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Assessing the demand hazards of structures is requested in the framework of performance-based earthquake engineering. An
efficient method for estimating the seismic risk of structures is proposed in this paper. The relationship between multiple limit
capacities and corresponding response parameters is denotedbyusing a generalizedmultidimensional limit state equation.The limit
states of different components are described as random and convex mixed variables.The seismic responses of different components
are considered dependent and follow a multidimensional lognormal distribution. The mathematical formula of multidimensional
demand hazards of structures is then derived through combining the seismic fragility function and the seismic hazard curve. The
proposed method is used to perform the demand hazard analysis and the parameter sensitivity analysis of a multispan continuous
concrete girder bridge, selecting column ductility and bearing displacement as the two-dimensional seismic response parameters
obtained by Incremental Dynamic Analysis. The results demonstrate that the coefficient of variation and correlation coefficientN,
which are involved in the limit state equation, have an impact on the evaluation of the demand hazards.

1. Introduction

Earthquake disasters frequently occur in the whole world
bringing about great damage to the safety of lives and
properties of people. Therefore, evaluating the seismic risk of
infrastructure and transportation networks has been attract-
ing more and more attention. Risk assessments are often
based on probabilistic frameworks [1], due to the existence
of uncertainties of groundmotion and structural parameters.
In this case, a Probabilistic Seismic DemandAnalysis (PSDA)
is usually adopted to evaluate the demand risk of structures.
The principal result of traditional PSDA is the demand hazard
curve for a given structure, coupling Probability Seismic
Hazard Analysis (PSHA) and nonlinear response analysis
[2, 3]. Cornell and Krawinker [4] indicated that the Pacific
Earthquake Engineering Research (PEER) Center treated the

traditional PSDA as the cornerstone of earthquake resisting
behavior evaluation.

The traditional PSDA for RC structures has been inves-
tigated for a couple of years, such as Cornell [5], Bazzurro
[6], Shome [7], Bazzurro and Cornell [8], Jalayer and Cornell
[9], Vamvatsikos and Cornell [10], Mackie and Stojadinović
[11], Rathje and Saygili [12], and Eads et al. [13]. A number of
scholars have discussed some improved approaches to assess
structural demand hazards. In Baker and Cornell [14] the
formulation of a drift demand hazard curve was modified
by using a vector intensity measure (IM). In Tothong and
Cornell [15] an improvement of structural demand hazard
curves might be provided via the modified modal pushover
analysis and the Mori method. In Tothong and Luco [16]
and Tothong [17] probability demand hazard analysis of the
drift demand response could be more conservative through
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advanced ground motion intensity measures, attenuation
relationships, and near-fault effects. In Lv et al. [18] the drift
demand hazard curves for two example RC frame structures
could not be underestimated, when the uncertainties of
structural parameters were considered and an improved
cloud method was applied. In addition, there are existing
contributions on peak floor accelerations of nonstructural
components (e.g., piping systems, infilled walls, and partition
walls), such as Miranda and Taghavi [19], Wieser [20],
Soroushian et al. [21], and Tian et al. [22].

There are also various studies on the demand risk
assessment of bridges. In Mander [23] the risk modeling of
maximum drift accounting for uncertainty was applied to
seismic financial risk assessment of bridges by adopting a
suitable suite of ground motions and performing IDA. In
Bradley et al. [24] an improved seismic hazard model was
calibrated according to these “exact” hazard data for major
centers inNewZealand, and then the newhazardmodel com-
puted by a semianalytical method would attain more accurate
risk assessment results. In Bradley et al. [25] the demand
hazard curves of different components (e.g., pile, abutment,
and abutment-deck) were obtained through advanced soil
and structural constitutive models and then were used to
perform probabilistic seismic performance analysis and loss
assessment. In Zen et al. [26] the hazard curve of bridge
displacement could be improved by using damping devices.

Corresponding contributions on the demand responses
of bridge components have been found for several years.
In Wilson and Tan [27] a two-part analytical model was
developed to assist in seismic response analysis of a highway
bridge abutment system, which included the transverse and
vertical stiffness characteristics. In Mackie and Stojadinović
[28] a probability seismic demandmodel was used to develop
the relationship between spectral displacement and bridge
column curvature ductility. In Gardoni et al. [29] the defor-
mation and shear capacities of a single-column bridge bent
were subjected to cyclic loads based on a large body of
existing experimental observations, and then the univariate
and bivariate probabilistic models for the demand responses
could be constructed by using a Bayesian framework. In
Nielson [30] the force-deformation hysteretic relationships of
bridge column and steel bearing were obtained by using non-
linear dynamic analysis, and the respective relationship was
applied to assess the seismic risk ofMSSS steel girder bridges.

The aforementioned studies focus on the assessment
of structural seismic risk and the components’ contribu-
tions; there is almost the only one Engineering Demand
Parameter (EDP) and correspondingly only one limit state.
Some literatures [32, 33] emphasized that the limit capacities
should be considered as random variables and the seismic
performance of structures should be evaluated by using
multiple EngineeringDemand Parameters (EDPs). Cimellaro
and Reinhorn [34] also revealed that the relationship between
EDPs and limit capacities should be defined by using a
generalized multidimensional limit state (GMLS) equation.
However, the definition of limit state based on a combination
of probability and convex set mixed models has not been
explored in the existing paper. Since the uncertainties in EDPs
of different components originated from the same source of

uncertainties,multiple response parameters should be treated
as dependent quantities. The dependencies between multiple
response parameters in the framework of PSDA, as well
as the effect of the GMLS, have not been reported so far.
The multiple demand hazard function could be constructed
by the mathematical “surface,” when the multiple EDPs are
simultaneously taken into account.

In order to evaluate the multidimensional demand haz-
ards of structures (MDH), the proposed method is applied
to amultispan continuous (MSC) concrete girder bridge.The
nonlinear dynamicmodel of the example bridge is established
through the OpenSees platform. The column ductility and
bearing displacement are selected as two-dimensional EDPs
and can be calculated by utilizing Incremental Dynamic
Analysis (IDA). The relationship between the two EDPs
and their associated limit capacities are defined by a two-
dimensional limit state equation (TLS). The two limit capac-
ities are regarded as a probability-convex hybrid model
(PCHM).The two dependent EDPs follow a two-dimensional
lognormal distribution (TLD). Then the formulation of
two-dimensional demand hazard (TDH) can be derived by
coupling the TLD and the ground motion hazard curve. The
sensitivities of the developedmethod for evaluating theMDH
are discussed when the coefficient of variation (CV) and cor-
relation coefficient N are considered in the GMLS equation.

2. Probabilistic Demand Hazard
Assessment (PDHA)

In the framework of traditional PDHA, the mean annual
frequency 𝜆 of exceeding a given limit level can be obtained
by convolving the seismic fragility curve of the structure and
the seismic hazard curve of the designated site. The term 𝜆 is
calculated using the following integral form:

𝜆𝜓 (𝜑) = ∫𝑃 [𝜓 > 𝜑 | 𝑆𝑎 = 𝑖𝑚] 𝑑𝐻𝑆𝑎 (𝑖𝑚)
= ∫𝐹𝜓 (𝑖𝑚) 𝑑𝐻𝑆𝑎 (𝑖𝑚)
= ∫𝐹𝜓 (𝑖𝑚) 

𝑑𝐻𝑆𝑎 (𝑖𝑚)𝑑 (𝑖𝑚)
 |𝑑 (𝑖𝑚)| ,

(1)

where 𝜆𝜓(𝜑) is the mean annual frequency of the following
example bridge; 𝐹𝜓 is the seismic fragility of the bridge;𝐻𝑆𝑎(𝑖𝑚) is the seismic hazard curve at the site calculated
by the Probability Seismic Hazard Analysis (PSHA). In this
section, the seismic fragility is defined as a conditional
probability that column ductility 𝜓 exceeds a limit capacity 𝜑,
given a specific spectral acceleration 𝑆𝑎.The column ductility𝜓 is obtained by using the following expression:

𝜓 = 𝜓𝑚𝜓𝑦 , (2)

where 𝜓 is the curvature ductility ratio of bridge column; 𝜓𝑚
is the maximum curvature under the seismic loading; 𝜓𝑦 is
yield curvature.
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Figure 1: The framework of traditional PDHA.

In the view of Clough and Penzien [35], the peak EDPs
(e.g., forces and deformation) follow a lognormal distribu-
tion, which is employed to develop positive randomvariables.
Likewise, Cimellaro et al. [36] verified the assumption by
comparing different PDF (normal, Gumbel, and lognormal)
for different structural configurations and showed that the
lognormal distribution is the best fit to the distribution of
an EDP. Hence, the maximum column ductility 𝜓 can be
assumed to be lognormally distributed:

𝑓 (𝜓 | 𝑖𝑚) = 1√2𝜋𝜓𝜎𝜓|𝑖𝑚
∗ exp{− 12𝜎2𝜓|𝑖𝑚 ∗ (ln𝜓 − 𝜇𝜓|𝑖𝑚)

2} ,
(3)

where 𝜇𝜓|𝑖𝑚 and 𝜎𝜓|𝑖𝑚 are the log-mean and the log-standard
deviation values. The mean annual frequency can be com-
puted by using the Monte Carlo Simulation (MCS).

𝜆𝜓 (𝜑) = ∫𝑃 [𝜓 > 𝜑 | 𝑆𝑎 = 𝑖𝑚] 𝑑𝐻𝑆𝑎 (𝑖𝑚)
= ∞∑
𝑗=1

𝑃 [𝜓 > 𝜑 | 𝑖𝑚𝑗] ⋅

𝑑𝐻𝑆𝑎 (𝑖𝑚𝑗)𝑑 (𝑖𝑚𝑗)

 ⋅ Δ𝑖𝑚
(4)

= ∞∑
𝑗=1

1𝑁𝑀𝐶𝑆 𝐼 [𝜓𝑖𝑚𝑗 > 𝜑𝑖] ⋅

𝑑𝐻𝑆𝑎 (𝑖𝑚𝑗)𝑑 (𝑖𝑚𝑗)

 ⋅ Δ𝑖𝑚, (5)

where 𝜑𝑖 is the deterministic limit capacity of column duc-
tility under the ith performance level; 𝜓𝑖𝑚𝑗 is the maximum

column ductility subjected to a given Sa for the jth Monte
Carlo trial; 𝑁𝑀𝐶𝑆 is the total number of Monte Carlo trials;
I[∙] is the indicator function which equals 1 when [∙] is true
or equals 0 if [∙] is false. In this paper, the number of Monte
Carlo trials of𝑁𝑀𝐶𝑆 = 105 is considered.

Under the assumption of smaller probabilities of
exceedance for the site [37], a logarithmic linear relation
between the spectral acceleration at the first period of the
bridge and𝐻𝑆𝑎(𝑖𝑚) can be described as follows:

𝐻𝑆𝑎 (𝑖𝑚) = 𝑃 [𝑆𝑎 > 𝑖𝑚] = 𝑘0 ⋅ (𝑖𝑚)−𝑘 , (6)

where 𝑘0 is constant and is a dependent of the seismicity of
an individual site and k is the logarithmic slope of the seismic
hazard curve (SHC) after a local fitting.

The result of traditional PDHA is a demand hazard curve
(DHC). If the occurrence of earthquakes in time is assumed to
be a Poisson process, the probabilistic model for the column
ductility hazard curve can be computed as follows:

𝑃1D [𝑖𝑛 𝑡 𝑦𝑒𝑎𝑟𝑠] = 1 − exp {−𝜆 (𝜑) 𝑡} (7)

and the process of (1) is illustrated graphically in Figure 1.

3. Probabilistic Multidimensional Demand
Hazard Assessment (PMDHA)

This study extends the definition of PDHA to be multidi-
mensional and uses𝜆M-D for PMDHA.Three components are
needed to calculate 𝜆M-D: the TLD, which realizes the depen-
dencies between column ductility and bearing displacement,
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failure domain of the TLS, which gives the relationship
between the EDPs and limit capacities defined by PCHM, and
the seismic hazard curve, which describes the mean annual
frequency of exceeding groundmotion intensities at the given
site [13]. The result of the PMDHA is a demand hazard
surface, which can be obtained by solving the proposed three
components.

3.1. Description of Probability-ConvexHybridModel (PCHM).
For the limit capacities of different bridge components
involved in epistemic and aleatory uncertainties [38], the
definition of limit capacities X can be given through a PCHM

X = x (𝜁) , (8)

where X = [x1(𝜁1), x2(𝜁2), ..., x𝑁(𝜁𝑁)] represents the random
variable; 𝜁 = [𝜁1, 𝜁2, ..., 𝜁𝑁𝜁] represents the mean of the
random variable, which is defined by using a nonprobabilistic
convex model [39]. Note that 𝜁 is the bounded uncertainty.

An interval and an ellipsoid are two types of the most
widely used convex models, which can describe the convex
variables [40].When the independencies among the variables
are considered, the interval model is adopted. When several
variables are dependent with each other, the ellipsoid model
is used. If some variables are independent with each other and
other relevant variables exist, themultiellipsoid convexmodel
will be employed.

Assume that the convex variables 𝜁 are divided into 𝑁𝐸
groups, and then 𝜁 can be expressed as follows:

𝜁
T = {𝜁T1 , 𝜁T2 , . . . , 𝜁T𝑁𝐸} , (9)

where 𝜁𝑖 represents the variables vector of the ith group and∑𝑁𝐸𝑖=1 𝑛𝑖 = 𝑁𝜁.
In the ith group, the uncertain domain 𝜁I𝑖 of the variables
𝜁𝑖 is quantified by using a multidimensional ellipsoid.

𝜁I𝑖 = [𝜁L𝑖 , 𝜁R𝑖 ] = {𝜁𝑖 | (𝜁 − 𝜁C)TΩ𝑖 (𝜁 − 𝜁C) ≤ 𝜃2𝑖 , 𝑖
= 1, 2, . . . ,𝑁𝐸} ,

(10)

where 𝜁L𝑖 and 𝜁
R
𝑖 are the lower bound vector and upper bound

vector of uncertain variable 𝜁𝑖, respectively;Ω𝑖 is a symmetric
positive-definite matrix determining the size and orientation
of the ith ellipsoid and it is called as the characteristic matrix;
𝜁C denotes the central point of the ith ellipsoid; 𝜃𝑖 is a positive
real number determining the magnitude of the variability.

Themidpoint 𝜁C𝑖 and variance𝐷(𝜁I𝑖) of 𝜁𝑖 are, respectively,
defined as [41]

𝜁C𝑖 = 𝜁
L
𝑖 + 𝜁R𝑖2 ,

𝐷 (𝜁I𝑖) = (𝜁W𝑖 )2 = (𝜁
R
𝑖 − 𝜁L𝑖2 )2 .

(11)

The covariance of the uncertain vectors is defined:

Cov (𝜁𝑖, 𝜁𝑖) = 𝐷 (𝜁I𝑖)
Cov (𝜁𝑖, 𝜁𝑗) = tan 𝛽1 − tan2𝛽 (𝐷 (𝜁I𝑖) − 𝐷(𝜁I𝑗)) ,

𝐷 (𝜁I𝑖) ̸= 𝐷 (𝜁I𝑗) ,
(12)

where 𝛽 is the rotation angle of the ellipse and 𝑖 ̸= 𝑗.
For a multidimensional convex model, the covariance

matrix C is defined:
C

=
[[[[[[
[

Cov (𝜁1, 𝜁1) Cov (𝜁1, 𝜁2) . . . Cov (𝜁1, 𝜁𝑁𝐸)
Cov (𝜁2, 𝜁1) Cov (𝜁2, 𝜁2) . . . Cov (𝜁2, 𝜁𝑁𝐸). . . . . . . . . . . .
Cov (𝜁𝑁𝐸 , 𝜁1) Cov (𝜁𝑁𝐸 , 𝜁2) . . . Cov (𝜁𝑁𝐸 , 𝜁𝑁𝐸)

]]]]]]
]

(13)

and then a multidimensional ellipsoid can be denoted by the
following expression:

(𝜁 − 𝜁C)T C−1 (𝜁 − 𝜁C) ≤ 𝜃2𝑖 (14)

when the uncertain variables are independent with each
other, Cov(𝜁𝑖, 𝜁𝑗) = 0, 𝑖 ̸= 𝑗.

In order to avoid an ill-conditioned covariance matrix,
the uncertain variables 𝜁 (𝜁 space) should be transformed into
a set of regularized variables U (u space).

U𝑖 = (𝜁W𝑖 )2 = 𝜁𝑖 − 𝜁
C
𝑖

𝜁W𝑖
, 𝑖 = 1, 2, . . . , 𝑁𝐸. (15)

Then the multidimensional ellipsoid is transformed into a u
space

UI = {U | UTC−1U U ≤ 𝜃2} , (16)

where covariance matrix
C−1U

=
[[[[[[
[

Cov (U1,U1) Cov (U1,U2) . . . Cov (U1,U𝑁𝐸)
Cov (U2,U1) Cov (U2,U2) . . . Cov (U2,U𝑁𝐸). . . . . . . . . . . .
Cov (U𝑁𝐸 ,U1) Cov (U𝑁𝐸 ,U2) . . . Cov (U𝑁𝐸 ,U𝑁𝐸)

]]]]]]
]
. (17)

The correlation coefficient of the uncertain variables is
defined:

𝜂U𝑖U𝑗 = Cov (U𝑖,U𝑗)
√𝐷 (UI

𝑖)√𝐷(UI
𝑗) , (18)

where𝐷(UI
𝑖) =1;𝐷(UI

𝑗) =1.Then 𝜂U𝑖U𝑗 = Cov(U𝑖,U𝑗) and the
multidimensional ellipsoid can be expressed as

UI = {U | UT𝜂−1U U ≤ 𝜃2} , (19)

where 𝜂U is the correlation coefficient located in the u space;
𝜂U𝑖U𝑗=1 and |𝜂U𝑖U𝑗 | ≤ 1.
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3.2. Definition of the GeneralizedMultidimensional Limit State
(GMLS) Equation. A GMLS equation permits considering
the relationship between the limit capacities and their corre-
sponding EDPs [34].

G (R,RLS) = 𝑛∑
𝑟=1

( 𝑅𝑟𝑆𝑟LS)
𝑁𝑟 − 1, (20)

where 𝑅𝑟 is the EDP vector of the rth component (e.g.,
deformability and strength), 𝑆𝑟LS is the limit capacity vector
of the EDP of the rth component, and Nr is the correla-
tion coefficient determining the shape of the n-dimensional
surface. Due to the consideration of two EDPs, the GMLS
equation can be denoted as a two-dimensional limit state
(TLS) equation.

G (R,RLS) = ( 𝜓𝜑𝑖 (𝑑))
𝑁1 + ( 𝜉𝛿𝑖 (𝑏))

𝑁2 − 1, (21)

where 𝜓 and 𝜉 are the peak column ductility and peak
bearing displacement, respectively; 𝜑𝑖(𝑑) and 𝛿𝑖(𝑏) are the
limit capacities of the column ductility and bearing displace-
ment, respectively; 𝑁1 and 𝑁2 are correlation coefficients;
i represents the performance limit state levels (i=1, 2, 3,
4; 1 denotes Normal Operation level; 2 denotes Immediate
Occupancy level; 3 denotes Life Safety level; 4 denotes
Collapse Prevention level).

The dependent limit capacities 𝜑𝑖(𝑑) and 𝛿𝑖(𝑏), which rely
on uncertain mechanical properties, are described through
a PCHM. The limit capacities are taken as random variables
and follow a lognormal distribution [31]. The mean values of
the random variables are treated as convex variables. Proba-
bilistic information for limit capacities of two components is
listed in Table 1.The coefficient of variation (CV) for different
limit capacities is regarded as alterable. For example, the limit
capacities of the two EDPs are deterministic quantities when
both coefficients of variation are equal to 0. The same CV
to both limit capacities (e.g., 0, 0.1, 0.5, 0.8, and 1.0) will be
assigned in this paper. dN, 𝑑I, 𝑑L, 𝑑C, bN, bI, bL, and bC are
assumed to be nonprobabilistic convex variables, which are
listed in Table 2.

The desired TLS equation guarantees that the two peak
EDPs can stay below their respective critical values over a
specified duration. If N1 = 1, a sector/triangle acceptable
region will be introduced to realize the equivalent between
the notion of the TLS equation and treatment of the joint
probability density function (JPDF) of the two dependent
EDPs. The assumption also leads to a mathematical “surface”
of two-dimensional demand hazard (TDH). If NA > ND and
NA >1, the above problem will be quite complicated and will
not be used to complete the demand hazard assessment. Con-
sequently, (21) can be simplified by the following expression:

G (R,RLS) = 𝜓𝜑𝑖 (𝑑) + ( 𝜉𝛿𝑖 (𝑏))
𝑁 − 1, (22)

where 𝜑𝑖(𝑑) and 𝛿𝑖(𝑏) introduce an ellipsoid/convex accept-
able region.

3.3. Demand Hazard Function Based on Two-Dimensional
Lognormal Distribution (TLD). Since the uncertainties in
both EDPs rooted in the same source of uncertainties,
the column ductility and bearing displacement should be
regarded as dependent and follow a two-dimensional log-
normal distribution (TLD) (the proof for this important
assumption is given in Appendix). The bivariate PDF is
shown as follows:

𝑓 (𝜓, 𝜉 | 𝑆𝑎 = 𝑖𝑚) = 1
2𝜋𝜓𝜉𝜎𝜓|𝑖𝑚𝜎𝜉|𝑖𝑚 (1 − 𝜌2)1/2

∗ {exp− 12 (1 − 𝜌2)∗ [( ln𝜓 − 𝜇𝜓|𝑖𝑚𝜎𝜓|𝑖𝑚 )2

+ ( ln 𝜉 − 𝜇𝜉|𝑖𝑚𝜎𝜉|𝑖𝑚 )2

− 2𝜌( ln𝜓 − 𝜇𝜓|𝑖𝑚𝜎𝜓|𝑖𝑚 )( ln 𝜉 − 𝜇𝜉|𝑖𝑚𝜎𝜉|𝑖𝑚 )]} ,

(23)

where 𝜇𝜓|𝑖𝑚 and 𝜎𝜓|𝑖𝑚 are the log-mean and the log-standard
deviation of column ductility, respectively; 𝜇𝜉|𝑖𝑚 and 𝜎𝜉|𝑖𝑚
are the log-mean and the log-standard deviation of bearing
displacement, respectively; 𝜌 is the correlation coefficient
between ln𝜓 and ln 𝜉.

Themean vector 𝜇T and covariance Σ of TLD are denoted
as

𝜇T = [𝜇𝜓|𝑖𝑚, 𝜇𝜉|𝑖𝑚]
Σ = [ 𝜎2𝜓|𝑖𝑚 𝜌𝜎𝜓|𝑖𝑚𝜎𝜉|𝑖𝑚

𝜌𝜎𝜓|𝑖𝑚𝜎𝜉|𝑖𝑚 𝜎2𝜉|𝑖𝑚 ] , (24)

where 𝜌 is calculated by the following expression:

𝜌 = (1/𝑛)∑𝑛𝑖=1 [(ln 𝜓𝑖) ∙ (ln 𝜉𝑖)] − 𝜇𝜓|𝑖𝑚 ∙ 𝜇𝜉|𝑖𝑚𝜎𝜓|𝑖𝑚 ∙ 𝜎𝜉|𝑖𝑚 , (25)

where 𝜌 is the estimator of the correlation coefficient 𝜌; 𝑛
is the number of ground inputs; 𝜇𝜓|𝑖𝑚 and 𝜎𝜓|𝑖𝑚 are the
estimators of log-mean and log-standard deviation of column
ductility, respectively; 𝜇𝜉|𝑖𝑚 and 𝜎𝜉|𝑖𝑚 are the estimators of log-
mean and log-standard deviation of bearing displacement,
respectively.

Here, a two-dimensional demand hazard function can
be derived by combining the TLD and the ground motion
hazard curve𝐻𝑆𝑎(𝑖𝑚)

𝜆M-D = ∫𝑃 [𝜓 > 𝜑𝑖 (𝑑) , 𝜉 > 𝛿𝑖 (𝑏) | 𝑆𝑎 = 𝑖𝑚]
⋅ 𝑑𝐻𝑆𝑎 (𝑖𝑚) = ∫∬D

𝑓 (𝜓, 𝜉 | 𝑆𝑎 = 𝑖𝑚)𝑑𝜓𝑑𝜉
⋅ 𝑑𝐻𝑆𝑎 (𝑖𝑚) = ∫∬D

𝑓 (𝜓, 𝜉 | 𝑆𝑎 = 𝑖𝑚)𝑑𝜓𝑑𝜉
⋅ 
𝑑𝐻𝑆𝑎 (𝑖𝑚)𝑑 (𝑖𝑚)

 |𝑑 (𝑖𝑚)| ,

(26)
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Table 1: Limit capacities for different bridge components [31].

Limit capacities of
bridge components

NO level IO level LS level CP level
Mean CV Mean CV Mean CV Mean CV

Column ductility (-) dN 0.59 𝑑I 0.51 𝑑L 0.64 𝑑C 0.65
Bearing displacement
(mm)

bN 0.60 bI 0.55 bL 0.59 bC 0.65

Table 2: Nonprobabilistic convex variables.

Nonprobabilistic
convex variables Interval range Convex model description

dN (-) [1.271 1.292] [𝑑𝑁 − 𝑑𝐶𝑁, 𝑏𝑁 − 𝑏𝐶𝑁] [[
0.538 2.362𝐸 − 2

2.362𝐸 − 2 0.682 ]
]
[𝑑𝑁 − 𝑑𝐶𝑁, 𝑏𝑁 − 𝑏𝐶𝑁]T ≤ 1bN (mm) [26.71 28.92]

dI (-) [1.91 2.102] [𝑑𝐼 − 𝑑𝐶𝐼 , 𝑏𝐼 − 𝑏𝐶𝐼 ] [[
0.649 5.839𝐸 − 2

5.839𝐸 − 2 0.770 ]
]
[𝑑𝐼 − 𝑑𝐶𝐼 , 𝑏𝐼 − 𝑏𝐶𝐼 ]T ≤ 1

bI (mm) [102.21 104.22]

dL (-) [3.321 3.522] [𝑑𝐿 − 𝑑𝐶𝐿 , 𝑏𝐿 − 𝑏𝐶𝐿 ] [[
0.826 7.947𝐸 − 2

7.947𝐸 − 2 0.898 ]
]
[𝑑𝐿 − 𝑑𝐶𝐿 , 𝑏𝐿 − 𝑏𝐶𝐿 ] ≤ 1

bL (mm) [134.11 136.12]

dC (-) [5.041 5.242] [𝑑𝐶 − 𝑑𝐶𝐶, 𝑏𝐶 − 𝑏𝐶𝐶 ] [[
0.911 8.815𝐸 − 2

8.815𝐸 − 2 0.965 ]
]
[𝑑𝐶 − 𝑑𝐶𝐶, 𝑏𝐶 − 𝑏𝐶𝐶]T ≤ 1

bC (mm) [184.61 186.62]
1 = lower bound determined by IDA; 2 = upper bound obtained by Nielson and DesRoches [31].

where 𝜆M-D is the mean annual frequency of exceeding two
dependent limit capacities;

D = 𝜓𝜑𝑖 (𝑑) + ( 𝜉𝛿𝑖 (𝑏))
𝑁 − 1 ≥ 0. (27)

Likewise, the process of (26) is illustrated graphically in
Figure 2.

4. Case Study

4.1. Bridge Geometry. To demonstrate the proposed method
for assessing TDH and provide insights into the sensitivities
of the parameters of the TLS equation to 𝜆M-D, a sample MSC
concrete girder bridge located in northwestern China is used
as a case study in this paper. As shown in Figure 3, both the
end spans and the interior span of this three-span bridge are
11.90 m and 22.30 m. Each bent consists of three circular
columns with a 641.2 mm2 cross-sectional area, reinforced
with 12 No. 29 longitudinal bars and No. 13 transverse
stirrups spaced at 305mm.The decks are constructed of eight
AASHTOconcrete girders, which are Type I for the end spans
and Type III for the middle span [42].The typical bridge uses
elastomeric pads for bearings. The girders for the example
bridge aremade continuous by embedding a concrete parapet
between the girders [43]. The foundations are assumed to lie
on medium hard soil represented by site class II (i.e., shear
wave velocity between 250 m/s and 500 m/s) [44].

4.2. Finite-ElementModeling of aMSCConcrete Girder Bridge.
A nonlinear three-dimensional model of the example bridge

is created using the finite-element platform OpenSees [45].
For the superstructuremodeling, the composite actions of the
slab and girder section aremodeled using linear elastic beam-
column elements, because the superstructure is expected to
remain linear. The deck section can be modeled through
an equivalent homogeneous concrete material. The detailed
equivalent parameters are given by Nielson and DesRoches
[42]. The columns and bent beams are modeled by using
nonlinear beam-column elements with fiber defined cross
sections. The concrete material is modeled using the Kent-
Scott-Park model with no tension stiffening. The reinforcing
steel is modeled as a bilinear material using Steel01 material.
The bearings are modeled using nonlinear translational
springs and the elastomeric pads are modeled through an
elastic-perfectly plastic material.The pile-bent abutment type
in this study is modeled based on the work by Nielson
and DesRoches [42]. The fundamental mode for the MSC
concrete girder bridge is 1.0056 sec. Meanwhile, the Rayleigh
damping coefficient can be calculated by selecting the modal
calculations of the 10th and 22nd order. Therefore, the
calculated damping constants are 0.0317 (10th modal) and
0.0308 (12th modal), respectively.

5. Ground Motion Selection

Ground motion inputs are often chosen from the PEER
Center’s NGA database [13]. A criterion for selecting ground
motions follows that as recommended by Baker and Cornell
[46] which fully accounts for magnitude, distance, focal
mechanism, and site class. Baker [47] also illustrated that
the Conditional Mean Spectrum (CMS) consisting of epsilon
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Figure 2: The framework of the proposed PMDHA.

11.9m 22.3m 11.9m
46.1m

Figure 3: Configuration of the example MSC concrete girder bridge.

and spectral acceleration effectively reduced the dispersion of
the structural response. Epsilon is described as an indicator
of spectral shape of ground motion records. The detailed
computational process of CMS is based on the work by Abra-
hamson and Silva [48], Baker and Cornell [49], and Baker
[47]. The damping constant with respect to ground motion

parameters of the seismic zonation maps is calculated as 0.05
based on code GB 18306-2001 [50] or code GB 17741-2005
[51]. Thirty NGA records (M=6-7, R=15-20 km, site class II)
have been selected to match the CMS, as shown in Figure 4.
These ground motions are able to capture the uncertainty
arising from an earthquake when loading to the structures.
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Figure 5: Thirty IDA curves of 𝑆a(T1) vs. column ductility.

6. Incremental Dynamic Analysis

Incremental Dynamic Analysis (IDA) is a neoteric method-
ology that offers a distinct relationship between the intensity
measure and the demand response. The approach involves
performing a sequence of nonlinear dynamic analyses under
a multiply scaled suite of recorded ground motions. Each
record is scaled to several IM levels, which are designed
to force the structure all the way from elasticity to finally
collapse. Once a series of thirty NGA records selected by
the CMS is entered into the finite-element model, IDA can
be performed. In order to carry out the analysis, the chosen
ground motion records need to be scaled from low IM levels
to higher IM levels until structural collapse occurs. As a
result, thirty IDA curves of 𝑆a(T1) vs. column ductility and𝑆a(T1) vs. bearing displacement are presented in Figures 5
and 6, respectively. All of the IDAcurves can be assumed to be
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Figure 6: Thirty IDA curves of 𝑆a(T1) vs. bearing displacement.

a lognormal distribution [23]; hence, the 16%, 50%, and 84%
fractile values of 𝑆a(T1) vs. column ductility and 𝑆a(T1) vs.
bearing displacement are also graphically depicted in Figures
5 and 6, respectively.

7. Designed Site and Seismic Hazard Curve

The geographical location of the example bridge is chosen
as northwestern China, because it represents a specific site
with smaller probabilities of exceedance. Site class II, eight-
times the intensity of the earthquake, and designed ground
acceleration for 0.20 are taken into account in this study.
Having the knowledge in mind, the hazard–recurrence curve
can be obtained by fitting a straight line through two known
points in a log–log scale. The parameter k included in (6) is
calculated by the following expression:

𝑘 = ln (𝐻𝑆1(10%/50𝑦𝑟) (𝑆1) /𝐻𝑆1(2%/50𝑦𝑟) (𝑆1))
ln (𝑆1(2%/50𝑦𝑟)/𝑆1(10%/50𝑦𝑟)) , (28)

where 𝐻𝑆1(10%/50𝑦𝑟) is the probability of exceedance for the
10%/50 hazard level (0.002105), 𝐻𝑆1(2%/50𝑦𝑟) is the probabil-
ity of exceedance for the 2%/50 hazard level (0.000404),𝑆1(10%/50𝑦𝑟) is the spectral amplitude for the 10%/50 hazard
level, and 𝑆1(2%/50𝑦𝑟) is the spectral amplitude for the 2%/50
hazard level. Here, 𝑘0 = 8.0153 × 10−5 and 𝑘 = 2.3814.
8. Parameter Sensitivity Analysis

8.1. Sensitivity of CV toMeanAnnual Frequency of Exceedance
(MAF). Although the coefficients of variation for different
limit capacities are given based on Nielson and DesRoches
[31], different values of the CV should be used to perform the
sensitivity analysis of the MAF. The demand hazard surface
can be developed by coupling the TLD and the seismic hazard
curve, while the limit capacities are defined using the PCHM.
Figure 7 shows the effect of CV on demand hazard surface,
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Figure 7: Effects of CV on demand hazard surface.
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Figure 8: Projection of Figure 7 in the Y-Z plane.

when the correlation coefficient N involved in (22) is equal
to 2. The projection of Figure 7 in the Y-Z plane is presented
in Figure 8. From the two figures, it can be observed that the
MAFwith deterministic limit capacities (CV=0) is lower than
if uncertain limit capacities are considered. By comparing
with Nielson and DesRoches [31], it can be seen that theMAF
will be underestimated if CV ≤ 0.5. The results indicate that
the CV of limit capacities has a significant impact on the
probabilistic demand hazard assessment.

Figure 9 shows the discrepancies of demand hazard
surfaces betweendifferent definitions of limit capacities when
the CV originates in Nielson and DesRoches [31] and N=2.
Figure 10 gives the projection of Figure 9 in theY-Zplane.The
two figures reveal that the MAF of the example bridge will be
a relatively conservative estimation, if the limit capacities are
defined by PCHM.
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Figure 9: Discrepancies of demand hazard surfaces between Niel-
son and DesRoches [31] and PCHM.
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Figure 10: Projection of Figure 9 in the Y-Z plane.

8.2. Sensitivity of N to Mean Annual Frequency of Exceedance
(MAF). The relationship between the limit capacities and
EDPs can be described using the TLS equation. The cor-
relation coefficient N determines the shape of (22). For
instance, the triangle acceptable region is used when N=1.
If N is equal to 2, a regular sector acceptable region will
be competent for the description. The irregular acceptable
domain occurs when the parameter N is gradually increased.
Therefore, an accurate sensitivity analysis of N to MAF is
necessary. Figure 11 shows the effects of different values of
the parameter N on demand hazard surface when the CV
roots in Nielson and DesRoches [31] and the definition
of limit capacities originates from PCHM. Meanwhile, the
corresponding projection is shown in Figure 12. Results in the
two figures show that the MAF of the specific structure will
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Figure 11: Effects of different values ofN on demand hazard surface.
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Figure 12: Projection of Figure 11 in the Y-Z plane.

be drastically underestimated, if the parameterN is increased
to 15. However, it is noteworthy that the MAF has little
difference between N =5 and N =15. This implies that the
sensitivity of the parameter will be decreased when 𝑁 >5. In summary, the demand hazard surface of the example
bridge can bemore conservative, if an appropriate correlation
coefficient N is assigned.

9. Conclusions

This paper presents an original method to develop the frame-
work of multidimensional demand hazard assessment. The
nonlinear dynamic model of a MSC concrete girder bridge
is applied to calculate the column ductility and bearing dis-
placement. The dependent two EDPs are assumed to follow
the TLD and the limit capacities are defined using PCHM.
The curves of 𝑆a(T1) vs. column ductility and 𝑆a(T1) vs.
bearing displacement are carried out by IDA. One bounded

value of convex variables, which are related to mean values of
the limit capacities, is determined through 50% fractile values
of IDA curves.The other bounded values are obtained result-
ing from Nielson and DesRoches [31]. Then the relationship
between the two EDPs and their associated limit capacities
can be constructed using the TLS equation. Subsequently, the
demand hazard surface of the example bridge is derived by
coupling the TLD and the seismic hazard curve.

From the given numerical example, it can be deduced that
MAF of the MSC concrete girder bridge will be undervalued
if the uncertainties of the two limit capacities are omitted.
Nevertheless, the MAF can be relatively conserved when the
CV of uncertain limit capacities is appropriately appointed.
Similarly, if an applicable correlation coefficient N is taken
into account, more conservative results will be attained.
Furthermore, the proposed method has a positive influence
on structural risk evaluation, when the limit capacities follow
a PCHM, Nielson and DesRoches [31].

Appendix

Proof for Two-Dimensional
Lognormal Distribution

Property A.1. Based on the conditional probability formula𝑃(𝑋,𝑌) = 𝑃(𝑌 | 𝑋)𝑃(𝑋), the necessity and sufficiency of the
pair (X, Y) which obeys normal distribution have two parts.
Part I: the marginal distribution of the parameter X must be
normal distribution.

Part II: the residual error 𝜀 must be normal distribution.
𝜀 can be calculated using linear regression analysis and
expressed as follows:

𝜀 = Y − X𝛽. (A.1)

Corollary A.2. If there exist two lognormal vectors ln Α and
ln B satisfying Property A.1, then the pair (Α,B) follows a two-
dimensional lognormal distribution.

Proof. Let Z = [ 𝑒X
𝑒Y
] = [ 𝜓𝛿 ], 𝜇 = [ 𝜇1𝜇2 ], ∑ = ( ∑11 ∑12∑21 ∑22

),
where 𝜓 is the column ductility vector; 𝛿 is the bear-

ing displacement vector; 𝜇1 is the log-mean of column
ductility; 𝜇2 is the log-mean of bearing displacement;∑ is the covariance matrix.

Cimellaro et al. [36] verified the assumption by compar-
ing different PDF (normal, Gumbel, and lognormal) for dif-
ferent structural configurations and showed that the lognor-
mal distribution is the best fit to the distribution of an EDP.
Therefore, ln𝜓 follows a normal distribution. The pair (𝜓, 𝛿)
subjected to a given IM level (𝑆a(T1) =0.15 g) is obtained
through nonlinear dynamic analysis of the FE model, and
then these data are used to complete Part I. The result is
shown in Figure 13.

MATLAB provides a lillietest function to verify the
assumption of Part I.

[𝐻, 𝑃, 𝐿𝑆𝑇𝐴𝑇, 𝐶𝑄] = lillietest (𝑋, 𝑎𝑙𝑝ℎ𝑎) , (A.2)



Mathematical Problems in Engineering 11

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ln(Column ductility)

actual distribution
normal distribution

PD
F 

of
ln
(C

o
lu
m
n

du
ct

ili
ty

)

Figure 13: Hypothesis testing of marginal distribution of ln𝜓.

−2 −1.5 −1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Residual error

actual distribution

normal distribution

PD
F 

of
 re

sid
ua

l e
rr

or

Figure 14: Hypothesis testing of marginal distribution of residual
error 𝜀.

where alpha is 0.05; X𝑖𝑠 ln𝜓. IfH equals 0, the assumption of
Part I can be accepted. Performing the lillietest function, we
have that H is 0; P is 0.2307; LSTAT is 0.0033; CV is 0.0041.

Likewise, the pair (𝜓, 𝛿) is used to complete Part II. The
result is shown in Figure 14.

The assumption of Part II can be verified using the lillietest
function

[𝐻, 𝑃, 𝐿𝑆𝑇𝐴𝑇, 𝐶𝑄] = lillietest (𝑋, 𝑎𝑙𝑝ℎ𝑎) , (A.3)

where alpha is 0.05; X is 𝜀. If H equals 0, the assumption of
Part II can be accepted. Performing the lillietest function, we
have that H is 0; P is 0.5000; LSTAT is 0.0021; CV is 0.0041.
Therefore, the results satisfy Corollary A.2.

Abbreviations and Notations

GMLS: Generalized multidimensional limit
state

PCHM: Probability-convex hybrid model
MLD: Multidimensional lognormal

distribution
MDH: Multidimensional demand hazards
MSC: Multispan continuous
CV: Coefficient of variation
IDA: Incremental Dynamic Analysis
PSDA: Probabilistic Seismic Demand Analysis
PSHA: Probabilistic seismic hazard analysis
PEER: Pacific Earthquake Engineering

Research
EDP: Engineering Demand Parameter
EDPs: Engineering Demand Parameters
TLS: Two-dimensional limit state equation
TLD: Two-dimensional lognormal

distribution
TDH: Two-dimensional demand hazard
PDHA: Probabilistic demand hazard assessment
PMDHA: Probabilistic multidimensional demand

hazard assessment
MCS: Monte Carlo Simulation
JPDF: Joint probability density function
PDF: Probability density function
SHC: Seismic hazard curve
DHC: Demand hazard curve
NO: Normal Operation level
IO: Immediate Occupancy level
LS: Life Safety level
CP: Collapse Prevention level
CMS: Conditional Mean Spectrum
MAF: Mean annual frequency of exceedance
IM: Intensity measures𝜆 : Mean annual frequency of exceeding a

given limit level𝜆𝜓(𝜑): Mean annual frequency of exceeding a
given ductility threshold𝐹𝜓: Seismic fragility function𝑆𝑎: Spectral acceleration𝐻𝑆𝑎(𝑖𝑚): Seismic hazard curve𝜓: Column ductility𝜑: Limit capacity of column ductility𝜓𝑚: Maximum curvature𝜓𝑦: Yield curvature𝜉: Bearing displacement𝛿: Limit capacity of bearing displacement𝑓(𝜓 | 𝑖𝑚) : Lognormal distribution of the
maximum column ductility𝜇𝜓|𝑖𝑚: Log-mean of column ductility𝜎𝜓|𝑖𝑚: Log-standard deviation of column
ductility𝜑𝑖: Deterministic limit capacity of column
ductility under the 𝑖th performance
levels𝜓𝑖𝑚𝑗 : Maximum column ductility for the 𝑗th
Monte Carlo trial
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𝑁𝑀𝐶𝑆: Total number of Monte Carlo trials𝑘0: Dependent of the seismicity of an
individual site𝑘: Logarithmic slope after a local fitting𝑃1D[𝑖𝑛 𝑡 𝑦𝑒𝑎𝑟𝑠]: Probabilistic model for the column
ductility hazard curve

X: Random variable
𝜁: Nonprobabilistic uncertain variable,

namely, convex variable
𝜁𝑖: The 𝑖th nonprobabilistic uncertain variable
𝜁L𝑖 : Lower bound vector of the 𝑖th

nonprobabilistic uncertain variable
𝜁R𝑖 : Upper bound vector of the 𝑖th

nonprobabilistic uncertain variableΩ𝑖: Symmetric positive-definite matrix of
the 𝑖th ellipsoid

𝜁C𝑖 : Central point of the 𝑖th ellipsoid
Cov(𝜁𝑖, 𝜁𝑖): Covariance of the 𝑖th uncertain vector
Cov(𝜁𝑖, 𝜁𝑗): Covariance between the 𝑖th and 𝑗th

uncertain vector
C: Covariance matrix among uncertain

vectors of𝑁𝐸 groups
U𝑖: 𝑖th nonprobabilistic regularized

variables (u space)
CU: Covariance matrix among regularized

variables of𝑁𝐸 groups
𝜂U𝑖U𝑗 : Correlation coefficient between the 𝑖th

and 𝑗th regularized variables
G(R,RLS): Generalized multidimensional limit

state equation𝜑𝑖(𝑑): Probability-convex variable of limit
capacity of column ductility at the 𝑖th
performance levels𝛿𝑖(𝑏): Probability-convex variable of limit
capacity of bearing displacement at the𝑖th performance levels𝑑: Convex variable for mean value of limit
capacity of column ductility𝑏: Convex variable for mean value of limit
capacity of bearing displacement𝑁: Correlation coefficient in
multidimensional limit state equation𝑓(𝜓, 𝜉 | 𝑆𝑎 = 𝑖𝑚): Bivariate lognormal distribution𝜇𝜉|𝑖𝑚: Log-mean of bearing displacement𝜎𝜉|𝑖𝑚: Log-standard deviation of bearing
displacement𝜌: Correlation coefficient between
logarithms of column ductility and
bearing displacement𝜇T: Mean vector of bivariate lognormal
distributionΣ: Covariance of bivariate lognormal
distribution𝜌: Estimator of the correlation coefficient𝜌𝑛: Number of ground inputs𝜇𝜓|𝑖𝑚: Estimator of log-mean of column
ductility

𝜎𝜓|𝑖𝑚: Estimator of log-standard deviation of
column ductility𝜇𝜉|𝑖𝑚: Estimator of log-mean of bearing
displacement𝜎𝜉|𝑖𝑚: Estimator of log-standard deviation of
bearing displacement𝜆M-D: Mean annual frequency of exceeding
two dependent limit capacities

D: Failure domain of the example bridge.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Xiao-Xiao Liu and Yuansheng Wang contributed equally to
this work.

Acknowledgments

Theauthors acknowledge the support of the National Natural
Science Foundation of China (grant number 11802224),
China Postdoctoral Science Foundation (grant number
2018M633495), China State Key Laboratory for Mechanical
Structure Strength and Vibration Open-End Foundation
(Grant number SV2019−KF−11), Fundamental Research
Funds for the Central Universities (3102016ZY2016), and
Aerospace Science and Technology Innovation Fund
(2016kc060013).

References

[1] K. A. Porter, “An overview of PEERs performance-based earth-
quake engineering methodogy,” in Proceedings of 9th Interna-
tional Conference on Applications of Statistics and Probability in
Civil Engineering, San Francisco, Calif, USA, 2003.

[2] N. Luco, Probabilistic seismic demand analysis, SMRF connec-
tion fractures, and near-source effects [Ph.D. thesis], Department
of Civil Engineering, Stanford University, Calif, USA, 2002.

[3] J. E. Padgett, B. G. Nielson, and R. DesRoches, “Selection of
optimal intensity measures in probabilistic seismic demand
models of highway bridge portfolios,” Earthquake Engineering
& Structural Dynamics, vol. 37, no. 5, pp. 711–725, 2008.

[4] C. A. Cornell and H. Krawinkler, “Progress and challenges in
seismic performance assessment,”PEER Center News, vol. 3, no.
2, pp. 1–3, 2000.

[5] C. A. Cornell, “Calculating building seismic performance reli-
ability: a basis for multi-level design norms,” in Proceedings of
the 11thWorld Conference on Earthquake Engineering, Acapulco,
Mexico, 1996.

[6] P. Bazzurro, Probabilistic seismic demand analysis [Ph.D. thesis],
Department of Civil and Environmental Engineering, Stanford
University, Stanford, Calif, USA, 1998.

[7] N. Shome, “Probabilistic seismic demand analysis of nonlinear
structures,” Tech. Rep. RMS-35, Department of Civil and



Mathematical Problems in Engineering 13

Environmental Engineering, Stanford University, Calif, USA,
1999.

[8] P. Bazzurro and C. A. Cornell, “Vector-valued probabilistic
seismic hazard analysis (VPSHA),” in Proceedings of the 7th US
national conference on earthquake engineering, Boston, Mass,
USA, 2002.

[9] F. Jalayer and C. A. Cornell, “A technical framework for prob-
ability-based demand and capacity factor (DCFD) seismic
formats,” Tech. Rep. PEER Report 2003/08, Pacific Earthquake
Engineering Research Center, University of California, Berke-
ley, Calif, USA, 2003.

[10] D. Vamvatsikos and C. A. Cornell, “Applied incremental dy-
namic analysis,” Earthquake Spectra, vol. 20, no. 2, pp. 523–553,
2004.

[11] K. R. Mackie and B. Stojadinović, “Performance-based seismic
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