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Many engineering problems require solutions to statistical optimization problems. When the global solution is hard to attain,
engineers or statisticians always use the better solution because we intuitively believe a principle, called better solution principle
(BSP) in this paper, that a better solution to a statistical optimization problem also has better statistical properties of interest.This
principle displays some concordance between optimization and statistics and is expected to widely hold. Since theoretical study on
BSP seems to be neglected by statisticians, this paper presents a primary discussion on BSP within a relatively general framework.
We demonstrate two comparison theorems as the key results of this paper. Their applications to maximum likelihood estimation
are presented. It can be seen that BSP for this problem holds under reasonable conditions; i.e., an estimator with greater likelihood
is better in some statistical sense.

1. Introduction

Experimental design and data analysis in engineering rely on
statistical methods that usually require solutions to optimiza-
tion problems [1]. A notable example is maximum likelihood
estimation, whose objective is to maximize the likelihood
function. In fact, optimization methods are ubiquitous in
almost all statistical areas and play a vital role in modern
statistics. In the meanwhile, statisticians have to face the
common difficulty in the optimization community; i.e., it
is often extremely hard to obtain the global solution to
a nonconvex optimization problem. A number of global
optimization algorithms have been proposed, including the
simulated annealing algorithm [2] and the genetic algorithm
[3]. However, they can attain the global solution only in the
probabilistic sense and often take an unrealistically long time
to approach it in practice [4].Whenhandling large-scale data,
the problem of multiple extrema becomes more serious. In
fact, for such cases, it is also hard to obtain the solution
to a convex optimization problem due to the unaffordable
computational time andmemory [5]. Another difficulty from
the problem of multiple extrema is that we can rarely know
whether a solution at hand is the global solution [6].

When the global solution is hard to attain and/or to verify,
for minimization problems, statisticians always take the solu-
tion whose objective value is as small as possible as the final
solution. In other words, for two solutions, we always use the
better one, where “better” should be understood in the sense
of optimization. This seems reasonable in that the better solu-
tion is more likely to be the global solution, whose statistical
properties of interest usually have beenwell established. From
the statistical perspective, we use the better solution because
we intuitively believe a principle, called better solution prin-
ciple (BSP) in this paper, that a better solution to a statistical
optimization problem also has better statistical properties
of interest. This principle shows some concordance, or
monotonicity, between optimization and statistics, and is
expected to widely hold. Strictly speaking, a better solution
can safely be used only after the correspondingBSP is verified.
However, it is surprising that statisticians seem to neglect this
problem, although we have actually made decisions following
it ever since complex optimization problems appeared in
statistics. To the best of the author’s knowledge, no paper
has formally discussed BSP. For example, in the maximum
likelihood problem, it is not clear to us whether a better solu-
tion with greater likelihood has higher estimation accuracy.
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Fairly recently, Xiong [7] introduced the better-fitting better-
screening rule when discussing variable screening in high-
dimensional linear models. This rule tells us that, under
reasonable conditions, a subset with smaller residual sums
of squares possesses better asymptotic screening properties,
i.e., more likely to include the true submodel asymptotically.
Such a subset is a better solution to the ℓ0-norm constrained
least squares problem. Therefore, the better-fitting better-
screening rule is actually the BSP for this problem.

In this paper we provide some theoretical discussion on
BSP in relatively general statistical optimization problems.
The rest of the paper is organized as follows. We first present
examples where BSP immediately holds in Section 2. Such
examples widely exist in experimental designs. They can help
us understand BSP and the reason why we introduce the
theorems in the following text. In Section 3, we demonstrate
two comparison theorems which state that a better solution is
more likely to have good statistical properties if the optimiza-
tion problem possesses certain separation properties. These
theorems, which look very simple and understandable, are
effective to establishBSP in a general setting. Section 4 applies
these results to maximum likelihood estimation. We can see
that BSP for this problem holds under reasonable conditions.
Section 5 concludes with some discussion.

2. Known Examples Where BSP Holds

Wefirst present exampleswhere BSP immediately holds. Such
examples widely exist in experimental designs. They can help
us understand BSP and the reason why we introduce the
theorems in the following text. We take the D-optimal design
[8] for example. Consider a regression model

𝑦 = 𝑑∑
𝑖=1

𝜃𝑖𝑟𝑖 (x) + 𝜀, (1)

where the control variable x lies in a subset D of R𝑝, 𝑟𝑖’s are
specified functions, 𝜃 = (𝜃1, . . . , 𝜃𝑑)󸀠 is the vector of unknown
parameters, and 𝜀 is the random error. Given the sample size𝑛, denote the experimental design by P = {x1, . . . , x𝑛}. The
information matrix of this design is M(P) = R(P)󸀠R(P),
where

R (P) = (𝑟1 (x1) ⋅ ⋅ ⋅ 𝑟𝑑 (x1)... d
...𝑟1 (x𝑛) ⋅ ⋅ ⋅ 𝑟𝑑 (x𝑛)) . (2)

The D-optimal design minimizes the generalized variance of
the least squares estimate of 𝜃; i.e., it is the solution to the
optimization problem

min
x𝑖∈D

𝜓 (P) = [det (M (P))]−1 , (3)

where det denotes determinant. For two designs P1 and P2
with 𝜓(P1) ⩽ 𝜓(P2), it is clear that P1 leads to a better
estimator whose generalized variance is smaller. Therefore,
if estimation accuracy, which is justified by generalized
variance, is the statistical property of interest, then the BSP
for problem (3) holds.

The objective function in (3) itself is a statistical criterion,
which does not involve any random variables. This is the rea-
son why the BSP for (3) automatically holds. The same con-
clusion can be drawn for other model-based optimal designs
[8] andminimum aberration designs [9]. For criterion-based
space-filling designs (Santner, Williams, and Notz 2003), the
geometric or discrepancy criteria used as objective functions
seem not to have clear statistical interpretation. However,
most of them relate to some desirable statistical properties.
For example, the criteria for constructing the minimax
distance design [10] and uniform design [11] can act as factors
in the upper bounds of some estimation errors [12, 13]. If
such estimation errors are used to evaluate the corresponding
estimators, we can say that BSP holds.

Design of experiments is a pre-sampling work (we do
not consider sequential designs here), and thus the objective
functions used in this area do not involve the random sample.
In statistical inference, we have to deal with objective func-
tions depending on the sample, which makes the problem
of BSP more complicated. From the next section, we study
whether BSP holds for sample-based optimization problems
through introducing new definitions and theorems.

3. The Comparison Theorems

Let (Ω,F, 𝑃) be a probability space. For simplicity, it is
assumed that all sets and maps throughout this paper are
measurable with respect to according 𝜎-fields. For each 𝑛 ∈
N, the sample X𝑛 of size 𝑛 is a map from Ω to a space X𝑛.
Let D denote the decision space that contains all statistical
decisions of interest. Suppose thatweneed tomake inferences
based on the global solution to the optimization problem

min
𝑥∈D

𝜓𝑛 (𝑥,X𝑛) , (4)

where the objective function 𝜓𝑛 is a map from D × X𝑛 to
R. In general, the problem in (4) is proposed because its
solution can asymptotically lie in a desirable subset A of D
that contains all good decisions. This property can be viewed
as a consistency property of the global solution.

Consider the situations where the global solution to (4)
is difficult to obtain. Suppose that there are 𝐾 candidate
solutions, 𝜉(1)𝑛 , . . . , 𝜉(𝐾)𝑛 . In practice, we always use 𝜉∗𝑛 , which
denotes the one that takes the smallest value of 𝜓𝑛(⋅,X𝑛)
among them, as the final decision. For each 𝜉(𝑘)𝑛 , 𝜉∗𝑛 is a better
solution since the inequality𝜓𝑛 (𝜉∗𝑛 ,X𝑛) ⩽ 𝜓𝑛 (𝜉(𝑘)𝑛 ,X𝑛) (5)

always holds. This section discusses whether BSP holds, i.e.,
whether such a better solution is more likely to lie inA.

Let B be another subset of D, which contains relatively
bad decisions compared toA.

Definition 1. We say that {𝜓𝑛} strongly separatesA fromB or{𝜓𝑛} has the strong separation property with respect ofA and
B, if as 𝑛 󳨀→ ∞,𝑃(sup

𝑥∈A

𝜓𝑛 (𝑥,X𝑛) < inf
𝑦∈B

𝜓𝑛 (𝑦,X𝑛)) 󳨀→ 1. (6)
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We say that {𝜓𝑛} weakly separates A from B or {𝜓𝑛} has the
weak separation property with respect of A and B, if for all𝑥 ∈ A, 𝑦 ∈ B,

lim sup
𝑛󳨀→∞

[𝜓𝑛 (𝑥,X𝑛) − 𝜓𝑛 (𝑦,X𝑛)] < 0 (a.s.) , (7)

where “a.s.” denotes “almost surely.”

The strong separation property needs not to imply its
weak analogue. It is generally more difficult to verify and can
lead to stronger results.

Remark 2. For convenience in asymptotic analysis, we often
consider a scaled objective function. It should be pointed out
that (6) holds if

𝑃( sup𝑥∈A 𝜓𝑛 (𝑥,X𝑛)𝑎𝑛 < inf𝑦∈B 𝜓𝑛 (𝑦,X𝑛)𝑎𝑛 ) 󳨀→ 1 (8)

for arbitrary sequence of positive numbers {𝑎𝑛} and that (7)
holds if

lim sup
𝑛󳨀→∞

𝜓𝑛 (𝑥,X𝑛) − 𝜓𝑛 (𝑦,X𝑛)𝑎𝑛 < 0 (a.s.) (9)

for a sequence of positive numbers {𝑎𝑛} with 𝑎−1𝑛 = 𝑂(1).
Roughly speaking, the strong separation property

requires that the level set corresponding to smaller objective
values is asymptotically identical to the set of good decisions.
It shows the consistency of the objective function to the
statistical properties of interest. We can immediately prove
the following result that this property implies BSP.

Theorem 3 (strong comparison theorem). Suppose that {𝜓𝑛}
strongly separates A from B. For all 𝑛 ∈ N, 𝜉𝑛 and 𝜂𝑛 are
statistics valued inD satisfying𝑃(𝜉𝑛 ∈ A∪B, 𝜂𝑛 ∈ A∪B) 󳨀→1 as 𝑛 󳨀→ ∞. If 𝜓𝑛(𝜉𝑛,X𝑛) ⩽ 𝜓𝑛(𝜂𝑛,X𝑛) for all 𝑛, then

lim inf
𝑛󳨀→∞

[𝑃 (𝜉𝑛 ∈ A) − 𝑃 (𝜂𝑛 ∈ A)] ⩾ 0. (10)

Proof. For 𝜔 ∈ {𝜂𝑛 ∈ A, 𝜉𝑛 ∈ B} ⊂ Ω, if 𝜔 ∈ {sup𝑥∈A 𝜓𝑛(𝑥,
X𝑛) < inf𝑦∈B 𝜓𝑛(𝑦,X𝑛)} ∩ {𝜉𝑛 ∈ A ∪B, 𝜂𝑛 ∈ A ∪B}, then𝜓𝑛 (𝜂𝑛 (X𝑛 (𝜔)) ,X𝑛 (𝜔)) ⩽ sup

𝑥∈A

𝜓𝑛 (𝑥,X𝑛 (𝜔))< inf
𝑦∈B

𝜓𝑛 (𝑦,X𝑛 (𝜔)) ⩽ 𝜓𝑛 (𝜉𝑛 (X𝑛 (𝜔) ,X𝑛 (𝜔)) , (11)

which leads to a contradiction. Therefore, 𝜔 ∉ {sup𝑥∈A 𝜓𝑛(𝑥,
X𝑛) < inf𝑦∈B 𝜓𝑛(𝑦,X𝑛)} ∩ {𝜉𝑛 ∈ A ∪B, 𝜂𝑛 ∈ A ∪B}, which
implies 𝑃(𝜂𝑛 ∈ A, 𝜉𝑛 ∈ B) 󳨀→ 0. We have 𝑃(𝜂𝑛 ∈ A) =𝑃(𝜂𝑛 ∈ A, 𝜉𝑛 ∈ B) + 𝑃(𝜂𝑛 ∈ A, 𝜉𝑛 ∈ A) + 𝑃(𝜂𝑛 ∈ A, 𝜉𝑛 ∉
A ∪ B) = 𝑃(𝜉𝑛 ∈ A) − 𝑃(𝜉𝑛 ∈ A, 𝜂𝑛 ∈ B) + 𝑜(1). This
completes the proof.

Theorem 3 indicates that, for two candidate solutions 𝜉𝑛
and 𝜂𝑛 to the statistical optimization problem (4), the better
one is asymptotically more likely to be a good decision, and
thus the BSP holds. Recall that, for a decision 𝜉𝑛, the property

that 𝑃(𝜉𝑛 ∈ A) 󳨀→ 1 can be viewed as a consistency property
of 𝜉𝑛.The following theorem shows that the strong separation
property of {𝜓𝑛} is often stronger than the consistency of the
minimum of 𝜓𝑛.
Theorem 4. Suppose that {𝜓𝑛} strongly separatesA fromB. If𝜉𝑛 = argmin𝑥∈D𝜓𝑛(𝑥,X𝑛) exists and 𝑃(𝜉𝑛 ∈ A ∪B) 󳨀→ 1 as𝑛 󳨀→ ∞, then

lim
𝑛󳨀→∞

𝑃 (𝜉𝑛 ∈ A) 󳨀→ 1. (12)

Proof. This theorem follows from {sup𝑥∈A 𝜓𝑛(𝑥,X𝑛) <
inf𝑦∈B 𝜓𝑛(𝑦,X𝑛)} ∩ {𝜉𝑛 ∈ A ∪B} ⊂ {𝜉𝑛 ∈ A}.

We next discuss BSP with the weak separation property.
This weaker property cannot directly imply BSP, and more
conditions are needed.

Theorem 5 (weak comparison theorem). Suppose that {𝜓𝑛}
weakly separates A from B. Denote the set of probability one
where (7) holds by 𝐸(𝑥, 𝑦) and write 𝐸 = ∩𝑥∈A,𝑦∈B𝐸(𝑥, 𝑦).
For all 𝑛 ∈ N, 𝜉𝑛 and 𝜂𝑛 are statistics valued in D satisfying𝑃(𝜉𝑛 ∈ A ∪B, 𝜂𝑛 ∈ A ∪B) 󳨀→ 1 as 𝑛 󳨀→ ∞. If 𝜓𝑛(𝜉𝑛,X𝑛) ⩽𝜓𝑛(𝜂𝑛,X𝑛) for all 𝑛, then

lim inf
𝑛󳨀→∞

[𝑃 (𝜉𝑛 ∈ A) − 𝑃 (𝜂𝑛 ∈ A)] ⩾ −𝑃 (Ω\𝐸) . (13)

Proof. For 𝜔 ∈ {𝜂𝑛 ∈ A, 𝜉𝑛 ∈ B} ⊂ Ω, if 𝜔 ∈ 𝐸 ∩ {𝜉𝑛 ∈
A ∪B, 𝜂𝑛 ∈ A ∪B}, then

lim sup
𝑛󳨀→∞

[𝜓𝑛 (𝜂𝑛 (X𝑛 (𝜔)) ,X𝑛 (𝜔))− 𝜓𝑛 (𝜉𝑛 (X𝑛 (𝜔)) ,X𝑛 (𝜔))] < 0. (14)

This is a contradiction. Therefore, 𝜔 ∉ 𝐸 ∩ {𝜉𝑛 ∈ A ∪B, 𝜂𝑛 ∈
A ∪B} for sufficiently large 𝑛, which implies 𝑃(𝜂𝑛 ∈ A, 𝜉𝑛 ∈
B) ⩽ 𝑃(Ω\𝐸)+1−𝑃(𝜉𝑛 ∈ A∪B, 𝜂𝑛 ∈ A∪B) for sufficiently
large 𝑛. It follows that𝑃(𝜂𝑛 ∈ A) = 𝑃(𝜂𝑛 ∈ A, 𝜉𝑛 ∈ B)+𝑃(𝜂𝑛 ∈
A, 𝜉𝑛 ∈ A) + 𝑃(𝜂𝑛 ∈ A, 𝜉𝑛 ∉ A ∪B) ⩽ 𝑃(𝜉𝑛 ∈ A) − 𝑃(𝜉𝑛 ∈
A, 𝜂𝑛 ∈ B) +𝑃(𝜂𝑛 ∈ A, 𝜉𝑛 ∈ B) + 1−𝑃(𝜉𝑛 ∈ A∪B) ⩽ 𝑃(𝜉𝑛 ∈
A)+𝑃(Ω\𝐸)+1−𝑃(𝜉𝑛 ∈ A∪B, 𝜂𝑛 ∈ A∪B)+1−𝑃(𝜉𝑛 ∈ A∪B)
for sufficiently large 𝑛, which completes the proof.

If 𝑃(Ω\𝐸) in (13) equals zero, then BSP holds. Neverthe-
less, it is impossible to verify this condition in practice. A way
for avoiding this problem is to consider countable subsets,
and we immediately obtain the following theorem.

Theorem6. Suppose that {𝜓𝑛}weakly separatesA fromB. For𝑛 ∈ N, 𝜉𝑛 and 𝜂𝑛 are statistics valued in a countable subset of
D satisfying 𝑃(𝜉𝑛 ∈ A ∪B, 𝜂𝑛 ∈ A ∪B) 󳨀→ 1 as 𝑛 󳨀→ ∞. If𝜓𝑛(𝜉𝑛,X𝑛) ⩽ 𝜓𝑛(𝜂𝑛,X𝑛) for all 𝑛, then

lim inf
𝑛󳨀→∞

[𝑃 (𝜉𝑛 ∈ A) − 𝑃 (𝜂𝑛 ∈ A)] ⩾ 0. (15)

Remark 7. For many cases, D is a separable set. It is usually
enough to consider the decisions in its countable and dense
subset in practice. For example, to estimate a scalar parame-
ter, we can always consider the estimators valued in the set of
all rational numbers, which is countable and dense in R. In
this sense, BSP follows from the weak separation property of{𝜓𝑛}.
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In many problems like high-dimensional variable selec-
tion, the decision spaceDmay depend on 𝑛. The definitions
of the separation properties and the comparison theorems
for such cases can be found in Xiong [14]. They have slightly
different notation since sequences of decisions are involved,
whereas the proofs are almost the same.

In the rest of this paper, we omit the sample X𝑛 in𝜓𝑛(⋅,X𝑛) and write 𝜓𝑛(⋅) for emphasizing the decision vari-
able.

4. Greater Likelihood Principle

4.1. Separation Properties of the Likelihood Function. Wehave
shown in Section 3 that the separation properties of an
objective function can imply the corresponding BSP. Despite
simplicity, these results are effective to establish BSP since
many objective functions indeed possess these properties
under reasonable conditions. This section discusses the prob-
lem associated with maximum likelihood estimation.

Let the data 𝑋1, . . . , 𝑋𝑛 be i.i.d. (independently and
identically distributed) from a probability density function𝑓(⋅, 𝜃) with respect to a 𝜎-finite measure ] on R𝑝, where 𝜃
lies in the parameter space Θ ⊂ R𝑞. The likelihood function
is 𝑙𝑛 (𝜃) = 𝑛∏

𝑖=1

𝑓 (𝑋𝑖, 𝜃) , (16)

and the maximum likelihood estimator (MLE) is the solution
to the optimization problem

max
𝜃∈C(Θ)

𝑙𝑛 (𝜃) , (17)

where C(Θ) denotes the closure of Θ. For convenience, we
write (17) as the problem of minimizing the negative log-
likelihood

min
𝜃∈C(Θ)

[−log (𝑙𝑛 (𝜃))] . (18)

The MLE is commonly used because of its well-known
high asymptotic efficiency. However, when the negative log-
likelihood has multiple local minima, the MLE is difficult to
compute [6].

When estimation accuracy is concerned, it is common
to use the probability of lying in a neighborhood of the true
parameter to evaluate an estimator. For a consistent estimator,
this probability converges to one as the sample size goes
to infinity. Following this way, we define good decisions in
discussing the BSP for (18) and show that, for two estimators,
the better one with greater likelihood has larger probability
of lying in a sufficiently small neighborhood of 𝜃0 under
regularity conditions, where 𝜃0 denotes the true parameter.
This result, called greater likelihood principle in this paper, is
a special case of BSP and can be viewed as a supplementary
of the maximum likelihood principle.

By the results in Section 3, we can establish BSP via
the separation properties of the objective function. Some
assumptions and lemmas are needed.

Denote𝑠 (𝜃, 𝜃0) = −∫ log (𝑓 (𝑥, 𝜃)) 𝑓 (𝑥, 𝜃0) 𝑑] (𝑥) . (19)

Assumption 8. For all 𝜃1, 𝜃2 ∈ Θ, 𝑓(⋅, 𝜃1) = 𝑓(⋅, 𝜃2) (a.s.)
implies 𝜃1 = 𝜃2.
Assumption 9. For all 𝜃 ∈ Θ, ∫ |log(𝑓(𝑥, 𝜃))|𝑓(𝑥, 𝜃)𝑑](𝑥) <∞.

Assumption 10. For all 𝜃0 ∈ Θ, 𝑠(⋅, 𝜃0) is continuous onΘ and
lim inf𝑥󳨀→𝑏 𝑠(𝑥, 𝜃0) > 𝑠(𝜃0, 𝜃0) for all 𝑏 ∈ C∗(Θ)\Θ, where
C∗(Θ) = C(Θ) if Θ is bounded and C∗(Θ) = C(Θ) ∪ {∞}
otherwise.

Lemma 11. Let ℎ be a continuous function defined in 𝐷 ⊂
R𝑞. Suppose that ℎ has a unique minimum 𝑥0; i.e., for all𝑥 ̸= 𝑥0, ℎ(𝑥) > ℎ(𝑥0). Furthermore, for all 𝑏 ∈ C∗(𝐷)\𝐷,
lim inf𝑥󳨀→𝑏 ℎ(𝑥) > ℎ(𝑥0). Then for all 𝜖 > 0, there exists 𝛿 > 0
such that {𝑥 ∈ 𝐷 : ℎ(𝑥) − ℎ(𝑥0) ⩽ 𝛿} ⊂ 𝐵(𝑥0, 𝜖), where𝐵(𝑥0, 𝜖) = {𝑥 ∈ R𝑞 : ‖𝑥 − 𝑥0‖ ⩽ 𝜖}.
Proof. For any sequence of positive numbers {𝑎𝑛}with 𝑎𝑛 󳨀→0 as 𝑛 󳨀→ ∞, assume that there exist 𝑥𝑛 ∈ 𝐷 and 𝜖0 > 0 such
that ℎ(𝑥𝑛)−ℎ(𝑥0) ⩽ 𝑎𝑛 but |𝑥𝑛−𝑥0| > 𝜖0.Therefore ℎ(𝑥𝑛) 󳨀→ℎ(𝑥0). Since any limit point of {𝑥𝑛} in C∗(𝐷) cannot be 𝑥0,
this is in contradiction to the condition that 𝑥0 is the unique
minimum of ℎ.
Lemma 12. If Assumptions 8 and 9 hold, then for all 𝜃0 ∈ Θ,𝑠(⋅, 𝜃0) in (19), as a function defined onΘ, attains its minimum
uniquely at 𝜃0.

The above lemma and its proof can be found in many
places; see, e.g., Wald [15] and Van der Vaart [16].

Under Assumptions 8–10, by Lemmas 11 and 12, for all𝜖 > 0, there exists 𝛿(𝜖) > 0 such that {𝜃 ∈ Θ : 𝑠(𝜃, 𝜃0) −𝑠(𝜃0, 𝜃0) ⩽ 𝛿(𝜖)} ⊂ 𝐵(𝜃0, 𝜖). Denote 𝐵𝑠(𝜃0, 𝜖) = {𝜃 ∈ Θ :𝑠(𝜃, 𝜃0) − 𝑠(𝜃0, 𝜃0) ⩽ 𝛿(𝜖)} and consider

A
𝜖 = 𝐵𝑠 (𝜃0, 𝜖) ,

B
𝜖 = Θ\𝐵𝑠 (𝜃0, 𝜖) . (20)

Note that, for all 𝜃 ∈ Θ,−log (𝑙𝑛 (𝜃))𝑛= − log (𝑓 (𝑋1, 𝜃)) + ⋅ ⋅ ⋅ + log (𝑓 (𝑋𝑛, 𝜃))𝑛󳨀→ 𝑠 (𝜃, 𝜃0) (a.s.) .
(21)

We can immediately obtain the following theorem by
Definition 1 and Remark 2.

Theorem 13. Under Assumptions 8–10, for all 𝜖 > 0, {−log(𝑙𝑛)}
weakly separates A𝜖 fromB𝜖 in (20).

Remark 14. The conditions above are weaker than those for
the consistency of maximum likelihood estimators in Wald
[15]. Furthermore, our results in this section neither rely on
the existence of an MLE nor require that Θ is an open or
closed subset.
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Although the weak separation property is sufficient for
BSP in practical use by Remark 7, the strong separation
property is still of theoretical interest. We next discuss it
for the likelihood function. Some stronger conditions are
needed.

Assumption 15. The family {𝑓(⋅, 𝜃)}𝜃∈Θ has a common sup-
port set S = {𝑥 ∈ R𝑝 : 0 < 𝑓(𝑥, 𝜃) < ∞}. For all 𝑥 ∈ S,𝑓(𝑥, ⋅) is continuous on Θ.
Assumption 16. For any 𝜃 ∈ Θ and any compact subset 𝐾 ofΘ, ∫ sup

𝜙∈𝐾

󵄨󵄨󵄨󵄨log (𝑓 (𝑥, 𝜙))󵄨󵄨󵄨󵄨 𝑓 (𝑥, 𝜃) 𝑑] (𝑥) < ∞. (22)

Take A𝜖 as in (20). Instead of B𝜖 in (20), take B𝜖∗ as any
compact subset of Θ\𝐵𝑠(𝜃0, 𝜖).
Theorem 17. Under Assumptions 8, 10, 15, and 16, for all 𝜖 > 0,{−log(𝑙𝑛)} strongly separates A𝜖 from B𝜖∗.

Proof. Consider the Banach space of all continuous
function on 𝐵𝑠(𝜃0, 𝜖), which is separable since 𝐵(𝜃0,𝜖) is a compact subset of R𝑞. By Assumption 15, −log(𝑓(𝑋1,𝜃)), . . . , −log(𝑓(𝑋𝑛, 𝜃)) are i.i.d. random variables valued in
this Banach space. By Assumption 16 and the law of large
numbers in Banach spaces (see, e.g., Corollary 7.10 in [17]),

sup
𝜃∈A𝜖

󵄨󵄨󵄨󵄨[−log (𝑙𝑛 (𝜃))] − 𝑠 (𝜃, 𝜃0)󵄨󵄨󵄨󵄨 󳨀→ 0 (a.s.) , (23)

which implies

sup
𝜃∈A𝜖

[−log (𝑙𝑛 (𝜃))] 󳨀→ sup
𝜃∈A𝜖

𝑠 (𝜃, 𝜃0) (a.s.) . (24)

Similarly, we have

inf
𝜃∈B𝜖
∗

[−log (𝑙𝑛 (𝜃))] 󳨀→ inf
𝜃∈B𝜖
∗

𝑠 (𝜃, 𝜃0) (a.s.) . (25)

Since B𝜖∗ is compact, there exists 𝛿1 > 0 such that 𝑠(𝜃, 𝜃0) ⩾𝑠(𝜃0, 𝜃0) + 𝛿 + 𝛿1 for all 𝜃 ∈ B𝜖∗. Consequently, by (24) and
(25),

𝑃(sup
𝜃∈A𝜖

[−log (𝑙𝑛 (𝜃))] < inf
𝜃∈B𝜖
∗

[−log (𝑙𝑛 (𝜃))]) 󳨀→ 1, (26)

which completes the proof.

Remark 18. If Assumptions 15 and 16 hold, it can be proved
that 𝑠(⋅, 𝜃0) is continuous on Θ, which is assumed in
Assumption 10.

The strong separation property of the objective function
provides a more strict guarantee of BSP than its weak ana-
logue. However, at a price of this strictness, more restrictive
conditions are required for verifying the strong separation
property. ByTheorem 3, for comparing two estimators 𝜉𝑛 and𝜂𝑛 via the strong separation property stated inTheorem 17, we
require 𝑃(𝜉𝑛 ∈ A𝜖 ∪B𝜖∗) 󳨀→ 1 and 𝑃(𝜂𝑛 ∈ A𝜖 ∪B𝜖∗) 󳨀→ 1.

4.2. A Counter Example. A prerequisite of BSP is that the
global solution has desirable statistical properties. Based on
examples of inconsistentMLEs, we can find counter examples
of the greater likelihood principle. The example discussed
here is taken from Chen and Wu [18].

Let𝑋1, . . . , 𝑋𝑛 be i.i.d. from the following distribution:

𝑃 (𝑋1 = 1) = {{{𝜃 if 𝜃 is a rational number,1 − 𝜃 otherwise,𝑃 (𝑋1 = 0) = 1 − 𝑃 (𝑋1 = 1) , (27)

where 𝜃 ∈ [0, 1] is the unknown parameter. It is not hard to
show that the MLE of 𝜃 is the sample mean 𝑋. However, if
the true parameter 𝜃0 is an irrational number, as 𝑛 󳨀→ ∞,𝑋 󳨀→ 1 − 𝜃0 (a.s.), which cannot be 𝜃0. Consider another
estimator 𝜃 = (1 − 𝑋) 𝐼 (𝑈 ⩽ 12) + 𝑋𝐼(𝑈 > 12) , (28)

where 𝑈, independent of the sample, is drawn from the
uniform distribution on [0, 1] and 𝐼 is the indicator function.
We can show that if 𝜃0 is an irrational number, 𝜃 has larger
probability of lying in a sufficiently small neighborhood of𝜃0 than 𝑋 asymptotically, whereas it always produces smaller
value of the likelihood function.

4.3. A Simulation Study. In this subsection we conduct a
small simulation study to verify the greater likelihood princi-
ple in finite-sample cases. Consider a location family with the
density function 𝑓 (𝑥, 𝜃) = 𝑓0 (𝑥 − 𝜃) , (29)

where 𝜃 ∈ R is the unknown parameter that we want to
estimate based on the i.i.d. observations 𝑋1, . . . , 𝑋𝑛. Three
types of 𝑓0 are used: the standard normal distribution, 𝑡
distribution with 5 degrees of freedom, and the Cauchy
distribution with density 𝑓0(𝑥) = [𝜋(𝑥2 + 1)]−1. It is known
that the likelihood functions for the latter two cases oftenhave
multiple maximum. We compare three simple methods, the
sample median, the trimmed mean removing 50% extreme
values, and the method that selects the better one of the
two estimators with greater likelihood as the final estimator.
Given the true parameter 𝜃0 = 0, we repeat 10,000 times to
compute mean squares errors (MSEs) of the three estimators
for various sample sizes, and the results are displayed in
Table 1. It can be seen that the results follow the greater
likelihood principle well: the better solution always yields the
smallest MSEs among the three estimators.

5. Discussion

When the global solution to a statistical optimization prob-
lem is difficult to obtain, BSP theoretically supports to the
method of using the solution whose objective value is as
small as possible (for minimization problems). Interestingly,
it can be studied within a simple framework based on several
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Table 1: MSE comparisons in Section 4.3.𝑛
10 15 20 25 30 35 40

Normal
median 0.1361 0.1019 0.0728 0.0623 0.0502 0.0447 0.0373

trimmed mean 0.1113 0.0798 0.0588 0.0472 0.0393 0.0343 0.0291
better 0.1093 0.0776 0.0574 0.0459 0.0382 0.0333 0.0284

𝑡5 median 0.1588 0.1159 0.0824 0.0701 0.0568 0.0508 0.0392
trimmed mean 0.1393 0.0961 0.0698 0.0559 0.0465 0.0409 0.0316

better 0.1383 0.0951 0.0694 0.0555 0.0463 0.0405 0.0312

Cauchy
median 0.3360 0.2056 0.1427 0.1109 0.0905 0.0804 0.0061

trimmed mean 0.4929 0.2236 0.1628 0.1221 0.1027 0.0827 0.0224
better 0.3260 0.1857 0.1333 0.1001 0.0845 0.0720 0.0061

obvious but effective comparison theorems. These theorems
tell us that a better solution with smaller objective value is
more likely to be a good decision if the objective function
has the separation property.Therefore, it suffices to prove the
separation property of the objective function for verifying
BSP. Following this way, we have discussed BSP for the
maximum likelihood problem. Further applications of our
results can be found in Xiong [14].

Recently, Big Data begins to pose significant challenges
to statistics [19]. For analyzing Big Data, not only statistical
methodology but also statistical theory should be considered
based on computation. BSP can be viewed as a computational
ability-based statistical theory, and we expect that BSP and
related methodologies will be paid more attention to in the
future.

Data Availability

The matlab codes are used to generate simulated data and
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