantle and actuators was derived based on
the Lagrange equation. For the crushing case, the crushing
process could be described by a number of different crushing
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zones. The crushing pressure was related to the compression
ratio and particle size distribution, and the closed side was
the largest location of the same horizontal cross section. In
order to establish the trajectory model of the mantle, a small-
scale cone crusher was created and themodel was obtained by
an eccentric simulation. The result showed that the position
and orientation functions changed periodically. Then the
mathematical calculation tools, MATLAB and Maple, were
employed to solve the input velocities and driving forces of
actuators. The suggested approach had been verified by using
ADAMS. Input velocity and driving force of each actuator
were different due to the eccentric angle and selection of the
initial position. Finally, the power of six actuators and energy
consumption were given.

Appendix

Differentiating TX, TY, and TZ with respect to time, (4) can
be derived as

ṪX = [[[
0 0 00 − sin 𝛼 − cos 𝛼0 cos 𝛼 − sin 𝛼]]] 𝛼̇ = SiTX𝛼̇,

ṪY = [[[
− sin 𝛽 0 cos 𝛽0 0 0− cos𝛽 0 − sin 𝛽]]] 𝛽̇ = SjT𝑌𝛽̇

ṪZ = [[[
− sin 𝛾 − cos 𝛾 0
cos 𝛾 − sin 𝛾 00 0 0]]] 𝛾̇ = SkTZ𝛾̇

(A.1)

For any length of an actuator, it can be obtained as

𝑙2𝑖 = l𝑖
T ⋅ l𝑖 (A.2)

Therefore, the following equation can be deduced as

Q𝑖 = L𝑖
T𝐿 𝑖 (A.3)

whereQi is the unit vector of each actuator.
Using (A.2) and (A.3), (6) can be derived as

[𝐿̇1 𝐿̇2 𝐿̇3 𝐿̇4 𝐿̇5 𝐿̇6]T= Q ⋅ [L̇1 L̇2 L̇3 L̇4 L̇5 L̇6]T (A.4)

where

Q = diag {Q1,Q2,Q3,Q4,Q5,Q6} (A.5)

The ratio between 𝑔𝑖 and li is defined as

ℎ𝑔𝑖 = 𝑔𝑖𝑙𝑖 = 𝑙𝑐𝑙𝑖 + 𝑚2𝑚1 + 𝑚2 (A.6)

Using (A.6), the velocity vectors for the center ofmass can
be given by

Vgi = ℎ𝑔𝑖 ⋅ L̇𝑖 (A.7)

Then, (26) can be obtained as follows:

V𝑔 = [VT
g1,VT

g2,VT
g3,VT

g4,VT
g5,VT

g6]T (A.8)

Using (20) and (27), (33) can be derived as𝐸𝑘 = 12 q̇TMpq̇ + 12 (𝑚1 + 𝑚2) q̇THTTmHq̇

= 12 q̇T [(𝑚1 + 𝑚2)HTTmH +Mp] q̇
= 12 q̇TMekq̇

(A.9)

Equation (36) can be deduced as
d
d𝑡 (𝜕𝐿𝜕q̇) = d

d𝑡 (Mekq̇) = Ṁekq̇ +Mekq̈ (A.10)

where (15) and (33) have been employed.
Equation (37) can be further derived as𝜕𝐸𝑘𝜕q = 12 q̇T (𝜕Mek𝜕q ) q̇ (A.11)

where
Mek = (𝑚1 + 𝑚2)HTTmH +Mp,𝜕Mek𝜕𝑋 = (𝑚1 + 𝑚2)HT 𝜕Tm𝜕𝑋 H,

𝜕Mek𝜕𝑌 = (𝑚1 + 𝑚2)HT 𝜕Tm𝜕𝑌 H,
𝜕Mek𝜕𝑍 = (𝑚1 + 𝑚2)HT 𝜕Tm𝜕𝑍 H,

𝜕Mek𝜕𝛼 = (𝑚1 + 𝑚2)
⋅ [𝜕HT𝜕𝛼 TmH +HT 𝜕Tm𝜕𝛼 H +HTTm

𝜕H𝜕𝛼 ]
+ 𝜕Mp𝜕𝛼𝜕Mek𝜕𝛽 = (𝑚1 + 𝑚2)
⋅ [𝜕HT𝜕𝛽 TmH +HT 𝜕Tm𝜕𝛽 H +HTTm

𝜕H𝜕𝛽 ]
+ 𝜕Mp𝜕𝛽𝜕Mek𝜕𝛾 = (𝑚1 + 𝑚2)
⋅ [𝜕HT𝜕𝛾 TmH +HT 𝜕Tm𝜕𝛾 H +HTTm

𝜕H𝜕𝛾 ]

(A.12)
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Equation (52) can be deduced as𝑃𝑜𝑢𝑡 = 𝜏T ⋅ J−1q ⋅ Jq ⋅ q̇ = 𝜏T ⋅ q̇ (A.13)
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