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The family of primal-dual active set methods is drawing more attention in scientific and engineering applications due to its
effectiveness and robustness for variational inequality problems. In this work, we introduce and study a primal-dual active set
method for the solution of the variational inequality problems with 𝑇-monotone operators. We show that the sequence generated
by the proposed method globally and monotonously converges to the unique solution of the variational inequality problem.
Moreover, the convergence rate of the proposed scheme is analyzed under the framework of the algebraic setting; i.e., the established
convergence results show that the iteration number of the methods is bounded by the number of the unknowns. Finally, numerical
results show that the efficiency can be achieved by the primal-dual active set method.

1. Introduction

The variational inequality problem associated with 𝑇-
monotone operators hasmany applications, e.g., the diffusion
problem involving Michaelis-Menten or second-order irre-
versible reactions; see, for example, [1–7] and the references
therein for details. Hence, there is a growing interest in
finding robust and efficient methods for solving this kind of
complementarity problems, which reflects in an increasing
number of proposals of numerical methods for its solution
in recent years. It is well known that the projected relaxation
method [8–10] is a popular solution technique for this class
of complementarity problems. A great advantage of this
approach is that it is easy to implement and can be conver-
gent for both problems with symmetric and nonsymmetric
operator. However, the convergence of this kind of methods
depends crucially on the choice of the relaxation parameter.
Another popular approach for the solution of variational
inequality problems is the Schwarz algorithm [1, 7, 11–14],
which is based on the framework of domain decomposition
methods [15–17]. A major advantage of the Schwarz methods
is amenable to implement and its convergence rate will not
be deteriorated with the refinement of the mesh size when
it is applied to the system arising from the discretization of

partial differential equations (PDEs).The theory ofmonotone
and global convergences for the classical Schwarz algorithms
is also obtained. However, this kind of methods depends on
the shape of the computational domain. To fix these issues,
the family of active set strategies [18–24] can be used to solve
variational inequality problems in an efficient way, which is
the focus of this work.

The active set method consists of two major steps: in
the first phase, an index set is decomposed into active and
inactive parts with respect to the solution vector, based
on a criterion specifying a certain active set method; and
then in the second phase, a reduced system associated with
the active and inactive sets is solved. We briefly mention a
few related publications that partially motivated our current
work. In [22], Kanzow shows that the primal-dual active set
algorithm is an efficient and accurate method for large-scale
linear complementarity problems. In [25], Puterman and
Brumelle analyze the convergence properties for the primal-
dual active set method with continuous state and control
spaces. They showed that the algorithm is equivalent to a
Newton’s method, but under very restrictive assumptions
which were not easily verifiable. In [24, 26], an active-set
method with nonlinear elimination is proposed for the fully
implicit simulation of two-phase flows. In the proposed
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algorithm, a variational inequality formulation of two-phase
flow problems is used to avoid nonphysical undershoot or
overshoot of the saturation fractions, and employ a class of
active-set reduced-space algorithms to solve the resultant
nonlinear complementarity system arising at each implicit
time step. In particular, [18] builds the relationship between
the primal-dual active set method and the semismooth
Newton method and shows that the proposed method is a
specific case of the Newton-type method under reasonable
assumptions.

In general, there are two ways to study convergence
of primal-dual active set methods for solving variational
inequality problems [18, 27]. The first one is to prove that
the method produces a monotone sequence, in which the
initial guess often starts from a super-solution or a lower-
solution of the problem. Convergence theorems established
in this way are often based on the assumption that the matrix
from the linear system is an𝑀-matrix, and the corresponding
variational inequality is usually restricted to the unilateral
case.The other way is to prove that the active set method gen-
erates a minimizing iterative sequence under some objective
function, which is usually used to the variational inequality
with the bilateral case. In the later case, the matrix is often
supposed to be symmetric and positive definite. However,
when the primal-dual active set method is used to solve the
variational inequality problem with 𝑇-monotone operators,
there is not a general convergence theorem, owing to the fact
that it is difficult to find such a merit function. In this paper,
we get the equivalent relation between the primal-dual active
set method and Howard’s algorithm introduced in [9, 28,
29] for the variational inequality problem with 𝑇-monotone
operators, then show the convergence theorem of Howard’s
algorithm, and thus obtain the convergence theorem of the
primal-dual active set method. Using the equivalence of
the proposed algorithms for variational inequality problems
with 𝑇-monotone operators, we give a simple proof for the
global monotone convergence of the primal-dual active set
method and conclude that the primal-dual active set method
converges in no more than 𝑛+1 iterations, where 𝑛 is the size
of the solution vector. To the best of the authors’ knowledge,
this is the first attempt to apply the primal-dual active set
method for the variational inequality problem associated
with 𝑇-monotone operators.

The rest of the paper is organized as follows. In Section 2,
we present some notations and model problem and give
some preliminaries which are used throughout the paper. In
Section 3, the primal-dual active set method for the bilateral
variational inequality problem is proposed. We establish the
equivalence between Howard’s algorithm and the primal-
dual active set method in Section 4. Finally, in Section 5 we
report some numerical results for the proposedmethods, and
the paper is concluded in Section 6.

2. Preliminaries

In this section, we present some notations and the model
problem and give some preliminaries that are used through-
out the paper. First of all, we introduce some notations. Let

𝑁 = {1, 2, . . . , 𝑛} denote an index set. For any index sets
𝐼, 𝐽 ⊆ 𝑁,𝐴𝐼𝐽 is denoted as the submatrix of amatrix𝐴 ∈ R𝑛×𝑛

that consists of 𝑎𝑖𝑗(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽), and 𝑟𝐼 is defined as the
subvector of a vector 𝑟 ∈ R𝑛 consisting of 𝑟𝑖(𝑖 ∈ 𝐼). Let𝐾 be a
subset ofR𝑛 and𝑓 an operator from𝐾 toR𝑛. Let any element
V ∈ 𝐾 be expressed by V = V+ + V− with V+ = max{V, 0},
V− = min{V, 0}. Then the notion of 𝑇-monotone is defined as
follows.

Definition 1. A function 𝑓 is called 𝑇-monotone over the
subspce𝐾 ⊆ R𝑛, if it satisfies

⟨𝑓 (V) − 𝑓 (𝑤) , (V − 𝑤)+⟩ ≥ 0, ∀V, 𝑤 ∈ 𝐾, (1)

where ⟨⋅, ⋅⟩ denotes the inner product.
Definition 2. A function 𝑓 is called strictly 𝑇-monotone over
the subspce 𝐾 ⊆ R𝑛, if, for all V, 𝑤 ∈ 𝐾, ⟨𝑓(V) − 𝑓(𝑤), (V −
𝑤)+⟩ = 0 is equivalent to (V − 𝑤)+ = 0.

Based on this definition, in this study we consider
variational inequality problems associated with 𝑇-monotone
operators as follows.

Problem 3. Let 𝐾 = {V ∈ R𝑛 : 𝜙 ≤ V ≤ 𝜓}, 𝜙, 𝜓 be given
vectors in R𝑛 satisfying 𝜙 ≤ 𝜓, and 𝑓 is a continuous and
strictly 𝑇-monotone operator.Then the variational inequality
problem associated with 𝑇-monotone operators is defined by

find 𝑥 ∈ 𝐾,
such that ⟨𝑓 (𝑥) , V − 𝑥⟩ ≥ 0, ∀V ∈ 𝐾.

(2)

𝑇-monotone operators are a kind of important operators,
which include many linear and nonlinear elliptic operators;
see, e.g., [1, 3, 7]. One of the advantages of 𝑇-monotone
operators is that the relevant algorithms often possess mono-
tone convergence property. We would like to point out
that problem (2) has a unique solution; see, e.g., [27, 30].
Moreover, if all components of vector 𝜙 become −∞ and
𝜓 become +∞, then problem (2) reduces to the system of
nonlinear equations

𝑓 (𝑥) = 0. (3)

Hence, system (3) also has a unique solution when 𝑓 is a
continuous and strictly 𝑇-monotone operator. Moreover, the
𝑇-monotone operator has the following properties.

Lemma 4. Let 𝐼, 𝐽 be the subsets of the index set 𝑁 =
{1, 2, . . . , 𝑛} that satisfies 𝐽 = 𝑁 \ 𝐼. For any vectors 𝑦, 𝑧 ∈ 𝐾,
if the subvector 𝑦𝐼 = 𝑧𝐼 with 𝑦𝐽 ≥ 𝑧𝐽, and the function 𝑓 is
a continuous 𝑇-monotone operator over the subspace 𝐾, then
𝑓𝐼(𝑦) ≤ 𝑓𝐼(𝑧).

Proof. Let the index set 𝐼 be defined as

𝐼 = {𝑖 ∈ 𝐼 : 𝑓𝑖 (𝑦) > 𝑓𝑖 (𝑧)} (4)

and 𝐽 = 𝑁 \ 𝐼.Without loss of generality, the set 𝐼 is denoted
as {1, 2, . . . , 𝑘} and 𝐽 = {𝑘 + 1, . . . , 𝑛}.
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In the following, we prove it by contradiction based on
the assumption that 𝐼 is not empty. The set 𝑤1 is defined as

𝑤1 = {𝑧1 + 𝛿1, . . . , 𝑧𝑘 + 𝛿𝑘, 𝑧𝑘+1, . . . , 𝑧𝑛} (5)

and 𝑤2 = 𝑦 with 𝛿𝑖 being a positive integer for all 𝑖 ∈ 𝐼. If 𝛿𝑖
is small enough, then we have 𝑓𝑖(𝑤1) < 𝑓𝑖(𝑤2) for all 𝑖 ∈ 𝐼 by
the continuity of the operator 𝑓. In addition to that, since we
have (𝑤1 − 𝑤2)+𝐽 = 0, then

0 ≤ ⟨𝑓 (𝑤1) − 𝑓 (𝑤2) , (𝑤1 − 𝑤2)+⟩

=
𝑘

∑
𝑖=1

𝛿𝑖 (𝑓𝑖 (𝑤1) − 𝑓𝑖 (𝑤2)) < 0,
(6)

which is a contradiction. Therefore, 𝐼 = 0 and we can get the
conclusion 𝑓𝐼(𝑦) ≤ 𝑓𝐼(𝑧).
Lemma 5. Let the function 𝑓 be a continuous strictly 𝑇-
monotone operator over 𝐾 and 𝐼, 𝐽 be the subsets of the index
set 𝑁 = {1, 2, . . . , 𝑛} that satisfies 𝐽 = 𝑁 \ 𝐼. For any vectors
𝑦, 𝑧 ∈ 𝐾, if 𝑦𝐼 ≤ 𝑧𝐼 and 𝑓𝐽(𝑦) ≤ 𝑓𝐽(𝑧), then 𝑦 ≤ 𝑧.

Proof. Let 𝐼 = {𝑖 ∈ 𝑁 : 𝑦𝑖 ≤ 𝑧𝑖} and 𝐽 = 𝑁 \ 𝐼. Similarly,
without loss of generality, let 𝐼 = {1, 2, . . . , 𝑘} and 𝐽 = 𝑁 \ 𝐼.

In the following, we also prove it by contradiction that 𝐽
is not empty. By the definition of 𝐼, we have that 𝐼 ⊂ 𝐼 and
𝐽 ⊂ 𝐽. Moreover, we have

𝑓𝐽 (𝑦) ≤ 𝑓𝐽 (𝑧) ,
𝑦𝐽 > 𝑧𝐽,
𝑦𝐼 ≤ 𝑧𝐼.

(7)

Moreover, we know that

𝑓𝐽 (𝑧𝐼, 𝑦𝐽) ≤ 𝑓𝐽 (𝑦𝐼, 𝑦𝐽) = 𝑓𝐽 (𝑦) ≤ 𝑓𝐽 (𝑧)

= 𝑓𝐽 (𝑧𝐼, 𝑧𝐽) ,
(8)

where the first inequality comes from (7) and Lemma 4.
Let 𝑤1 = (𝑧𝐼, 𝑦𝐽) and 𝑤2 = 𝑧, by the definition of the

𝑇-monotone operator; then we obtain that

0 ≤ ⟨𝑓 (𝑤1) − 𝑓 (𝑤2) , (𝑤1 − 𝑤2)+⟩

= ⟨𝑓𝐽 (𝑤1) − 𝑓𝐽 (𝑤2) , (𝑦𝐽 − 𝑧𝐽)
+⟩ ≤ 0,

(9)

where the second inequality comes from𝑓𝐽(𝑤1) ≤ 𝑓𝐽(𝑤2) and
(𝑦𝐽 − 𝑧𝐽)+ > 0. Hence

⟨𝑓𝐽 (𝑤1) − 𝑓𝐽 (𝑤2) , (𝑦𝐽 − 𝑧𝐽)
+⟩ = 0, (10)

which means 𝑦𝐽 − 𝑧𝐽 ≤ 0, since 𝑓 is a strictly 𝑇-monotone
operator. This is a contradiction to (7), and it means that 𝑦 ≤
𝑧.

3. Primal-Dual Active Set Method for the
Variational Inequality Problem

In this section, we use the family of primal-dual active
set methods [18–23] for solving the variational inequality
problem (2) and then establish the equivalence between the
primal-dual active set method and Howard’s algorithm [9,
28, 29]. The focus of this study is on the following equivalent
problem of the model problem (2):

𝑓 (𝑥) − 𝜆 = 0,
B (𝑥, 𝜆) = 0,

(11)

where

B (𝑥, 𝜆) fl max {min {𝜆, 𝑐 (𝑥 − 𝜙)} , 𝑐 (𝑥 − 𝜓)} . (12)

Here, the max-operation or min-operation is understood
componentwise; 𝑐 > 0 is a constant. The primal-dual active
set method is based on using (12) as a prediction strategy.
In the method, an index set is partitioned into active and
inactive parts, based on a criterion specifying a certain active
set method; i.e., given a current primal-dual pair (𝑥, 𝜆), the
choice for the next active and inactive sets is given by

J𝜙 = {𝑖 ∈ 𝑁 : 𝜆𝑖 − 𝑐 (𝑥 − 𝜙)𝑖 > 0} ,
J𝜓 = {𝑖 ∈ 𝑁 : 𝜆𝑖 − 𝑐 (𝑥 − 𝜓)𝑖 < 0} ,

(13)

and I = 𝑁 \ (J𝜙 ∪ J𝜓). Below, we present a high level
description of the basic algorithm for a general problem in
Algorithm 1.

Remark 6. The convergence theorem of the primal-dual
active set method for the variational inequality problem with
linear operator is based on amerit function, which is to prove
that the proposed method generates a minimizing sequence
for the merit function [23]. In this case, the matrix from
the discretization of the linear operator is often supposed
to be symmetric and positive definite. Theoretically, this
condition number estimate cannot be applied immediately
to the family of variational inequality problems with 𝑇-
monotone operators, since these operators do not have these
properties and we cannot use the technique of the merit
function to get the convergence of Algorithm 1.

In this study, we establish the equivalence between and
the primal-dual active set method and Howard’s algorithm
[9, 28, 29] for the solution of (2), and then we obtain the
convergence theorem of Howard’s algorithm. The use of
Howard’s algorithm is based on the following equivalent
problem of (2):

find 𝑥 ∈ R
𝑛,

such that max {min {𝑓 (𝑥) , 𝑥 − 𝜙} , 𝑥 − 𝜓} = 0.
(14)

And then we define the following two functions 𝐹, 𝐺 ∈ R𝑛 by

𝐹 (𝑥) fl min {𝑓 (𝑥) , 𝑥 − 𝜙} ,
𝐺 (𝑥) fl max {𝐹 (𝑥) , 𝑥 − 𝜓} ,

(15)
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Step 1. Initialize 𝑥0 and 𝜆0. Set 𝑘 := 0.
Step 2. Determine the active and inactive sets by

J𝑘𝜙 = {𝑖 ∈ 𝑁 : 𝜆𝑘𝑖 − 𝑐 (𝑥𝑘 − 𝜙)
𝑖
> 0},

J𝑘𝜓 = {𝑖 ∈ 𝑁 : 𝜆𝑘𝑖 − 𝑐 (𝑥𝑘 − 𝜓)
𝑖
< 0}.

andI𝑘 = 𝑁 \ (J𝑘𝜙 ∪J𝑘𝜓).
Step 3. Let 𝑥𝑘+1 and 𝜆𝑘+1 be the solution of the nonlinear system

𝑓(𝑥𝑘+1) − 𝜆𝑘+1 = 0,
𝑥𝑘+1 = 𝜙 on J𝑘𝜙,
𝑥𝑘+1 = 𝜓 on J𝑘𝜓,
𝜆𝑘+1 = 0 on I𝑘.

Step 4. If 𝑘 ≥ 1 and 𝑥𝑘 = 𝑥𝑘−1, then stop. Otherwise set 𝑘 := 𝑘 + 1 and return to Step 2.

Algorithm 1: The primal-dual active set method.

Step 1. Initialize 𝛽0 inA = {0, 1}𝑛, and set 𝑘 := 0.
Step 2. Find 𝑥𝑘 ∈ R𝑛 such that 𝐹𝛽𝑘 (𝑥𝑘) = 0. If 𝑘 ≥ 1 and 𝑥𝑘 = 𝑥𝑘−1, then stop. Otherwise go to Step 3.
Step 3. For every 𝑖 ∈ 𝑁, take

𝛽𝑘+1 fl {
{
{

0 if 𝐹𝛽𝑖 (𝑥𝑘) ≥ (𝑥𝑘 − 𝜓)
𝑖
,

1 if 𝐹𝛽𝑖 (𝑥𝑘) < (𝑥𝑘 − 𝜓)
𝑖
.

Set 𝑘 := 𝑘 + 1 and return to Step 2.

Algorithm 2: Howard’s algorithm.

respectively. Based on above notations, for ∀𝑥 ∈ R𝑛 (14) is
equivalent to

find 𝑥 ∈ R
𝑛,

such that 𝐺 (𝑥) = 0.
(16)

In the following, we introduce the other equivalent
formation of (2). LetA = {0, 1}𝑛 with 𝛼 = (𝛼𝑖)𝑖∈𝑁 ∈ A; then
we can also define the function

𝐹 (𝑥) fl min
𝛼∈A

𝑓𝛼 (𝑥) = 0, (17)

where

𝑓𝛼 (𝑥) fl {
{
{

𝑓𝑖 (𝑥) if 𝛼𝑖 = 0,
(𝑥 − 𝜙)𝑖 if 𝛼𝑖 = 1.

(18)

Moreover, for every 𝛽 ∈ A, the function 𝐹𝛽(𝑥) : R𝑛 → R𝑛

is defined by

𝐹𝛽 (𝑥) fl {
{
{

𝐹𝑖 (𝑥) if 𝛽𝑖 = 0,
(𝑥 − 𝜓)𝑖 if 𝛽𝑖 = 1.

(19)

In a similar way, the function𝐺(𝑥) = max𝛽∈A𝐹𝛽(𝑥), and then
(14) is equivalent to the following problem:

find 𝑥 ∈ R
𝑛,

such that max
𝛽∈A

𝐹𝛽 (𝑥) = 0. (20)

Based on the above notations, we also present a high level
description of Howard’s algorithm for solving (20) in Algo-
rithm 2.

4. Convergence Results

In the section, we show that the primal-dual active setmethod
is equivalent to Howard’s algorithm for the model problem
(2), and then we obtain the convergence theorem of the
primal-dual active set method.

To begin, let us focus on Howard’s algorithm (i.e., Algo-
rithm 2). Note that, at each step, Howard’s algorithm satisfies

𝜆𝑘+1 = 𝑓 (𝑥𝑘+1) ,

𝜆𝑘+1𝑖 = 0, 𝑖 ∈ I
𝑘,

(𝑥𝑘+1 − 𝜙)
𝑖
= 0, 𝑖 ∈ J

𝑘
𝜙,

(𝑥𝑘+1 − 𝜓)
𝑖
= 0, 𝑖 ∈ J

𝑘
𝜓.

(21)

Then we have the following notation:

𝐹 (𝑥𝑘+1) = 0

fl

{{{{
{{{{
{

𝑓𝑖 (𝑥𝑘+1) if 𝑐 (𝑥𝑘 − 𝜓)
𝑖
≤ 𝑓𝑖 (𝑥𝑘) ≤ 𝑐 (𝑥𝑘 − 𝜙)

𝑖
,

𝑐 (𝑥𝑘+1 − 𝜙)
𝑖

if 𝑓𝑖 (𝑥𝑘) > 𝑐 (𝑥𝑘 − 𝜙)
𝑖
,

𝑐 (𝑥𝑘+1 − 𝜓)
𝑖

if 𝑓𝑖 (𝑥𝑘) < 𝑐 (𝑥𝑘 − 𝜓)
𝑖
.

(22)

In the following, Howard’s algorithm is used to solve the
equivalent problem

max {min {𝑓 (𝑥) , 𝑐 (𝑥 − 𝜙)} , 𝑐 (𝑥 − 𝜓)} = 0. (23)
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For 𝑘 ≥ 0, if we set

𝛽𝑘+1𝑖 = 0,

𝛼𝑘+1𝑖 = 0

for 𝑖 ∈ I
𝑘,

𝛽𝑘+1𝑖 = 0,

𝛼𝑘+1𝑖 = 1

for 𝑖 ∈ J
𝑘
𝜙,

𝛽𝑘+1𝑖 = 1,

𝛼𝑘+1𝑖 = 0

for 𝑖 ∈ J
𝑘
𝜓.

(24)

Note that 𝛼𝑘+1 and 𝛽𝑘+1 are defined from the previous step
𝑥𝑘, as introduced in Howard’s algorithm, and then we obtain
𝐹 = 𝐹𝛽𝑘+1 . Therefore, (22) is equivalent to

𝐹𝛽𝑘+1 (𝑥𝑘+1) = 0, (25)

and 𝑥𝑘+1 is defined as in Howard’s algorithm applied to (23).

Remark 7. If we choose the initial guess with 𝜆0 = 𝑓(𝑥0)
in Algorithm 1, then the primal-dual active set method (i.e.,
Algorithm 1) and Howard’s algorithm (i.e., Algorithm 2) for
the variational inequality problem (2) are equivalent.

We now state the main convergence result for Howard’s
algorithm; i.e., the iteration number of the method is
bounded by the number of the unknowns. We start with
the following preliminary results to show the monotone
convergence of Algorithm 2.

Lemma 8. If 𝑓 is a continuous strictly 𝑇-monotone operator,
then the functions 𝐹, 𝐹𝛽, and 𝐺 are monotone operators with
each 𝛽 ∈ A = {0, 1}𝑛.
Proof. Let the vectors 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑛 such that 𝐹(𝑥) ≤ 𝐹(𝑦),
and let 𝛼𝑥 ∈ A be a minimizer that is associated with the
function 𝐹(𝑥) defined as follows:

𝛼𝑥 fl {
{
{

0 if 𝑓𝑖 (𝑥) ≤ (𝑥 − 𝜙)𝑖
1 if 𝑓𝑖 (𝑥) > (𝑥 − 𝜙)𝑖

for 𝑖 ∈ 𝑁. (26)

Based on this notation, we obtain

𝑓𝛼𝑥 (𝑥) = 𝐹 (𝑥) ≤ 𝐹 (𝑦) = min
𝛼∈A

𝑓𝛼 (𝑦) ≤ 𝑓𝛼𝑥 (𝑦) . (27)

Hence, we conclude that the inequality 𝑥 ≤ 𝑦 holds, owing to
the fact that 𝑓𝛼𝑥 is a monotone operator.

In what follows, we show that the function 𝐹𝛽 is a
monotone operator. Let 𝑥, 𝑦 be in R𝑛 such that 𝐹𝛽(𝑥) ≤
𝐹𝛽(𝑦). On the one hand, if 𝛽𝑖 = 0 for some 𝑖 ∈ 𝑁, then we
have 𝐹𝛽𝑖 (𝑥) ≤ 𝐹𝛽𝑖 (𝑦) and therefore

𝑓𝛼𝑥𝑖 (𝑥) ≤ 𝑓𝛼𝑦𝑖 (𝑦) ≤ 𝑓𝛼𝑥𝑖 (𝑦) . (28)

On the other hand, if 𝛽𝑖 = 1 for some 𝑖 ∈ 𝑁, then we have
(𝑥 − 𝜓)𝑖 ≤ (𝑦 − 𝜓)𝑖.

Let 𝛼 ∈ A be defined as follows:

𝛼 fl
{
{
{

0 if 𝛽𝑖 = 0, 𝛼𝑥𝑖 = 0
1 if otherwise

for 𝑖 ∈ 𝑁. (29)

Then we can obtain that if 𝛽𝑖 = 0 and 𝛼𝑥𝑖 = 0 then
𝑓𝛼𝑖 (𝑥) = 𝑓𝛼𝑥𝑖 (𝑥) ≤ 𝑓𝛼𝑥𝑖 (𝑦) = 𝑓𝛼𝑖 (𝑦) , (30)

and otherwise,

𝑓𝛼𝑖 (𝑥) = (𝑥 − 𝜙)𝑖 ≤ (𝑦 − 𝜙)𝑖 = 𝑓𝛼𝑖 (𝑦) . (31)

Hence, 𝑓𝛼𝑖 (𝑥) ≤ 𝑓𝛼𝑖 (𝑦), and we also conclude that the
inequality 𝑥 ≤ 𝑦 holds by using the monotonicity of the
function 𝑓𝛼.

In a similar way, we show that the function 𝐺 is a
monotone operator. We assume 𝐺(𝑥) ≤ 𝐺(𝑦). By (20), let 𝛽𝑦
be the index such that 𝐺(𝑦) = 𝐹𝛽𝑦 (𝑦). Then we have

𝐹𝛽𝑦 (𝑥) ≤ 𝐺 (𝑦) = 𝐹𝛽𝑦 (𝑦) . (32)

Hence, the inequality 𝑥 ≤ 𝑦 is obtained, based on the fact that
the function 𝐹𝛽𝑦 is a monotone operator.

Theorem 9. Let 𝑓 be a continuous strictly 𝑇-monotone oper-
ator and 𝑥∗ ∈ R𝑛 be the unique solution of (2). �en the
sequence {𝑥𝑘} given by Algorithm 2 satisfies

(a) 𝑥𝑘 ≥ 𝑥𝑘+1 for all 𝑘 ≥ 0 and 𝑥𝑘 ≤ 𝜓 for all 𝑘 ≥ 1;
(b) 𝑥𝑘 → 𝑥∗ at most 𝑛 + 1 iterations.

Proof. The uniqueness of the solution is obtained by the
monotonocity of the function 𝐺.

(a) Note that

𝐹𝛽𝑘+1 (𝑥𝑘+1) = 0 = 𝐹𝛽𝑘 (𝑥𝑘) ≤ 𝐺 (𝑥𝑘) = 𝐹𝛽𝑘+1 (𝑥𝑘) . (33)

Then, we have 𝑥𝑘 ≥ 𝑥𝑘+1, since the function 𝐹𝛽𝑘+1 is
monotone by Lemma 8. In the followingwe prove that

𝑥𝑘 ≤ 𝜓 for all 𝑘 ≥ 1. (34)

In fact, we need only to prove that𝑥1−𝜓 ≤ 0. If𝛽1𝑖 = 0,
then we have (𝑥1 − 𝜓)𝑖 = 0 by definition of 𝑥1. On
the other hand if 𝛽1𝑖 = 1, then we obtain 𝐹𝑖(𝑥0) ≥
(𝑥−𝜓)𝑖. Moreover, either 𝐹𝑖(𝑥0) or (𝑥0 −𝜓)𝑖 is zero by
definition of 𝑥0. Hence (𝑥0−𝜓)𝑖 ≤ 0 and (𝑥1−𝜓)𝑖 ≤ 0.
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(b) We first show that the sequence {𝛽𝑘}𝑘≥1 is decreasing
in A = {0, 1}𝑛. In fact, if 𝛽𝑘𝑖 = 0 for some 𝑘 ≥ 1,
then 𝐹𝑖(𝑥𝑘) = 0. Using (𝑥𝑘 − 𝜓)𝑖 ≤ 0 we have that
𝛽𝑘+1𝑖 = 0. Since {𝛽𝑘}𝑘≥1 is decreasing, the set 𝐼𝑘 :=
{𝑖 ∈ 𝑁 : 𝐹𝑖(𝑥𝑘) ≥ (𝑥𝑘 − 𝜓)𝑖} is thus increasing for
𝑘 ≥ 0. On the other hand, since card(𝐼𝑘) ≤ 𝑛, there
exists a first index 𝑘 ∈ 𝑁 such that 𝐼𝑘 = 𝐼𝑘+1, and we
have 𝛼𝑘 = 𝛼𝑘+1. Moreover, 𝐺(𝑥𝑘+1) = 𝐹𝛼𝑘+2(𝑥𝑘+1) =
𝐹𝛼𝑘+1(𝑥𝑘+1) = 0, and thus 𝑥𝑘+1 is the solution for some
𝑘 ≤ 𝑛. This makes at most 𝑛 + 1 iterations.

5. Numerical Experiments

In the numerical experiments, we focus on investigating
the qualitative properties of the solution algorithms and
comparing them to some other known algorithms. In this
test, we consider a problem defined in the unit square Ω =
(0, 1) × (0, 1) as follows: find 𝑢∗ ∈ 𝐾 such that

−△𝑢 + 𝑔 (𝑢, 𝑥, 𝑦) > 0, 𝑢 = 𝜙,
−△𝑢 + 𝑔 (𝑢, 𝑥, 𝑦) < 0, 𝑢 = 𝜓,
−△𝑢 + 𝑔 (𝑢, 𝑥, 𝑦) = 0, 𝜙 ≤ 𝑢 ≤ 𝜓,

(35)

where 𝐾 = {𝑢 ∈ 𝐻10 (Ω) : 𝜙 ≤ 𝑢 ≤ 𝜓 a.e. in Ω}, 𝜙, and 𝜓 are
given functions and 𝑔(𝑢, 𝑥, 𝑦) = 𝑢/(1 + 𝑢) + 10𝑥 + 𝑦 − 8. We
discretize themodel problem by using the standard five-point
difference scheme with a constant mesh step size: ℎ𝑥 = ℎ𝑦 =
1/(𝑚 + 1), where 𝑚 denotes the number of mesh sizes in 𝑥-
and 𝑦-directions (𝑁 = 𝑚2 is the total number of unknowns).
Then the discretized problem (35) belongs to a variational
inequality problem with a 𝑇-monotone operator [7].

In the following tests, we choose the bound obstacles
𝜙 = 0 and 𝜓 = 1 for the variational inequality problem and
conduct the following experiments:

(1) Compare the primal-dual active set method with
project successive overrelaxation (PSOR)method [8–
10] and the classical additive Schwarz method [7, 12,
13].

(2) Compare different solution algorithms from the point
of view of iteration numbers and the total computing
time for the variational inequality problem with 𝑇-
monotone operators.

Throughout this section, for the construction of the classical
overlapping additive Schwarzmethod as introduced in [7, 31],
denoted by 𝑆𝑐ℎ𝑤𝑎𝑟𝑧, we partition the computational domian
𝑁 = 𝑁1 ∪ 𝑁2 into two equal parts with the overlapping
size 𝑂(1/10), and the corresponding subproblems are solved
by PSOR with the relaxation parameter 𝜔 = 1.8. In the
proposed primal-dual active set method, i.e., Algorithm 1,
the corresponding nonlinear systems are solved by nonlinear
Gauss-Seidel method. We mainly consider the effect of
dimension (denoted by 𝑁) on the performance of each
algorithm. The initial guess for all the methods is chosen as
𝑢0 = 8𝐴−1(1, . . . , 1)𝑇 with 𝐴 being the coefficient matrix of

Table 1: Comparison of iteration numbers.

𝑁 PSOR Schwarz Algorithm 1
100 35 16 8
400 42 23 12
900 63 39 15
1600 120 60 19
2500 187 85 23
3600 267 116 27

Table 2: Comparison of the computing time in seconds.

𝑁 PSOR Schwarz Algorithm 1
100 0.015 0.031 0.015
400 0.5 0.703 0.765
900 4.281 5.796 6.484
1600 23.984 29.312 33.312
2500 89.5 106.89 126.359
3600 289.046 334.64 406.734

−△. The tolerance of the three methods is chosen to be equal
to 10−6 in the ‖ ⋅ ‖2-norm for both inner and outer iterations.

In the experiment, we consider PSOR, the classical
additive Schwarz method, and Algorithm 1 for the numerical
solution of (35). Algorithm 1 for 𝑐 = 1 is not convergent for
(35), where similar results were discussed in [23]. Hence, we
choose 𝑐 = 1000 in Algorithm 1. In the test, we mainly focus
on the effect of the computational mesh size (denoted by𝑁)
to the performance of each algorithm, as listed in Tables 1 and
2, respectively. Below we list the observations made from the
results.

(1) FromTable 1, we can see that the number of iterations
for Schwarz and PSOR grows much with the increase
of the number of the computational mesh sizes, while
the number of iterations for Algorithm 1 does not
grow much with the increase of the number of mesh
sizes, which implies that Algorithm 1 is insensitive to
the number of mesh sizes. Hence, we can conclude
that the performance of the primal-dual active set
method is better than the Schwarz or PSOR method
in terms of the iteration number.

(2) On the other hand, if we focus on the total computing
time, the performance of PSOR is better than that
of the Schwarz method or the primal-dual active
set method, as shown in Table 2. Since the operator
in the test problem (35) is semilinear, i.e., almost
linear, the PSOR method behaves much better than
it usually does, while the Schwarz method and the
primal-dual active set method spend much time to
solve the related subproblem at each outer iteration
step. As a result, the Schwarz method and the primal-
dual active set method performed not so good as one
expected in terms of computing time, as shown in our
numerical results. It is consonant with [31], in which
the PSOR and Schwarz methods are used to solve
linear complementarity problem.
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6. Concluding Remarks

In this work, we have developed the family of primal-
dual active set methods to solve the discrete nonlinear
systems, arising from the variational inequality problems
with 𝑇-monotone operators. We build the equivalent relation
between the primal-dual active set method and Howard’s
algorithm, then show the convergence theorem of Howard’s
algorithm, and thus obtain the convergence theorem of the
primal-dual active set method. The numerical experiments
confirm the advantage of the primal-dual active set method,
when compared to the traditional PSOR and Schwarz meth-
ods.
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