
Research Article
Extreme Spectra Realization by Nonsymmetric Tridiagonal
and Nonsymmetric Arrow Matrices

H. Pickmann-Soto ,1 S. Arela-Pérez,1 Juan C. Egaña,2 and Ricardo L. Soto 2
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We consider the following inverse extreme eigenvalue problem: given the real numbers {𝜆(𝑗)1 , 𝜆(𝑗)𝑗 }𝑛𝑗=1 and the real vector x(𝑛) =(𝑥1, 𝑥2, . . . , 𝑥𝑛), to construct a nonsymmetric tridiagonal matrix and a nonsymmetric arrow matrix such that {𝜆(𝑗)1 , 𝜆(𝑗)𝑗 }𝑛𝑗=1 are the
minimal and the maximal eigenvalues of each one of their leading principal submatrices, and (𝑥(𝑛), 𝜆(𝑛)𝑛 ) is an eigenpair of the
matrix. We give sufficient conditions for the existence of suchmatrices. Moreover our results generate an algorithmic procedure to
compute a unique solution matrix.

1. Introduction

We consider a particular inverse eigenvalue problem for real
nonsymmetric tridiagonal matrices of the form

𝐴 = ((
(

𝑎1 𝑏1𝑐1 𝑎2 𝑏2𝑐2 𝑎3 d

d d 𝑏𝑛−1𝑐𝑛−1 𝑎𝑛
))
)

;
𝑏𝑖𝑐𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛 − 1,

(1)

and for real nonsymmetric arrow matrices of the form

𝐵 = (((
(

𝑎1 𝑏1 𝑏2 ⋅ ⋅ ⋅ 𝑏𝑛−1𝑐1 𝑎2𝑐2 𝑎3... d𝑐𝑛−1 𝑎𝑛
)))
)

;

𝑏𝑖𝑐𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛 − 1.
(2)

This kind of matrices appears in several areas of science and
engineering, as in the Lanczos method for tridiagonalizing a
nonsymmetricmatrix or for computing theGaussian quadra-
ture [1–3]. The nonsymmetric arrow matrices used to be an
important tool for computing eigenvalues via dividing and
conquering approximations, in the study of nonsymmetric
eigenvalue problem [4]. The symmetric inverse eigenvalue
problem has attracted the attention of many authors. In
contrast, the nonsymmetric case has been less studied [5, 6].
In this paper we discuss the inverse eigenvalues problem
for matrices (1) and (2) considering the following spectral
information: the set of minimal and maximal eigenvalues of
all leading principal submatrices 𝐴𝑗, 𝑗 = 1, 2, . . . , 𝑛, of a
matrix 𝐴 of form (1) or (2), together with an eigenvector of𝐴. This type of spectral information has been recently con-
sidered in the literature [7–10]. More precisely, we consider
the following problem.

Problem 1. Given the list of real numbers{𝜆(𝑛)1 , 𝜆(𝑛−1)1 , . . . , 𝜆(2)1 , 𝜆(1)1 , 𝜆(2)2 , . . . , 𝜆(𝑛−1)𝑛−1 , 𝜆(𝑛)𝑛 } , (3)

and the vector

x(𝑛) = (𝑥1, 𝑥2, . . . , 𝑥𝑛) , (4)
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2 Mathematical Problems in Engineering

construct a matrix 𝐴 of form (1) or (2), such that 𝜆(𝑗)1 and 𝜆(𝑗)𝑗
are, respectively, the minimal and the maximal eigenvalue of
the leading principal submatrix 𝐴𝑗, 𝑗 = 1, 2, . . . , 𝑛 of 𝐴, and(x(𝑛), 𝜆(𝑛)𝑛 ) is an eigenpair of 𝐴.

It is known that a matrix of form (1) is diagonally similar
to the symmetric irreducible tridiagonal matrix𝐷𝐴𝐷−1

= (((
(

𝑎1 √𝑏1𝑐1√𝑏1𝑐1 𝑎2 √𝑏2𝑐2√𝑏2𝑐2 d d

d 𝑎𝑛−1 √𝑏𝑛−1𝑐𝑛−1√𝑏𝑛−1𝑐𝑛−1 𝑎𝑛
)))
)

, (5)

where 𝐷 = diag(𝛾1, 𝛾2, . . . , 𝛾𝑛), with 𝛾𝑖 =√(𝑐𝑖𝑐𝑖+1 ⋅ ⋅ ⋅ 𝑐𝑛−1)/(𝑏𝑖𝑏𝑖+1 ⋅ ⋅ ⋅ 𝑏𝑛−1), 𝑖 = 1, . . . , 𝑛 − 1, and𝛾𝑛 = 1 (see [2]).
In the same way, it can be determined that a matrix of

form (2) is diagonally similar to the symmetric irreducible
arrow matrix:𝐷𝐵𝐷−1

= ((((
(

𝑎1 √𝑏1𝑐1 √𝑏2𝑐2 ⋅ ⋅ ⋅ √𝑏𝑛−1𝑐𝑛−1√𝑏1𝑐1 𝑎2√𝑏2𝑐2 𝑎3... d√𝑏𝑛−1𝑐𝑛−1 𝑎𝑛
))))
)

, (6)

where𝐷 = diag(𝛿1, 𝛿2, . . . , 𝛿𝑛), with 𝛿1 = 1 and 𝛿𝑖+1 = √𝑏𝑖/𝑐𝑖,𝑖 = 1, . . . , 𝑛 − 1.
An important fact related to the above similarities is that

they leave invariant the eigenvalues of the leading principal
submatrices 𝐴𝑗, 𝑗 = 1, 2, . . . , 𝑛. Then the following results in
[7, 11, 12] hold for matrices of forms (1) and (2) as well.

Lemma 2 (see [11]). A necessary and sufficient condition for
the existence of an 𝑛 × 𝑛 symmetric tridiagonal matrix of form
(1) (𝑏𝑖 = 𝑐𝑖), such that𝜆(𝑗)1 and 𝜆(𝑗)𝑗 are, respectively, theminimal
and themaximal eigenvalues of the leading principal submatrix𝐴𝑗 of 𝐴, 𝑗 = 1, 2, . . . , 𝑛, is𝜆(𝑛)1 < 𝜆(𝑛−1)1 < ⋅ ⋅ ⋅ < 𝜆(2)1 < 𝜆(1)1 < 𝜆(2)2 < ⋅ ⋅ ⋅ < 𝜆(𝑛−1)𝑛−1< 𝜆(𝑛)𝑛 . (7)

Lemma 3 (see [12]). Let 𝐴 be a matrix of form (2) with 𝑏𝑖 =𝑐𝑖 ̸= 0, 𝑖 = 1, . . . , 𝑛 − 1. Let 𝜆(𝑗)1 and 𝜆(𝑗)𝑗 , respectively, be the
minimal and the maximal eigenvalue of the leading principal
submatrix 𝐴𝑗 of 𝐴, 𝑗 = 1, 2, . . . , 𝑛. Then𝜆(𝑗)1 < ⋅ ⋅ ⋅ < 𝜆(3)1 < 𝜆(2)1 < 𝜆(1)1 < 𝜆(2)2 < 𝜆(3)3 < ⋅ ⋅ ⋅

< 𝜆(𝑗)𝑗 , (8)

and𝜆(𝑗)1 < 𝑎𝑖 < 𝜆(𝑗)𝑗 ,𝑖 = 2, 3, . . . , 𝑗, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 2, 3, . . . , 𝑛. (9)

Lemma 4 (see [7]). Let x1, x2, . . . , x𝑛 be a set of orthonormal
eigenvectors associated with the eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛 of
an 𝑛 × 𝑛matrix 𝐴 of form (2) with 𝑏𝑖 = 𝑐𝑖 > 0, 𝑖 = 1, . . . , 𝑛 − 1,
andwith all its diagonal entries 𝑎𝑗 distinct, 𝑗 = 2, 3, . . . , 𝑛.Then𝑥𝜇𝑗 ̸= 0 for 𝜇, 𝑗 = 1, 2, . . . , 𝑛, where 𝑥𝜇𝑗 denotes the 𝜇𝑡ℎ entry of
the vector x𝑗.

In [11, 12], the authors show how to construct symmetric
tridiagonal and symmetric arrow matrices from the spectral
information (3). Then, if the given spectral information is
only (3), we may construct matrices of form (1) and (2),
respectively, from the symmetric matrices (5) and (6), by
similarity. However, these constructions are not unique. In
order to obtain a unique solution, we consider the spectral
information (3) and (4). We shall need the following known
results.

Lemma 5 (see [12]). Let 𝑃(𝜆) be a monic polynomial of degree𝑛 with all zeroes being real. If 𝜆1 and 𝜆𝑛 are, respectively, the
minimal and maximal zero of 𝑃(𝜆), then

(1) if 𝜇 < 𝜆1, we have (−1)𝑛𝑃(𝜇) > 0,
(2) if 𝜇 > 𝜆𝑛, we have 𝑃(𝜇) > 0.

Lemma 6 (see [13]). Let 𝐴 be an 𝑛 × 𝑛 nonsymmetric
tridiagonal matrix of form (1), and let 𝐴𝑗 be the 𝑗 × 𝑗 lead-
ing principal submatrix of 𝐴, with characteristic polynomial𝑃𝑗(𝜆) = det(𝜆𝐼𝑗 − 𝐴𝑗), 𝑗 = 1, 2, . . . , 𝑛. Then the sequence{𝑃𝑗(𝜆)}𝑛𝑗=1 satisfies the recurrence relation𝑃0 (𝜆) = 1,𝑃1 (𝜆) = (𝜆 − 𝑎1) ,𝑃𝑗 (𝜆) = (𝜆 − 𝑎𝑗) 𝑃𝑗−1 (𝜆) − 𝑏𝑗−1𝑐𝑗−1𝑃𝑗−2 (𝜆) ,𝑗 = 2, 3, . . . , 𝑛,

(10)

Lemma 7. Let 𝐴 be an 𝑛 × 𝑛 nonsymmetric arrow matrix of
form (2), and let 𝐴𝑗 be the 𝑗 × 𝑗 leading principal submatrix
of 𝐴, with characteristic polynomial 𝑃𝑗(𝜆) = det(𝜆𝐼𝑗 − 𝐴𝑗),𝑗 = 1, 2, . . . , 𝑛. Then, the sequence {𝑃𝑗(𝜆)}𝑛𝑗=1 satisfies the
recurrence relation𝑃1 (𝜆) = (𝜆 − 𝑎1)𝑃2 (𝜆) = (𝜆 − 𝑎2) 𝑃1 (𝜆) − 𝑏1𝑐1
𝑃𝑗 (𝜆) = (𝜆 − 𝑎𝑗) 𝑃𝑗−1 (𝜆) − 𝑏𝑗−1𝑐𝑗−1 𝑗−1∏

𝑖=2

(𝜆 − 𝑎𝑖) ,
𝑗 = 3, 4, . . . , 𝑛.

(11)

Proof. The result follows by expanding the determinants
det(𝜆𝐼𝑗 − 𝐴𝑗), 𝑗 = 1, 2, . . . , 𝑛.
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2. Main Results

In this section we give a unique solution to Problem 1 for the
matrices of forms (1) and (2). Conditions (12) and (13), as well
as conditions (31) and (32) below, arise fromLemmas 2, 3, and
4 by the similarity of matrices (1) and (5), as well as matrices
(2) and (6).

Theorem 8. Let the real numbers {𝜆(𝑗)1 , 𝜆(𝑗)𝑗 }𝑛𝑗=1 and the vector
x(𝑛) = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be satisfying𝜆(𝑛)1 < 𝜆(𝑛−1)1 < ⋅ ⋅ ⋅ < 𝜆(2)1 < 𝜆(1)1 < 𝜆(2)2 < ⋅ ⋅ ⋅ < 𝜆(𝑛−1)𝑛−1< 𝜆(𝑛)𝑛 (12)

and 𝑥𝑖 ̸= 0, 𝑖 = 1, 2, . . . , 𝑛. (13)

Then, there exists a unique nonsymmetric tridiagonalmatrix𝐴
of form (1), such that 𝜆(𝑗)1 and 𝜆(𝑗)𝑗 are, respectively, the minimal
and the maximal eigenvalue of the leading principal submatrix𝐴𝑗, 𝑗 = 1, 2, . . . , 𝑛, of 𝐴, and (𝑥(𝑛), 𝜆(𝑛)𝑛 ) is an eigenpair of 𝐴.
Proof. Suppose {𝜆(𝑗)1 , 𝜆(𝑗)𝑗 }𝑛𝑗=1 satisfy (12), and the vector 𝑥(𝑛)
satisfies (13). To show the existence of a nonsymmetric tridi-
agonal matrix 𝐴 with the required properties is equivalent to
show that the system of equations

𝑃𝑗 (𝜆(𝑗)𝑖 ) = 0; 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 𝑗
𝐴x(𝑛) = 𝜆(𝑛)𝑛 x(𝑛), (14)

where𝑃𝑗(𝜆) = det(𝜆𝐼𝑗−𝐴𝑗), 𝑗 = 1, 2, . . . , 𝑛 satisfies Lemma 6,
has real solutions 𝑎𝑗, 𝑗 = 1, 2, . . . , 𝑛 and 𝑏𝑖, 𝑐𝑖, 𝑖 = 1, 2, . . . , 𝑛−1,
with 𝑐𝑖𝑏𝑖 > 0.

From Lemma 6 for 𝑗 = 1, it follows that 𝑃1(𝜆(1)1 ) = 𝜆(1)1 −𝑎1 = 0. Then,

𝑎1 = 𝜆(1)1 . (15)

Now, from Lemma 6 for 𝑗 = 2, 3, . . . , 𝑛, system (14) can be
written as𝑃𝑗 (𝜆(𝑗)1 ) = (𝜆(𝑗)1 − 𝑎𝑗) 𝑃𝑗−1 (𝜆(𝑗)1 ) − 𝑏𝑗−1𝑐𝑗−1𝑃𝑗−2 (𝜆(𝑗)1 )= 0, (16)

𝑃𝑗 (𝜆(𝑗)𝑗 ) = (𝜆(𝑗)𝑗 − 𝑎𝑗) 𝑃𝑗−1 (𝜆(𝑗)𝑗 ) − 𝑏𝑗−1𝑐𝑗−1𝑃𝑗−2 (𝜆(𝑗)𝑗 )= 0, (17)

𝑗 = 2, 3, . . . , 𝑛. (18)

𝑎1𝑥1 + 𝑏1𝑥2 = 𝜆(𝑛)𝑛 𝑥1 (19)

𝑐𝑗−1𝑥𝑗−1 + 𝑎𝑗𝑥𝑗 + 𝑏𝑗𝑥𝑗+1 = 𝜆(𝑛)𝑛 𝑥𝑗, 𝑗 = 2, . . . , 𝑛 − 1 (20)

𝑐𝑛−1𝑥𝑛−1 + 𝑎𝑛𝑥𝑛 = 𝜆(𝑛)𝑛 𝑥𝑛. (21)

From (19) and condition (13), it follows that

𝑏1 = (𝜆(𝑛)𝑛 − 𝑎1) 𝑥1𝑥2 . (22)

From (16) and (17) for 𝑗 = 2 we have
𝑃2 (𝜆(2)1 ) = (𝜆(2)1 − 𝑎2) 𝑃1 (𝜆(2)1 ) − 𝑏1𝑐1𝑃0 (𝜆(2)1 ) = 0
𝑃2 (𝜆(2)2 ) = (𝜆(2)2 − 𝑎2) 𝑃1 (𝜆(2)2 ) − 𝑏1𝑐1𝑃0 (𝜆(2)2 ) = 0, (23)

from which

𝑐1 = 1𝑏1 (𝜆
(2)
2 − 𝜆(2)1 ) 𝑃1 (𝜆(2)1 ) 𝑃1 (𝜆(2)2 )𝑃1 (𝜆(2)1 ) − 𝑃1 (𝜆(2)2 ) . (24)

and

𝑎2 = 𝜆(2)1 𝑃1 (𝜆(2)1 ) − 𝜆(2)2 𝑃1 (𝜆(2)2 )𝑃1 (𝜆(2)1 ) − 𝑃1 (𝜆(2)2 ) . (25)

Moreover, from Lemma 5 and condition (12) we have

𝑏1𝑐1 = (−1) (𝜆(2)2 − 𝜆(2)1 ) 𝑃1 (𝜆(2)1 ) 𝑃1 (𝜆(2)2 )(−1) [𝑃1 (𝜆(2)1 ) − 𝑃1 (𝜆(2)2 )] > 0. (26)

Now, from (20) and condition (13), we obtain

𝑏𝑗 = (𝜆(𝑛)𝑛 − 𝑎𝑗) 𝑥𝑗𝑥𝑗+1 − 𝑐𝑗−1𝑥𝑗−1𝑥𝑗+1 ; 𝑗 = 2, 3, . . . , 𝑛 − 1. (27)

From (16) and (17) it follows that

𝑐𝑗−1 = 1𝑏𝑗−1
⋅ (𝜆(𝑗)𝑗 − 𝜆(𝑗)1 ) 𝑃𝑗−1 (𝜆(𝑗)1 ) 𝑃𝑗−1 (𝜆(𝑗)𝑗 )𝑃𝑗−1 (𝜆(𝑗)1 ) 𝑃𝑗−2 (𝜆(𝑗)𝑗 ) − 𝑃𝑗−1 (𝜆(𝑗)𝑗 ) 𝑃𝑗−2 (𝜆(𝑗)1 ) ,𝑗 = 3, . . . , 𝑛.

(28)

and𝑎𝑗
= 𝜆(𝑗)1 𝑃𝑗−1 (𝜆(𝑗)1 ) 𝑃𝑗−2 (𝜆(𝑗)𝑗 ) − 𝜆(𝑗)𝑗 𝑃𝑗−1 (𝜆(𝑗)𝑗 ) 𝑃𝑗−2 (𝜆(𝑗)1 )𝑃𝑗−1 (𝜆(𝑗)1 ) 𝑃𝑗−2 (𝜆(𝑗)𝑗 ) − 𝑃𝑗−1 (𝜆(𝑗)𝑗 ) 𝑃𝑗−2 (𝜆(𝑗)1 ) ,

𝑗 = 3, . . . , 𝑛.
(29)

Finally, from Lemma 5 and condition (12)𝑏𝑗−1𝑐𝑗−1
= (−1)𝑗−1 (𝜆(𝑗)𝑗 − 𝜆(𝑗)1 ) 𝑃𝑗−1 (𝜆(𝑗)1 ) 𝑃𝑗−1 (𝜆(𝑗)𝑗 )(−1)𝑗−1 [𝑃𝑗−1 (𝜆(𝑗)1 ) 𝑃𝑗−2 (𝜆(𝑗)𝑗 ) − 𝑃𝑗−1 (𝜆(𝑗)𝑗 ) 𝑃𝑗−2 (𝜆(𝑗)1 )]> 0,

(30)

for 𝑗 = 3, 4, . . . , 𝑛. Thus, we obtain a unique nonsymmetric
tridiagonal matrix of form (1).
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Theorem 9. Let the real numbers {𝜆(𝑗)1 , 𝜆(𝑗)𝑗 }𝑛𝑗=1 and the vector
x(𝑛) = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be satisfying

𝜆(𝑛)1 < 𝜆(𝑛−1)1 < ⋅ ⋅ ⋅ < 𝜆(2)1 < 𝜆(1)1 < 𝜆(2)2 < ⋅ ⋅ ⋅ < 𝜆(𝑛−1)𝑛−1< 𝜆(𝑛)𝑛 (31)

and

𝑥𝑖 ̸= 0, 𝑖 = 1, 2, . . . , 𝑛. (32)

Then there exists a unique nonsymmetric arrow matrix 𝐴 of
form (2), such that 𝜆(𝑗)1 and 𝜆(𝑗)𝑗 are, respectively, the minimal
and the maximal eigenvalue of the leading principal submatrix𝐴𝑗, 𝑗 = 1, 2, . . . , 𝑛, of 𝐴, and (𝑥(𝑛), 𝜆(𝑛)𝑛 ) is an eigenpair of 𝐴.
Proof. Suppose {𝜆(𝑗)1 , 𝜆(𝑗)𝑗 }𝑛𝑗=1 and 𝑥(𝑛) satisfy conditions (31)
and (32), respectively. To show the existence of a nonsymmet-
ric arrow matrix 𝐴 with the required properties is equivalent
to show that the system of equations

𝑃𝑗 (𝜆(𝑗)𝑖 ) = 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 𝑗 (33)

𝐴x(𝑛) = 𝜆(𝑛)𝑛 x(𝑛), (34)

where𝑃𝑗(𝜆) = det(𝜆𝐼𝑗−𝐴𝑗), 𝑗 = 1, 2, . . . , 𝑛 satisfies Lemma 7,
has real solutions 𝑎𝑗, 𝑗 = 1, 2, . . . , 𝑛 and 𝑏𝑖, 𝑐𝑖, 𝑖 = 1, 2, . . . , 𝑛−1,
with 𝑏𝑖𝑐𝑖 > 0.

From Lemma 7 for 𝑗 = 1 it follows that 𝑃1(𝜆(1)1 ) = 𝜆(1)1 −𝑎1 = 0. Then

𝑎1 = 𝜆(1)1 (35)

From (41) and (42) for 𝑗 = 2, it follows that
𝑃2 (𝜆(2)1 ) = (𝜆(2)1 − 𝑎2) 𝑃1 (𝜆(2)1 ) − 𝑏1𝑐1 = 0
𝑃2 (𝜆(2)2 ) = (𝜆(2)2 − 𝑎2) 𝑃1 (𝜆(2)2 ) − 𝑏1𝑐1 = 0 (36)

and

𝑎2 = 𝜆(2)1 𝑃1 (𝜆(2)1 ) − 𝜆(2)2 𝑃1 (𝜆(2)2 )𝑃1 (𝜆(2)1 ) − 𝑃1 (𝜆(2)2 ) . (37)

Now, from conditions (32) and (44), we have

𝑐1 = (𝜆(𝑛)𝑛 − 𝑎2) (𝑥2𝑥1) . (38)

Thus,

𝑏1 = 1𝑐1 (𝜆
(2)
2 − 𝜆(2)1 ) 𝑃1 (𝜆(2)1 ) 𝑃1 (𝜆(2)2 )𝑃1 (𝜆(2)1 ) − 𝑃1 (𝜆(2)2 ) . (39)

Moreover, from Lemma 5 and condition (31),

𝑏1𝑐1 = (−1) (𝜆(2)2 − 𝜆(2)1 ) 𝑃1 (𝜆(2)1 ) 𝑃1 (𝜆(2)2 )(−1) [𝑃1 (𝜆(2)1 ) − 𝑃1 (𝜆(2)2 )] > 0 (40)

From Lemma 7, for 𝑗 = 3, 4, . . . , 𝑛, system (33) can be
written as 𝑃𝑗 (𝜆(𝑗)1 ) = (𝜆(𝑗)1 − 𝑎𝑗) 𝑃𝑗−1 (𝜆(𝑗)1 )

− 𝑏𝑗−1𝑐𝑗−1 𝑗−1∏
𝑖=2

(𝜆(𝑗)1 − 𝑎𝑖) = 0, (41)

𝑃𝑗 (𝜆(𝑗)𝑗 ) = (𝜆(𝑗)𝑗 − 𝑎𝑗) 𝑃𝑗−1 (𝜆(𝑗)𝑗 )
− 𝑏𝑗−1𝑐𝑗−1 𝑗−1∏

𝑖=2

(𝜆(𝑗)𝑗 − 𝑎𝑖) = 0, (42)

𝑎1𝑥1 + 𝑛−1∑
𝑘=1

𝑏𝑘𝑥𝑘+1 = 𝜆(𝑛)𝑛 𝑥1 (43)

𝑐𝑗−1𝑥1 + 𝑎𝑗𝑥𝑗 = 𝜆(𝑛)𝑛 𝑥𝑗 𝑗 = 2, 3, . . . , 𝑛. (44)

Now, from (41) and (42), we have

𝑎𝑗 = 𝜆(𝑗)1 𝑃𝑗−1 (𝜆(𝑗)1 )∏𝑗−1𝑖=2 (𝜆(𝑗)𝑗 − 𝑎𝑖) − 𝜆(𝑗)𝑗 𝑃𝑗−1 (𝜆(𝑗)𝑗 )∏𝑗−1𝑖=2 (𝜆(𝑗)1 − 𝑎𝑖)𝑃𝑗−1 (𝜆(𝑗)1 )∏𝑗−1𝑖=2 (𝜆(𝑗)𝑗 − 𝑎𝑖) − 𝑃𝑗−1 (𝜆(𝑗)𝑗 )∏𝑗−1𝑖=2 (𝜆(𝑗)1 − 𝑎𝑖) . (45)

And from (44) and condition (32),

𝑐𝑗−1 = (𝜆(𝑛)𝑛 − 𝑎𝑗) (𝑥𝑗𝑥1) . (46)

Then,

𝑏𝑗−1 = 1𝑐𝑗−1
⋅ (𝜆(𝑗)𝑗 − 𝜆(𝑗)1 ) 𝑃𝑗−1 (𝜆(𝑗)1 ) 𝑃𝑗−1 (𝜆(𝑗)𝑗 )𝑃𝑗−1 (𝜆(𝑗)1 )∏𝑗−1𝑖=2 (𝜆(𝑗)𝑗 − 𝑎𝑖) − 𝑃𝑗−1 (𝜆(𝑗)𝑗 )∏𝑗−1𝑖=2 (𝜆(𝑗)1 − 𝑎𝑖) .

(47)

Finally, from Lemmas 3 and 5 and condition (31), we have

𝑏𝑗−1𝑐𝑗−1 = (−1)𝑗−1 (𝜆(𝑗)𝑗 − 𝜆(𝑗)1 ) 𝑃𝑗−1 (𝜆(𝑗)1 ) 𝑃𝑗−1 (𝜆(𝑗)𝑗 )(−1)𝑗−1 [𝑃𝑗−1 (𝜆(𝑗)1 )∏𝑗−1𝑖=2 (𝜆(𝑗)𝑗 − 𝑎𝑖) − 𝑃𝑗−1 (𝜆(𝑗)𝑗 )∏𝑗−1𝑖=2 (𝜆(𝑗)1 − 𝑎𝑖)] > 0. (48)
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Thus,we obtain a unique nonsymmetric arrowmatrix of form
(2).

We observe that the construction given by Theorems 8
and 9 generalizes the procedures given in [11, 12], in which
the authors only consider the extremal eigenvalues as initial
spectral information.

3. Numerical Examples

Example 1. The real numbers

𝜆(6)1 𝜆(5)1 𝜆(4)1 𝜆(3)1 𝜆(2)1 𝜆(1)1 𝜆(2)2 𝜆(3)3 𝜆(4)4 𝜆(5)5 𝜆(6)6−8 −5 −3 −2 −1 2 6 7 9 12 15 , (49)

and the vector 𝑥 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) (50)

satisfy conditions (12) and (13). Our procedure from Theo-
rem 8 gives the matrix

𝐴

= (((
(

2.0000 6.5000 0 0 0 01.8462 3.0000 7.3846 0 0 00 1.0833 2.0000 9.2083 0 00 0 2.3489 4.7865 6.7615 00 0 0 6.7122 2.5515 5.89890 0 0 0 12.8876 4.2603
)))
)

, (51)

with the required spectral properties.

Example 2. The eigenvalues of matrix

𝐴 = ((
(

𝛼 𝛽 0 ⋅ ⋅ ⋅ 0𝛾 𝛼 𝛽 ⋅ ⋅ ⋅ ...0 𝛾 𝛼 d 0... ... d d 𝛽0 ⋅ ⋅ ⋅ 0 𝛾 𝛼
))
)

; 𝛽𝛾 > 0, (52)

are given by

𝜆(𝑗)1 = 𝛼 + 2√𝛽𝛾 cos( 𝜋𝑗 + 1) , 𝑗 = 2, 3, . . . , 𝑛 (53)

𝜆(𝑗)𝑗 = 𝛼 + 2√𝛽𝛾 cos( 𝑗𝜋𝑗 + 1) , 𝑗 = 1, 2, . . . , 𝑛. (54)

And the components of an eigenvector associated with 𝜆(𝑛)𝑛
are given by the recurrence relation:

𝑥1 = 1;
𝑥2 = 1𝛽 (𝜆(𝑛)𝑛 − 𝛼) ;
𝑥𝑖 = 1𝛽 [(𝜆(𝑛)𝑛 − 𝛼) 𝑥𝑖−1 − 𝛾𝑥𝑖−2] , 𝑖 = 3, . . . , 𝑛

(55)

In Table 1 we consider𝐴 (52)with 𝛼 = 4,𝛽 = 1, and 𝛾 = 2.𝜆 is the vector with components and the eigenvalues given in
(53) and (54) and 𝑥 is the vector defined by (55).We denote by𝐴 the constructed matrix by the procedure from Theorem 8
and �̃� is the vector with the extreme eigenvalues of 𝐴. We
consider the following expressions: 𝑒𝐴 = log(‖𝐴 − 𝐴‖/‖𝐴‖),𝑒𝜆 = log(‖𝜆 − �̃�‖/‖𝜆‖), and 𝑒𝑥 = log(‖𝐴𝑥 − �̃�(𝑛)𝑛 𝑥‖/‖𝜆(𝑛)𝑛 𝑥‖).
Example 3. Consider the (2𝑛 − 1)-dimensional vector 𝜆,
whose entries are real numbers chosen randomly in nonde-
creasing order and a 𝑛-dimensional vector 𝑥, whose compo-
nents are all nonzero. Let𝐴 be 𝑛×𝑛nonsymmetric tridiagonal
matrix constructed from the entries of 𝜆 in such a way that�̃�(𝑗)1 and �̃�(𝑗)𝑗 are the minimal and maximal eigenvalues of the𝑗 × 𝑗 leading principal matrix 𝐴𝑗 of 𝐴, 𝑗 = 1, 2, . . . , 𝑛. Let
�̃� be the vector whose entries are the numbers �̃�(𝑗)1 and �̃�(𝑗)𝑗 ,𝑗 = 1, 2, . . . , 𝑛, in nondecreasing order. Figure 1 shows the
plot of 𝑒𝜆 and 𝑒𝑥 defined in Example 2, with 𝑛 = 50 and 100
reconstructions of the matrix 𝐴.
Example 4. In this example we consider random real num-
bers generated from the randomMatlab function:

𝜆(7)1 𝜆(6)1 𝜆(5)1 𝜆(4)1 𝜆(3)1 𝜆(2)1−5.6310 −5.2374 −4.6520 −4.3671 −4.3250 −3.7990𝜆(1)1 𝜆(2)2 𝜆(3)3 𝜆(4)4 𝜆(5)5 𝜆(6)6 𝜆(7)7−1.6036 0.1400 4.5734 4.5770 5.9097 6.4780 6.6793
(56)

and

𝑥 = (0.5886, 0.3527, −0.1856, 0.0370,− 0.4738, 0.3565, −0.3765) (57)

satisfying conditions (31) and (32), respectively. From Theo-
rem 9 procedure we obtain the matrix

𝐴 = (((
(

−1.6036 0.7312 −7.0534 0.2249 −3.1132 3.8302 −1.21975.2347 −2.0554−1.1019 3.18550.5884 −2.6848−1.5557 4.74662.1299 3.1628−3.5368 1.1509
)))
)

(58)

with the required spectral properties.
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Table 1

𝑛 𝑒A 𝑒
𝜆

𝑒x

5 −14.8638 −15.7126 −15.5670
10 −13.8739 −14.9518 −15.0035
15 −13.1475 −14.6297 −14.3310
20 −12.7062 −14.7679 −14.8618
25 −12.1855 −14.3766 −14.1447
30 −12.2131 −13.8168 −13.4682
40 −12.0392 −12.9129 −12.2304
50 −11.4974 −11.8000 −11.2788
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Example 5. In Table 2, we construct nonsymmetric arrow
matrices of different orders, from data obtained arbitrarily
by the random function in Matlab, which satisfy conditions
(31) and (32) of Theorem 9. We denote by 𝐴 the constructed
matrix and �̃� is the vector with the extreme eigenvalues of𝐴. We consider the expressions, 𝑒𝜆 = log(‖𝜆 − �̃�‖/‖𝜆‖) and𝑒𝑥 = log(‖𝐴𝑥 − �̃�(𝑛)𝑛 𝑥‖/‖𝜆(𝑛)𝑛 𝑥‖).
Example 6. Consider (2𝑛 − 1)−dimensional vector 𝜆, whose
entries are real numbers chosen randomly in nondecreasing
order and a 𝑛-dimensional vector 𝑥, whose components are
all nonzero. Let 𝐴 be 𝑛 × 𝑛 nonsymmetric arrow matrix
constructed from the entries of 𝜆 in such a way that �̃�(𝑗)1 and�̃�(𝑗)𝑗 are the minimal and maximal eigenvalues of the 𝑗 × 𝑗
leading principal matrix 𝐴𝑗 of 𝐴, 𝑗 = 1, 2, . . . , 𝑛. Let �̃� be the
vector whose entries are numbers �̃�(𝑗)1 and �̃�(𝑗)𝑗 , 𝑗 = 1, 2, . . . , 𝑛,
in nondecreasing order. Figure 2 shows the plot of 𝑒𝜆 and 𝑒𝑥
defined in Example 5, with 𝑛 = 50 and 100 reconstructions of
the matrix 𝐴.
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Table 2

𝑛 𝑒
𝜆

𝑒x

5 −14.9841 −15.0703
10 −14.9891 −15.9881
15 −14.9286 −15.7874
20 −14.8021 −15.9188
25 −14.7349 −15.4561
30 −14.8234 −14.5340
40 −14.6183 −14.2118
50 −14.6217 −14.3512
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