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In this paper, we present new numerical results for the dispersive optical soliton solutions of the nonlinear Schrödinger-Hirota
equation. The spatio-temporal dispersion term is included, in addition to group velocity dispersion Kerr law of nonlinearity are
studied. A general recursive numerical scheme for the equation is devised via the Improved Adomian Decomposition Method
(IADM) and further sought for some analytical results for validation. The scheme is shown to be efficient and possessed high level
of accuracy as demonstrated.

1. Introduction

Nonlinear Schrodinger equations (NLSE) play a significant
role in the fiber optics, optical soliton, prorogation of pulses in
metamaterials and network engineering applications among
others [1, 2]. Thus, different forms of NLSE exist and serve
for a variety of purposes mostly in communication and
networking engineering including, for example, the trans-
continental and trans-oceanic data transfer requiring phase
modulation [3] and beyond; see [4–16] for different math-
ematical studies on these equations. Furthermore, due to
their immense application, many analytical methods and few
numerical methods have been proposed in the past decades.
Such methods include the Backlund transformation method
[17], Hirota's direct method [18, 19], tanh-sech method [20,
21], extended tanh method [22, 23], sine-cosine method [24],
and homogeneous balance method [25].

However, we will propose in this paper a numerical
method for solving a class of NLSE called the nonlin-
ear Schrodinger-Hirota equation. The method will heavily
depend on the Improved Adomian Decomposition Method
(IADM) [26–31].The IADM is an efficient numerical method
for functional and integral solutions based on the Adomian

decompositionmethod [32]. Further, a recent analytical study
on the nonlinear Schrodinger-Hirota equation will be sought
for to validate the proposed scheme. This form of solution is
being reported for the first time in this paper.

2. Governing Equation

The nonlinear Schrodinger equation used in modeling prop-
agation of solitons through optical fibers with Third-Order
Dispersion (TOD) is given by

𝑖𝑢𝑡 + 12𝑢𝑥𝑥 + |𝑢|2 𝑢 = −𝑖𝜆𝑢𝑥𝑥𝑥, (1)

where 𝑢 = 𝑢(𝑥, 𝑡) is a complex-valued function of 𝑥 (space)
and 𝑡 (time); 𝜆 is the coefficient of TOD. The first term on
the left hand side is the linear temporal evolution, the second
term is the group velocity dispersion term, and the third
term accounts for Kerr law nonlinearity. Also when the group
velocity is low, the TOD is justified.

We now introduced the Lie symmetry concept to be able
to study (1). With 𝑞 = 𝑞(𝑥, 𝑡), let

𝑞 = 𝑢 − 3𝑖𝜆 [𝑢𝑥 + 2𝑢∫𝑥
−∞

󵄨󵄨󵄨󵄨𝑢 (𝜉)󵄨󵄨󵄨󵄨2 𝑑𝜉, (2)
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which transforms (1) to

𝑖𝑞𝑡 + 12𝑞𝑥𝑥 + 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞 + 𝑖𝜆 (𝑞𝑥𝑥𝑥 + 6 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞𝑥) = 0. (3)

In (3), higher order terms are neglected [11, 33, 34] with
Kerr law nonlinearity that models transmission of dispersive
optical solitons through nonlinear fibres. We express (3) with
general coefficients as

𝑖𝑞𝑡 + 𝑎𝑞𝑥𝑥 + 𝑐 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞 + 𝑖 (𝛾𝑞𝑥𝑥𝑥 + 𝜎 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞𝑥) = 0, (4)

where physically 𝜎 represents nonlinear dispersion. Further,
(4) happens to be ill-posed due to the group velocity disper-
sion term. However, with the addition of the spatiotemporal
dispersion (STD) term, (4) possesses a well-posedness [35,
36] given by

𝑖𝑞𝑡 + 𝑎𝑞𝑥𝑥 + 𝑏𝑞𝑥𝑡 + 𝑐 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞 + 𝑖 (𝛾𝑞𝑥𝑥𝑥 + 𝜎 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞𝑥) = 0, (5)

where the coefficient 𝑏 represents STD. Finally, in presence of
perturbation terms (5) becomes [37–39]

𝑖𝑞𝑡 + 𝑎𝑞𝑥𝑥 + 𝑏𝑞𝑥𝑡 + 𝑐 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞 + 𝑖 (𝛾𝑞𝑥𝑥𝑥+𝜎 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2𝑞𝑥)
= 𝑖𝛼𝑞𝑥 + 𝑖𝜆 (󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞)𝑥 + 𝑖V (󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2)𝑥 𝑞. (6)

However, we consider an analytical 1-soliton solution of (6) as
special case presented byAlQarni et al. [40] for the numerical
simulation sake in Section 4 given by

𝑞 (𝑥, 𝑡) = 𝐴 sech [𝐵 (𝑥 − V𝑡)] 𝑒𝑖(−𝑘𝑙𝑥+𝜔𝑙𝑡+𝜃), (7)

where 𝑘 is the frequencies of the solitons, 𝜔 is the wave
number, 𝜃 is the phase velocity, and𝐴 and𝐵 are the amplitude
and width 𝐵 given, respectively, by

𝐴 = √ 2 (𝜔 + 𝑎𝑘 − 𝜔𝑘𝑏 + 𝑎𝑘2 + 𝛾𝑘3)𝑎 − 𝑏V𝜔 − 3𝛾𝑘 , (8)

𝐵 = √2 (𝜔 + 𝑎𝑘 − 𝜔𝑘𝑏 + 𝑎𝑘2 + 𝛾𝑘3)𝑐 + 𝜎𝑘 − 𝜆𝑘 . (9)

The constraint conditions, for the existence of bright solitons
from (7)-(9), are as follows:

(𝑎 − 𝑏V𝜔 − 3𝛾𝑘) (2 (𝜔 + 𝑎𝑘 − 𝜔𝑘𝑏 + 𝑎𝑘2 + 𝛾𝑘3)) > 0, (10)

(𝑐 + 𝜎𝑘 − 𝜆𝑘) (2 (𝜔 + 𝑎𝑘 − 𝜔𝑘𝑏 + 𝑎𝑘2 + 𝛾𝑘3)) > 0. (11)

3. Numerical Method

In [26–31], authors introduced the IADM to convert a special
case of the complex-valued system into a real-valued system
by splitting 𝑞(𝑥, 𝑡) as

𝑞 (𝑥, 𝑡) = 𝑢1 + 𝑖𝑢2, (12)

where (𝑢𝑘, 𝑘 = 1, 2) are real functions. By substituting
equation (12) into (6) we obtain the following system:

𝑢1𝑡 + 𝑎𝑢2𝑥𝑥 + 𝑏𝑢2𝑥𝑡 + 𝑐 (𝑢21 + 𝑢22) 𝑢2 + 𝛾𝑢1𝑥𝑥𝑥
+ 𝜎 (𝑢21 + 𝑢22) 𝑢1𝑥 = 𝛼𝑢1𝑥 + 𝜆 ((𝑢21 + 𝑢22) 𝑢1)𝑥
− V (𝑢21𝑥 + 𝑢22𝑥) 𝑢1,

(13)

𝑢2𝑡 − 𝑎𝑢1𝑥𝑥 − 𝑏𝑢1𝑥𝑡 − 𝑐 (𝑢21 + 𝑢22) 𝑢1 + 𝛾𝑢2𝑥𝑥𝑥
+ 𝜎 (𝑢21 + 𝑢22) 𝑢2𝑥 = 𝛼𝑢2𝑥 + 𝜆 ((𝑢21 + 𝑢22) 𝑢2)𝑥
+ V (𝑢21𝑥 + 𝑢22𝑥) 𝑢2,

(14)

where

𝑢1 (𝑥, 0) = [𝑞 (𝑥, 0)]𝑅 ,
𝑢2 (𝑥, 0) = [𝑞 (𝑥, 0)]𝐼 . (15)

The decomposition method [32] decomposes the solution
into infinite sums of components defined by

𝑢1 (𝑥, 𝑡) = ∞∑
𝑛=0

𝑢1𝑛 (𝑥, 𝑡) , (16)

𝑢2 (𝑥, 𝑡) = ∞∑
𝑛=0

𝑢2𝑛 (𝑥, 𝑡) , (17)

where the components 𝑢1𝑛, 𝑢2𝑛, 𝑛 ≥ 0 will be determined
recursively. In an operator form with 𝐿 𝑡 = 𝜕/𝜕𝑡, (14) and (15)
become

𝐿 𝑡 (𝑢1 + 𝑏𝑢2𝑥) + 𝑎𝑢2𝑥𝑥 + 𝑐 (𝑢21 + 𝑢22) 𝑢2 + 𝛾𝑢1𝑥𝑥𝑥
+ 𝜎 (𝑢21 + 𝑢22) 𝑢1𝑥 = 𝛼𝑢1𝑥 + 𝜆 ((𝑢21 + 𝑢22) 𝑢1)𝑥
− V (𝑢21𝑥 + 𝑢22𝑥) 𝑢1,

(18)

𝐿 𝑡 (𝑢2 − 𝑏1𝑢1𝑥) − 𝑎𝑢1𝑥𝑥 − 𝑐 (𝑢21 + 𝑢22) 𝑢1 + 𝛾𝑢2𝑥𝑥𝑥
+ 𝜎 (𝑢21 + 𝑢22) 𝑢2𝑥 = 𝛼𝑢2𝑥 + 𝜆 ((𝑢21 + 𝑢22) 𝑢2)𝑥
+ V (𝑢21𝑥 + 𝑢22𝑥) 𝑢2.

(19)

Taking the inverse operator 𝐿−1𝑡 to both sides of (18) and (19)
gives

𝑢1 (𝑥, 𝑡) = 𝑢1 (𝑥, 0) − 𝑏 (𝑢2𝑥 (𝑥, 𝑡) − 𝑢2𝑥 (𝑥, 0))
− 𝐿−1𝑡 𝑎𝑢2𝑥𝑥 − 𝐿−1𝑡 𝛾𝑢1𝑥𝑥𝑥 + 𝐿−1𝑡 𝛼𝑢1𝑥
+ 𝐿−1𝑡 𝐴1,

(20)

𝑢2 (𝑥, 𝑡) = 𝑢2 (𝑥, 0) + 𝑏 (𝑢1𝑥 (𝑥, 𝑡) − 𝑢1𝑥 (𝑥, 0))
+ 𝐿−1𝑡 𝑎𝑢1𝑥𝑥 − 𝐿−1𝑡 𝛾𝑢2𝑥𝑥𝑥 + 𝐿−1𝑡 𝛼𝑢2𝑥
+ 𝐿−1𝑡 𝐴2.

(21)
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Assuming that the nonlinear terms in (20) and (21) are
represented by the series,

𝐴1 = −𝑐 (𝑢21 + 𝑢22) 𝑢2 − 𝜎 (𝑢21 + 𝑢22) 𝑢1𝑥
+ 𝜆 ((𝑢21 + 𝑢22) 𝑢1)𝑥 + V (𝑢21𝑥 + 𝑢22𝑥) 𝑢1,

(22)

𝐴2 = 𝑐 (𝑢21 + 𝑢22) 𝑢1 − 𝜎 (𝑢21 + 𝑢22) 𝑢2𝑥
+ 𝜆 ((𝑢21 + 𝑢22) 𝑢2)𝑥 + V (𝑢21𝑥 + 𝑢22𝑥) 𝑢2,

(23)

𝐴1𝑛, . . . , 𝐴2𝑛, . . . . are the so-calledAdomian polynomials that
can be constructed for all forms of nonlinearity according
to specific algorithms set by Adomian [32]. Substituting the
nonlinear terms into (22) and (23) and the solution from (16)
and (17) into (20) and (21) gives

∞∑
𝑛=0

𝑢1𝑛 (𝑥, 𝑡)
= 𝑢1 (𝑥, 0) − 𝑏∞∑

𝑛=0

(𝑢2𝑛 (𝑥, 𝑡))𝑥 + 𝑏 (𝑢2𝑛 (𝑥, 0))𝑥
− 𝐿−1𝑡 𝑎∞∑

𝑛=0

(𝑢2𝑛 (𝑥, 𝑡))𝑥𝑥
− 𝐿−1𝑡 𝛾∞∑

𝑛=0

(𝑢1𝑛 (𝑥, 𝑡))𝑥𝑥𝑥 + 𝐿−1𝑡 𝛼∞∑
𝑛=0

(𝑢1𝑛 (𝑥, 𝑡))𝑥
+ 𝐿−1𝑡 ∞∑
𝑛=0

𝐴1𝑛,

(24)

∞∑
𝑛=0

𝑢2𝑛 (𝑥, 𝑡)
= 𝑢2 (𝑥, 0) + 𝑏∞∑

𝑛=0

(𝑢1𝑛 (𝑥, 𝑡))𝑥 − 𝑏 (𝑢1𝑛 (𝑥, 0))𝑥
+ 𝐿−1𝑡 𝑎∞∑

𝑛=0

(𝑢1𝑛 (𝑥, 𝑡))𝑥𝑥
− 𝐿−1𝑡 𝛾∞∑

𝑛=0

(𝑢2𝑛 (𝑥, 𝑡))𝑥𝑥𝑥 + 𝐿−1𝑡 𝛼∞∑
𝑛=0

(𝑢2𝑛 (𝑥, 𝑡))𝑥
+ 𝐿−1𝑡 ∞∑
𝑛=0

𝐴2𝑛.

(25)

Following the decomposition analysis, the following recur-
sive relations are introduced:

𝑢1,0 (𝑥, 𝑡) = 𝑢1 (𝑥, 0) + 𝑏 (𝑢2 (𝑥, 0))𝑥 , (26)

𝑢2,0 (𝑥, 𝑡) = 𝑢2 (𝑥, 0) − 𝑏 (𝑢1 (𝑥, 0))𝑥 , (27)

𝑢1,𝑘+1 (𝑥, 𝑡) = −𝑏 (𝑢2,𝑘 (𝑥, 𝑡))𝑥 − 𝐿−1𝑡 𝑎 (𝑢2,𝑘 (𝑥, 𝑡))𝑥𝑥
− 𝐿−1𝑡 𝛾 (𝑢1,𝑘 (𝑥, 𝑡))𝑥𝑥𝑥
+ 𝐿−1𝑡 𝛼 (𝑢1,𝑘 (𝑥, 𝑡))𝑥 + 𝐿−1𝑡 𝐴1,𝑚,

(28)

𝑢2,𝑘+1 (𝑥, 𝑡) = 𝑏 (𝑢1,𝑘 (𝑥, 𝑡))𝑥 + 𝐿−1𝑡 𝑎 (𝑢1,𝑘 (𝑥, 𝑡))𝑥𝑥
+ 𝐿−1𝑡 𝛾 (𝑢2𝑛 (𝑥, 𝑡))𝑥𝑥𝑥
+ 𝐿−1𝑡 𝛼 (𝑢2𝑛 (𝑥, 𝑡))𝑥 + 𝐿−1𝑡 𝐴2,𝑚.

(29)

Thus, we determine 𝑢1 and 𝑢2 as follows:
𝑢1 = 𝑢1,0 + 𝑢1,1 + 𝑢1,2 + ⋅ ⋅ ⋅𝑢2 = 𝑢2,0 + 𝑢2,1 + 𝑢2,2 + ⋅ ⋅ ⋅ (30)

and the overall approximate solution for (6) is obtained by
substituting the above into (12) coupled to (26)-(29) to get

𝑞 (𝑥, 𝑡) = 𝑢1,0 + 𝑢1,1 + 𝑢1,2 + ⋅ ⋅ ⋅
+ 𝑖 (𝑢2,0 + 𝑢2,1 + 𝑢2,2 + ⋅ ⋅ ⋅) . (31)

4. Numerical Results

In this section, we consider three different cases for the
Schrödinger-Hirota equation with spatiotemporal dispersion
given in (6) to illustrate the application of the IADM scheme
we presented in the above section.We also consider the bright
soliton solution given in (7)-(11) for numerical simulation
with the following fixed parameters: 𝜔 = 1, 𝑘1 = 𝑘 = 0.1,𝜃 = 0, 𝑐 = 1, 𝑎 = 0.5.We also represent the graphs for absolute
value for each of exact solution 𝑞𝑒 and approximate solution𝑞𝑎.
Example 1. We consider Schrödinger-Hirota equation with
spatiotemporal dispersion equation (6) with 𝑏 = 0.0 and the
following three special cases.

Case 1. Let 𝛾 = 0.0.
Case 2. Let 𝛾 = 0.6.
Case 3. Let 𝛾 = 1.0.

The results and the profiles of this example are presented
in Table 1 and Figure 1.

Example 2. We consider Schrödinger-Hirota equation with
spatiotemporal dispersion equation (6) with 𝑏 = 0.1 and the
following three special cases.

Case 1. Let 𝛾 = 0.0.
Case 2. Let 𝛾 = 0.6.
Case 3. Let 𝛾 = 1.0.

The result and the profiles of this example are presented
in Table 2 and Figure 2.



4 Mathematical Problems in Engineering

t=0.5, =0.0 t=0.5 , =1t=0.5, =0.6

exact q
numerical q

exact q
numerical q

exact q
numerical q

Figure 1: Comparison of the exact and approximate solution for Example 1 for −20 ≤ 𝑥 ≤ 20.

Table 1: The absolute error for Example 1 when 𝑥 = 20.
𝑡 𝑏 = 0𝛾 = 0 𝛾 = 0.6 𝛾 = 1
0.0 0.0 0.0 0.0
0.1 0.000010261373 0.00003209069 0.00006378300
0.2 0.000021764973 0.00006266170 0.00012599913
0.3 0.000034488427 0.00009173715 0.00018667002
0.4 0.000048407918 0.00011934200 0.00024581792
0.5 0.000063498224 0.00014550173 0.00030346539

Table 2: The absolute error for Example 2 when 𝑥 = 20.
𝑡 𝑏 = 0.1𝛾 = 0 𝛾 = 0.6 𝛾 = 1
0.0 5.47003×10−7 7.5968×10−7 8.7637×10−7
0.1 0.000013623790 0.00003154594 0.00006498593
0.2 0.000028096531 0.00006216823 0.00012912151
0.3 0.000043940472 0.00009113126 0.00019155154
0.4 0.000061129371 0.00011845995 0.00025229764
0.5 0.000079635465 0.00014417984 0.00031138194

t=0.5 , =0.0 t=0.5 , =1t=0.5, =0.6

exact q
numerical q

exact q
numerical q

exact q
numerical q

Figure 2: Comparison of the exact and approximate solution for Example 2 for −20 ≤ 𝑥 ≤ 20.
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Table 3: The absolute error for Example 3 when 𝑥 = 20.
𝑡 𝑏 = 0.6𝛾 = 0 𝛾 = 0.6 𝛾 = 1
0.0 0.00014373490 0.00017576127 0.00019563219
0.1 0.00014417980 0.00011583001 0.00009275551
0.2 0.00014701256 0.00005817085 0.00000758921
0.3 0.00015221500 0.00000366844 0.00010541473
0.4 0.00015976708 0.00004859351 0.00020073458
0.5 0.00016964674 0.00009833252 0.00029356299

t=0.5 , =0.0 t=0.5 , =1
t=0.5 , =0.6

exact q
numerical q

exact q
numerical q

exact q
numerical q

Figure 3: Comparison of the exact and approximate solution for Example 3 for −20 ≤ 𝑥 ≤ 20.

Example 3. We consider Schrödinger-Hirota equation with
spatiotemporal dispersion equation (6) with 𝑏 = 0.6 and the
following three special cases.

Case 1. Let 𝛾 = 0.0.
Case 2. Let 𝛾 = 0.6.
Case 3. Let 𝛾 = 1.0.

The result and the profiles of this example are presented
in Table 3 and Figure 3.

5. Conclusion

In this work, an Improved Adomian Decomposition
Method (IADM) has been proposed to solve the nonlinear
Schrodinger-Hirota equation in presence of several
Hamiltonian type perturbation terms. The obtained
results possess high precision and converged to the exact
solution with less computational efforts. It was noticed
that a high accuracy of results is obtained when is the
coefficient of 3OD 𝛾 = 0 and within the range 0 > 𝛾, 𝑏 < 1
(𝑏 is the coefficient of spatio-temporal dispersion term) as
commented also in [40]. It is also clear from Figures 1–3 that
the complete correspondence of the two solutions is indeed
remarkable. Thus, the IADM is an efficient method for
nonlinear Schrodinger equations since it shows a high level
of accuracy with lesser computational efforts as compared to
other numerical methods. This topic is still open for further

researches for different values of parameters and other types
of soliton solutions.

Data Availability

All the data used for the numerical simulations and compar-
ison purpose have been reported in the tables included and
visualized in the graphical illustrations and nothing is left.
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