
Research Article
Networked Base-Stock Inventory Control in Complex
Distribution Systems

Przemysław Ignaciuk and Łukasz Wieczorek

Institute of Information Technology, Lodz University of Technology, 215 Wólczańska St, 90-924 Łódź, Poland
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.is paper addresses the resource distribution problem in logistic networks with a complex, multi-echelon interconnection
structure. .e considered class of systems encompasses two types of nodes: controlled nodes subject to inventory management
decisions and sources providing goods to the system to sustain the sales. .e stock gathered at the controlled nodes is used to
satisfy an exogenous, uncertain demand that may be placed at any controlled node. .e stock is replenished from the sources and
other controlled nodes, and the flow of goods proceeds with positive lead-time delay. .e network topology does not assume any
structural simplifications typically considered in inventory control problems, i.e., the nodes can form a link with any other node
which leads to a mesh, multi-echelon structure. .e contribution of this paper is twofold: First, the classical order-up-to policy is
analyzed formally with respect to such nontrivial connectivity architectures, and conditions for full demand satisfaction under any
bounded demand pattern are established. Next, a networked extension of the classical policy is proposed. .e introduced
networked policy is shown to generate smaller holding costs while maintaining the same service level as the classical policy. .e
formal study is supported by numerical tests involving genetic algorithms and simulation-based optimization.

1. Introduction

In recent years, the observed tight internationalization and
development of global market have caused changes in many
sectors of the economy. New mechanisms and processes are
being introduced on a daily basis, and the existing ones
undergo transformations and rescaling. In particular, the
now commonly available intelligent transportation, com-
munication, and information system (IT) enhancements
[1, 2] exert substantial impact on the practices in logistics
andmay reshape the entire sector related to themanagement
of the flow of goods and execution of services in distributed
environments [3–6]. However, owing to unforeseeable
factors and uncertain operational conditions [7] combined
with ever growing quality requirements, the research on
structurally complex supply chains and networks faces
difficulties in both analytical and computational treatment. So
far, the literature has been centered on single-echelon [7–10],
two-stage serial [11–13], and multi-echelon arborescent

configurations [14–16], which are simplifications of the actual
architectures presently deployed [17]. .e most challenging
aspect of more complex topologies is the dynamical in-
terdependencies that lead to multidimensional, nonseparable
space of solutions. Affected by nonlinearities and non-
negligible lead times, the networked distribution systems are
not amenable to the popular methods proved efficient in
simpler architectures, e.g., Markov chain-based approach
[18]. As an attractive alternative, one may consider dynamical
system approach [19], if well adjusted for the challenging full-
connectivity (mesh) topologies.

1.1. Dynamic System Approach in Inventory Control. .e
pioneering exposition in the systemic approach to inventory
control problems is usually attributed to Forrester [20],
who used coupled nonlinear differential equations to capture
the dynamics of supply chains. In order to address the en-
suing analytical intricacies, a number of simplified models,
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adopting, principally, the frequency domain approach, have
been introduced by various researchers by the end of the 20th
century [21–23]. .ese models have later been extended to
cover the key effects of delay, in either continuous-time
framework [24, 25] or discrete-time framework [26–29]. In
turn, the multinode interaction was studied using primarily
the state-space approach [30–34], where the emphasis was
placed on formal design aspects under various, not necessarily
economic, optimization objectives. A summary of previous
developments adopting the dynamic system approach has
been provided in the excellent review papers by Ortega and
Lin [35], Sarimveis et al. [36], and the book by Axsäter [37],
whereas the account of current results is given by Zemzam
et al. [38] and Ivanov et al. [39].

A significant limitation of the majority of earlier models
is assuming linear dynamics in the operational region of
interest in order to exercise the formal approach. For in-
stance, a full-backordering restriction has been enforced to
avoid the nonlinearities associated with the otherwise sat-
urating stock function required in the lost-sales systems in
[26]. On the other hand, the models with explicit capacity
constraints incorporated rarely accept a closed-form solu-
tion, and only in the simplified case of serial, or fully sep-
arable paths of goods flow [40]. In the cases of practical
significance, e.g., under demand uncertainty [41] and lead-
time variations [42–44], the researchers rely on the nu-
merical analysis. Recently, e.g., Danielson et al. [45] and
Bürger et al. [46] address more complete connectivity
structures (modeled through the incidence matrix) for
general resource distribution networks. Two objecti-
ves—achieving balanced network state while responding to
the local demand and system capacity optimization—have
been considered and attained through (numerical) solution
of the related optimization problem. However, the issues of
delay in resource transshipment were ignored, neither ro-
bustness aspects were covered. More complex models are
typically handled through simulation only [47, 48], which
limits generalization of managerial insights.

Despite intensified effort [49], multi-echelon production
and goods distribution systems require further study. In
particular, the issues of delay and demand uncertainty in the
systems with arbitrary topological configuration need more
attention while assessing the performance of classical control
policies, executing tuning procedures, or building new de-
sign paradigms.

1.2. Objectives and Paper Contribution. One of the basic
premises of a well-conditioned production-inventory system
is to fulfill the demand, internal originating from the
neighboring entities in the goods distribution structure—or
exogenous—placed by external actors. In the majority of
real-life cases, the demand is not known a priori and may
fluctuate with time in an uncertain way, which poses a
significant challenge for balancing the costs and revenues.
Besides logistics, this uncertainty is encountered in other
contexts as well, i.e., trade [50], tourism [51], or energy
distribution [52]. In order to address its negative implica-
tions, various resource management strategies are proposed

and tuned to the specifics of a particular problem. In the
network setting, the optimization objectives typically stress
two aspects. On the one hand, it is desirable to reduce the
operational costs, notably, the holding costs related to goods
storage at the network nodes. On the other hand, one wishes
to secure a high level of customer satisfaction, which, besides
economic benefits, aims at strengthening the company
credibility on the market.

Following the robust control convention from Sarimveis
et al. [36], in this work, the demand is modeled as an arbi-
trary-bounded function of time. .e goods distribution
process proceeds in a network of nodes connected in a mesh
topology, i.e., there is no structural restriction concerning the
node linkage except for the basic assumption of reachability of
every node. .e demand can be placed at any node, and the
resource reflow is subject to positive lead time, possibly
different with respect to each internode link. .e stock
gathered at the controlled nodes—to respond to the external
demand and satisfy the internal traffic—is replenished from
goods sources. Again, there is no restriction as to which nodes
are directly connected with the sources. .e objective of this
paper is twofold:

(1) To investigate analytically the performance of the
classical base-stock (CBS) policy, implemented in a
distribution way (independently at each node), in the
considered general class of logistic systems

(2) To examine how the information about the network
topological structure can assist in taking more ju-
dicious ordering decisions via the application of a
networked base-stock (NBS) strategy, developed
using formal, control-theoretic approach

.is paper is organized in the following way. .e system
model and its state-space form are introduced in Section 2.
.e ordering policies, put in the proposed framework, and
the detailed analytical treatment are also given in Sections 2.
Section 3 is devoted to numerical study. Finally, conclusions
andmanagerial insights are presented in Section 4..emain
symbols and quantities used in the text are grouped in
Table 1.

2. Analytical Framework

2.1. Preliminaries. Let us consider the goods distribution
network, comprising five nodes, depicted in Figure 1.
Nodes 1–3 constitute the controlled elements subject to the
ordering decisions, whereas nodes 4 and 5 are the sources
used to replenish the stock inside the three-node network.
Nodes 1 and 2, in addition to responding to the requests
from a local market according to demands d1 and d2, re-
spectively, serve as intermediate suppliers for node 3. Node
3 may be perceived as the distribution center providing
goods for other markets according to demand d3. .e
arrows in the graph in Figure 1 indicate the flow of goods
and the pair of numbers—the fraction of order issued by a
node for its neighbor and the delay in procuring the goods
from the neighbor, respectively. Although simple from the
topological perspective, the considered network displays
two particularities that make the search for an optimal

2 Mathematical Problems in Engineering



policy a cumbersome task when faced by an uncertain
demand. First of all, the demand is placed at any node, i.e.,
not just conveniently at the distribution center (node 3).
Secondly, the connection structure cannot be disentangled
into separate paths converging at a focal point owing to the
link between nodes 1 and 2, as is typically considered in
multi-echelon systems [40]. According to Cattani et al.
[53], any precarious topological simplification may lead to
erroneous decisions and serious cost increase.

2.2. Fundamental Assumptions. .e considered class of
logistic networks assumes cooperation among three types of

entities: goods sources, controlled nodes subject to mana-
gerial decisions, and customers generating demand. .e
purpose of the goods distribution system is to satisfy the
(uncertain) market demands imposed on the controlled
nodes without recurring to excessive safety stock..e flow of
goods among the nodes is realized through unidirectional
channels that form amesh interconnection topology, i.e., the
network organization does not imply any restriction as to
which nodes are connected with each other, except for the
impractical cases of isolated entities (without a path to any
source), or a node supplying goods to itself.

Each node interconnection is characterized by two pa-
rameters: supplier contribution and lead-time delay. .e
supplier contribution specifies the part of order issued by a
controlled node that is to be acquired from the chosen
supplier (a neighboring controlled node in the network, or a
source). .e lead-time delay covers the time of all the ac-
tivities that are related to procuring the order, e.g., prepa-
ration, loading/unloading, shipment, and inspection.

.e market demands are not known a priori and do not
take any constraints with respect to the stochastic or de-
terministic variation pattern, except they are all nonnegative
and bounded from above. .ey may be imposed on any
controlled node and at any time during the planning horizon
of T equally spaced time periods 0, 1, . . ., t, . . ., T.

2.3. SystemModel. .e sequence of operations performed at
a controlled node in each period proceeds according to the
diagram depicted in Figure 2. First, the incoming shipments
from its suppliers are registered into stock. Next, the node
tries to satisfy the external demand placed by customers.
Unsatisfied demand is lost. Finally, if the stock is sufficient,
the goods are sent to the neighbors in the network-
requesting goods via internal replenishment orders. Hence, a
higher priority is given to satisfying the customer demand
over the internal resource distribution.

2.3.1. Incoming Shipments. Let qji(t) denote the goods
quantity requested by node i from node j related to the
aggregate replenishment order qi(t) generated in period t,
and oji(t) be the shipment actually sent by node j to i
according to such request generated τji periods earlier. τji
represents the nonnegligible time it takes to transfer the
goods between any two neighbors. .e amount of incoming
goods at node i, with respect to supplier j, is given by the
following equation:

uji(t) � oji t − τji . (1)

And, the overall goods quantity received by node i in
period t is given by

ui(t) � 
j∈Θi

oji t − τji , (2)

where Θi is the index set of the suppliers of node i. Since in
the model, satisfying the external demand at the controlled
nodes takes precedence over internal shipments, the amount
of goods received from a neighbor, uji(t), may be smaller

m1 n1

n2

n3
d3

d1

d2

m2

(1.0, 2)

(0.6, 4)
(0.7, 2)

(0.3, 3)

(0.4, 1)

Figure 1: Five-node network: n1, n2, and n3 indicate controlled
nodes, m1 and m2 indicate external sources, and d1, d2, and d3
denote market demand.

Table 1: Applied notation.

Symbol Definition
t ∈ {1, 2, . . ., T} Time period, T—planning horizon

i ∈ {1, 2, . . ., N} Index of a controlled node, N—number of
controlled nodes

j ∈ {1, 2, . . .,M} Index of a source of goods, M—number of
sources

P�N+M Total number of nodes in the network
Θi Index set of suppliers for controlled node i

τji

Lead-time delay of procuring an order from node
j to i, comprising preparation and transportation
time τji � τprepj + τtransji ; τmax—the maximum lead

time at any internode link

φji
Supplier contribution—the part of order

generated by node i assigned for its supplier j
xi(t) On-hand stock level at node i in period t
di(t) External demand imposed on node i in period t
hi(t) Satisfied demand at node i in period t

qi(t)
Quantity of goods requested by node i as the

replenishment order in period t

ui(t)
Quantity of goods received by node i from its

suppliers in period t

oi(t)
Quantity of goods sent by node i to neighbors in

period t

x(t) Vector grouping on-hand stock levels, x(t)�

[x1(t), . . ., xN(t)]′

q(t) Vector grouping ordering signals, q(t)� [q1(t),
. . ., qN(t)]′

d(t) Vector grouping market demands imposed on
the controlled nodes, d(t)� [d1(t), . . ., dN(t)]′

[·]′ Transpose operator
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than the amount requested qji(t − τji), except the case when
the supplier is an external source—the external sources are
assumed uncapacitated. .us, one has the relation

0≤ 
j∈Θi

uji(t)≤ qi t − τji . (3)

2.3.2. Outgoing Shipments. Node j (in its role of goods
supplier) attempts to fulfill all the replenishment requests qji
placed by its neighbors. Let φij ∈ [0, 1], j∈Θi

φji � 1, denote
the nominal supplier contribution in the relation between
nodes i and j. (Obviously, φij � 0 if nodes i and j do not form
a neighboring relationship.) .e amount of goods requested
by node i from node j is given by

qji(t) � φjiqi(t). (4)

However, after satisfying the external demand, and in the
absence of sufficient on-hand stock, the amount of goods
actually sent to the neighbors is lower than the quantity
requested. In such a case—goods shortage at node j—the
replenishment request issued by node i is decreased (in
proportion to the load generated by all the neighbors of node
j). .e reduction is reflected in the change of source con-
tribution from φji to φji(t)<φji. Consequently, the quantity
of goods in the internal shipments sent by node j amounts to

oj(t) � 
N

i�1
φji(t)qi(t), (5)

where N is the number of controlled nodes. Denoting by M
the number of sources and by P�N+M the number of all
the nodes in the network, the amount of goods received by
node i is determined as

ui(t) � 
P

j�1
φji t − τji qi t − τji . (6)

Finally, taking into account all the node activities, the
quantity of goods at controlled node i (the on-hand stock)
evolves according to

xi(t + 1) � xi(t) + ui(t) − di(t)( 
+

− oi(t), (7)

where di(t) is the market demand imposed on node i in
period t. (f )+ �max{f, 0} denotes the saturation function that
makes the stock level nonnegative in the analyzed lost-sales
system. .e node interaction and principal system variables
are illustrated in Figure 3.

2.3.3. Demand and Sales. In the assumed framework, the
market demand imposed on the controlled nodes is modeled
as an uncertain, bounded, time-varying function of time:

0≤di(t)≤d
max
i , (8)

where dmax
i denotes the highest value expected at node i in

the planning horizon. If di(t) cannot be satisfied in full, the
node effectuates the sales as much as the on-hand stock
allows. Hence, the realized sales

hi(t) � min xi(t) + ui(t), di(t) . (9)

As a result, using (9), the stock level evolution (7) might
be expressed through

xi(t + 1) � xi(t) + ui(t) − hi(t) − oi(t). (10)

.e effectiveness of goods distribution process in the
considered network will be quantified through the customer
satisfaction ratio (CS) defined as the percentage of realized
sales with respect to the demands imposed on the controlled
nodes. Denoting the total amount of goods requested within
T periods by D and realized sales by H, one has

CS �
H

D
�


T
t�1

N
i�1hi(t)


T
t�1

N
i�1di(t)

. (11)

2.4. State-Space Representation. For convenience of the an-
alytical study and for efficient implementation on a computing
machine, the model will be put to an appropriately chosen
state-space form.

2.4.1. Topology Description. Let Φk(t) denote a diagonal
matrix corresponding to the goods traffic on the internode
links with lead time k ∈ {1, . . ., τmax}:

Φk(t) � diag 
j:τj1�k

φj1(t), . . . , 
j:τjN�k

φjN(t)
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
N×N

,

j � 1, . . . , P.

(12)

Φ0(t) will be a hollow matrix corresponding to the
internal transshipments sent in period t:

Φ0(t) � −

0 φ12(t) · · · φ1N(t)

φ21(t) 0 · · · φ2N(t)

⋮ ⋮ ⋱ ⋮

φN1(t) φN2(t) · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

φii(t)� 0 in (13) (the entries on the main diagonal) reflect
the fact that no controlled node is a source of goods for itself.
Moreover, since the network is directed, φji(t)≠ 0 implies
φij(t)� 0. An example matrix Φ0, corresponding to the
network depicted in Figure 1, equals to

SuppliersControlled node Customers Neighbors

St
oc

k

x(t)

Time

u(t)

d(t)

o(t)

Figure 2: Sequence of operations at a controlled node.
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Φ0 � −

0 0.4 0.3

0 0 0.7

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

and the other matrices

Φ1 �

0 0 0

0 0.4 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Φ2 �

1.0 0 0

0 0 0

0 0 0.7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Φ3 �

0 0 0

0 0 0

0 0 0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Φ4 �

0 0 0

0 0.6 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(15)

In the nominal operating conditions (no shortage), one
can also define a matrix

Φ � 

τmax

k�0
Φk, (16)

with an important property from the perspective of further
study specified in the following lemma.

Lemma 1. 8e inverse of Φ is a positive matrix.

Proof. It is required to show that the entries of Φ− 1 are all
nonnegative. First, it will be demonstrated that Φ is
invertible.

When goods shortage does not occur, directly from the
definition of system matrices (12) and (13), one has
Φ� I+Φ0, where I is anN×N identity matrix..e entries of
Φ0 are zero on the main diagonal, and they sum columnwise
at most to − 1. Moreover, the unidirectional property of
goods flow implies that whenever φij≠ 0, its symmetric
equivalent φji � 0. As a result, the calculation of the de-
terminant and all the leading principal minors of Φ reduces
to the triangular matrices (through the expansion formula)
with ones on the main diagonal. .us, the leading principal

minors and the determinant are all equal to one and, by
virtue of Sylvester’s criterion, Φ is positive definite and has
an inverse.

As ‖Φ0‖< 1, where ‖ · ‖ denotes induced matrix norm,
Φ− 1 can be written in the form of a series

Φ− 1
� I − − Φ0( ( 

− 1
� I + − Φ0(  + − Φ0( 

2
+ · · · . (17)

Since all the entries of − Φ0 are nonnegative, according to
(17), so are the entries of Φ− 1. Φ− 1 is thus a positive
matrix. □

2.4.2. Dynamical Description. Having grouped the variables
describing the node interaction into the vectors given in
Table 1, the system dynamics may be described in the
following state-space:

x(t + 1) � x(t) + 

τmax

k�0
Φk(t)q(t − k) − h(t). (18)

With no input preceding the phase of goods distribution,
i.e., q(t)� 0 for t< 0, using (18), the stock level in any period
t> 0 may be determined using a nonrecurrent relation

x(t) � x(0) + 

τmax

k�0


t− 1

l�0
Φk(l − k)q(l − k)

− 
t− 1

l�0
h(l) � x(0) + 

τmax

i�0


t− k− 1

l�0
Φk(l)q(l) − 

t− 1

l�0
h(l).

(19)

2.5. Classical Base-Stock Policy. .e base-stock policy is one
of the classical inventory management strategies in logistics
which determine the order quantity according to (demand
prediction neglected)

qi(t) � x
TIL
i − xi(t) − Δi(t), (20)

where xTIL
i is the target inventory level and

Δi(t) � 
j∈Θj



t− 1

l�t− τji

φji(l)qji(l), (21)

represents the goods in transit coming to node i.
Let xTIL � [xTIL

i , . . . , xTIL
N ]′ denote the vector of target

inventory levels for all the controlled nodes. Using state-space

Neighbor
(supplier)

Network
node

di(t)

ui(t)

qi(t)

hi(t)dj(t) hj(t)

oj(t)j i

qji(t) = φjiqi(t)

oji(t) = φji(t)qi(t) uji(t) = oji(t – τji)τji

φji

Figure 3: Main system variables: dashed lines represent the flow of information and solid lines represent the flow of goods. Aggregate flows
are marked through thick lines.
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description (12)–(18), the CBS policy for the analyzed goods
distribution network can be represented in the vector form as

q(t) � xTIL − x(t) − 

τmax

k�0


t− 1

l�t− k

Φk(l)q(l). (22)

.e CBS policy, when deployed in a distributed way to
preserve the autonomy of ordering decisions at the network
nodes (which can then be handled independently by different
organizations), brings a risk of system underutilization, or loss
of stability in the face of uncertain demand and delayed goods
reflow. Two theorems given below demonstrate formally that
this inopportune situation does not occur, irrespective of the
demand pattern conforming to quite general conditions (8).

First, under the assumed initial conditions: q(t< 0)� 0
and q(0)� xTIL − x(0). Since one is basically free in the choice
of xTIL, it can be adjusted with respect to the initial resources
x(0) so that a nonnegative order is placed by any node. In
turn, for t> 0, the ordering signal satisfies the condition
specified in the following theorem.

Theorem 1. For any period t> 0, the ordering signal generated
using the CBS strategy is nonnegative and bounded.

Proof. By applying (19) into (22), the quantity of goods in
the replenishment order established in period t may be
expressed as

q(t) � xTIL − x(0) − 

τmax

k�0


t− 1

l�0
Φk(l)q(l) + 

t− 1

l�0
h(l). (23)

Consequently,

q(t + 1) � xTIL − x(0) − 

τmax

k�0


t

l�0
Φk(l)q(l) + 

t

l�0
h(l)

� xTIL − x(0) − 

τmax

k�0


t− 1

l�0
Φk(l)q(l) + 

t− 1

l�0
h(l)

− 

τmax

k�0
Φk(t)q(t) + h(t)

� q(t) − 

τmax

k�0
Φk(t)q(t) + h(t)

� I − 

τmax

k�0
Φk(t)⎡⎣ ⎤⎦q(t) + h(t).

(24)

Since ∀i0≤j∈Θi
φji(t)≤ 1, one has

I − 

τmax

k�0
Φk(t) � I − 

τmax

k�1
Φk(t) − Φ0(t)≥ I − I

− Φ0(t) � − Φ0(t)> 0.

(25)

.e vector of realized sales h(t) is nonnegative (com-
ponent wise). .us, by applying (25) to (24), one obtains
q(t+ 1)≥ 0. On the other hand, ‖I − 

τmax
k�0Φk(t)‖< 1. Hence,

since (24) represents the dynamics of an asymptotically
stable linear system with state q(t) and bounded input h(t),
q(t) is bounded. □

Theorem 2. Under the CBS policy, the on-hand stock at the
network nodes does not exceed the target level, i.e.,

∀
t≥0

x(t)≤ xTIL. (26)

Proof. Initially, x(0)≤ xTIL. Assume that in a period t> 0,
x(t)≤ xTIL. It will be demonstrated that using this as-
sumption, the resources accumulated in the next
period—x(t+ 1)—do not exceed xTIL.

Since the biggest stock increase occurs under no shortage
(Φk(t)�Φk), one has from (18)

x(t + 1)≤ x(t) + 

τmax

k�0
Φkq(t − k) − h(t). (27)

Using (23) in (27) yields

x(t + 1)≤ x(t) + 

τmax

k�0
Φk xTIL − x(0) − 

τmax

i�0


t− i− 1

l�0
Φi(l)q(l)⎡⎣

+ 
t− i− 1

l�0
h(l)⎤⎦ − h(t)

� x(t) + 

τmax

k�0
Φkx

TIL
− 

τmax

k�0
Φk x(0) + 

τmax

i�0


t− i− 1

l�0
Φi(l)q(l)⎡⎣

− 
t− 1

l�0
h(l)⎤⎦ − 

τmax

k�0
Φk 

t− 1

l�t− k

h(l) − h(t).

(28)

.e terms inside the square brackets in (28) actually
equal x(t). Hence, by applying the definition Φ � 

τmax
k�0Φk,

one arrives at

x(t + 1)≤ x(t) + ΦxTIL − Φx(t) − 

τmax

k�0
Φk 

t− 1

l�t− k

h(l) − h(t).

(29)

As Φ� I+Φ0 (see the proof of Lemma 1), x(t) − Φ
x(t)� − Φ0x(t) and

x(t + 1)≤ xTIL + Φ0 xTIL − x(t)  − 

τmax

k�0
Φk 

t− 1

l�t− k

h(l) − h(t).

(30)

By definition, Φ0 has all the entries negative or null.
Since h has only nonnegative components, by virtue of the
mathematical induction one may conclude that x(t+ 1)≤
xTIL.

.eorem 1 shows that even though implemented without
any knowledge about the network structure, the CBS policy
generates a feasible sequence of ordering decisions. .eorem
2, in turn, proves that the stock level never exceeds the target
value, irrespective of the actually realized sales. What remains
to discuss is how to adjust xTIL so that cost-efficient system
operation is ensured.

Normally, one needs to recur to the numerical simu-
lations for a given demand pattern to see how the choice of
target level influences the costs. In order to limit the con-
siderable search space, a minimum value that provides full
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customer satisfaction under any demand conforming to (8)
can be indicated. A steady-state ordering sequence qss in
response to steady-state demand dss may be determined
from (24) as qss � qss − 

τmax
k�0Φ

ss
k qss + dss⟹ qss � (

τmax
k�0

Φss
k )− 1 dss, where Φss

k represents Φk(t) in the steady state.
.en, using (22), the steady-state stock level becomes

xss � xTIL − qss − 

τmax

k�1
kΦss

k qss � xTIL

− I + 

τmax

k�1
kΦss

k
⎛⎝ ⎞⎠ 

τmax

k�0
Φss

k
⎛⎝ ⎞⎠

− 1

dss.

(31)

In the extreme case, dss � dmax and Φss
k � Φk. However,

setting xTIL so that expression (31) is positive results in a
positive stock level during the goods redistribution, and full
customer satisfaction is achieved. .e lowest value of xTIL
when it happens,

xTILinit � I + 

τmax

k�1
kΦk

⎛⎝ ⎞⎠Φ− 1dmax, (32)

will be used as a departure point in the numerical procedures
to initiate genetic-algorithm-based search for optimum
cost. □

2.6. Networked Base-Stock Strategy. .e CBS policy takes a
local view of the logistic system, i.e., the decisions are
made solely based on the interaction with directly con-
nected neighbors..e idea behind a new (NBS) policy is to
judiciously introduce the information about network
interconnection structure so that the stocks (and as a
consequence the holding costs) are reduced while
maintaining a similar level of customer satisfaction as the
CBS one.

According to the NBS policy, the quantity of goods to be
acquired to replenish the stock by the controlled nodes will
be calculated as

q(t) � Φ− 1 xTIL − x(t) − 

τmax

k�0


t− 1

l�t− k

Φk(l)q(l)⎡⎣ ⎤⎦. (33)

Comparing with (22), one may notice a similar cal-
culation scheme, involving the record of on-hand stock
and goods in transit, as in the CBS policy. .erefore, the
implementation complexity does not increase. What
differs is a matrix scaling factor, Φ− 1, that is used for a
more exact adjustment of ordering decisions in the net-
worked structure, as discussed in a latter part of this
section.

Directly from (33), under the assumed zero initial input,
one has q(0) � Φ− 1[xTIL − x(0)], which is upper-bounded
and nonnegative if one assigns xTIL ≥ x(0). .e theorem
below shows that this property holds true for any t> 0.

Theorem 3. For any period t> 0, the ordering signal generated
using the NBS strategy is nonnegative and bounded.

Proof. Similarly as in (24), substituting (19) into (33) yields

q(t + 1) � Φ− 1 xTIL − x(0) − 

τmax

k�0


t

l�0
Φk(l)q(l) + 

t

l�0
h(l)⎡⎣ ⎤⎦

� Φ− 1 xTIL − x(0) − 

τmax

k�0


t− 1

l�0
Φk(l)q(l) + 

t− 1

l�0
h(l)⎡⎣ ⎤⎦

− Φ− 1


τmax

k�0
Φk(t)q(t) − h(t)⎡⎣ ⎤⎦

� q(t) − Φ− 1


τmax

k�0
Φk(t)q(t) + Φ− 1h(t)

� I − Φ− 1


τmax

k�0
Φk(t)⎡⎣ ⎤⎦q(t) + Φ− 1h(t).

(34)

Since ‖Φ− 1
τmax
k�0Φk(t)‖≤ 1, all the eigenvalues of

I − Φ− 1
τmax
k�0Φk(t) lie within the unit circle and q, evolving

according to (34), is bounded. Moreover, since q(0)≥ 0 and
h(t)≥ 0, q(t)≥ 0. □

Corollary 1. Under no goods shortage, for any t> 0, the
ordering signal generated using the NBS strategy

q(t) � Φ− 1d(t − 1). (35)

Proof. When there is no shortage of resources to sustain the
goods reflow in the network, h(t)� d(t) and 

τmax
k�0Φk(t) � Φ.

Using this fact in the last line in (34) yields

q(t) � I − Φ− 1Φ q(t − 1) + Φ− 1h(t − 1) � Φ− 1h(t − 1)

� Φ− 1d(t − 1).

(36)
□

Remark 1. In the traditionally considered framework of only
the local interactions considered (and constant order-up-to
levels), it can be shown that the CBS policy satisfies the
condition qi(t)� di(t − 1) [54], i.e., it repeats the last observed
demand. It follows from (24) that this desirable, memoryless
property no longer holds for the network constructs. Even
for the nominal—no-shortage—operational conditions, one
has q(t)� (I − Φ)q(t − 1) + d(t − 1), which implicates past
ordering decisions in the current one. Contrarily, relation
(35) shows that the NBS policy keeps generation of the
ordering sequence memoryless, thus avoiding the propa-
gation of demand fluctuations in time and the unwanted
spiral of events related, in principle, to the bullwhip effect.
However, a more profound study of these phenomena from
the perspective of complex networked structures is in place
for future research work.

Theorem 4. Under the NBS policy the on-hand stock at the
network nodes does not exceed the target level.
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Proof. Similarly as in the proof of.eorem 2, one has x(0)≤
xTIL. .e biggest stock increase occurs under no shortage.
Using (23) in (27) with Φk(t)�Φk yields

x(t + 1)≤ x(t) + 

τmax

k�0
ΦkΦ

− 1xTIL − 

τmax

k�0
ΦkΦ

− 1 x(0)

+ 

τmax

i�0


t− i− 1

l�0
Φi(l)q(l) − 

t− 1

l�0
h(l)⎤⎦

− 

τmax

k�0
ΦkΦ

− 1


t− 1

l�t− k

h(l) − h(t).

(37)

Using (19) and (16) in (37), one obtains

x(t + 1)≤ x(t) + ΦΦ− 1xTIL − ΦΦ− 1x(t) − 

τmax

k�0
ΦkΦ

− 1


t− 1

l�t− k

h(l)

− h(t) � xTIL − 

τmax

k�0
ΦkΦ

− 1


t− 1

l�t− k

h(l) − h(t).

(38)

Since h(t)≥ 0 in any period t, x(t+ 1)≤ xTIL.
It has been demonstrated formally in .eorems 2 and 4

that both the classical and networked policy limit the goods
accumulation at the network nodes up to the target level, no
matter the demand profile. .erefore, xTIL indicates the
warehouse space one needs to assign at the nodes to avoid
emergency storage. Similar to the analysis of the CBS policy,
one may establish a steady-state relationship between the
imposed demand and the stock level. Considering (38), one has

xss � xTIL − 

τmax

k�1
kΦss

k Φ
− 1dss − dss. (39)

Hence,

xTILinit � I + 

τmax

k�1
kΦkΦ

− 1⎛⎝ ⎞⎠dmax (40)

provides a lower bound for the target level to reach the no-
shortage conditions in the networked system, for the
maximum demand imposed throughout the entire distri-
bution cycle. Comparing (32) with (40), one obtains the
difference (Φ− 1 − I)dmax in terms of safety stock in favor of
the NBS policy. As documented in the numerical section for
different, time-varying demands, the NBS policy will gen-
erally require a smaller safety stock to ensure a given service
level than the CBS strategy, giving the holding cost
advantage. □

3. Numerical Study

.e performance of resource management strategies has
been investigated in a wide variety of numerical tests for the
networks with different sizes, complexity, and operational
conditions. In order to automate the tests, a dedicated
computational engine has been created. Each test case
proceeds as follows:

(1) Using the input parameters, number of controlled
nodes N, number of external sources M, number of
contact points with the market, and connection
complexity C quantified through the number of node
suppliers, the network interconnection structure is
constructed.

(2) Next, the simulation environment is prepared. It
involves choosing the simulation time, type of de-
mand distribution, and control policy (either CBS or
NBS one).

(3) .e optimization process is conducted, i.e., using
continuous genetic algorithm (CGA) (implementa-
tion details given by Ignaciuk and Wieczorek [55]),
an optimal xTIL allocation is determined..e applied
fitness function balances the priority of holding cost
(HC) reduction vs. achieved customer satisfaction
(11) through Fitness� (1 − HC/HCinitial)αCSβ, where
α> 0 and β> 0 are tuning parameters.

Altogether, 107 test instances have been run. A few
representative cases have been selected for closer exami-
nation in a latter part of this section with three major aspects
in mind:

(1) Network size (Section 3.1)—3 interconnection
structures encompassing M � 5 sources and a
varying number of controlled nodes: 5, 10, and 15
nodes

(2) Market impact (Section 3.2)—the network topology
comprising N� 10 controlled nodes and M� 5
sources with the external demand imposed on a
varying number of nodes: 3, 6, and 10 nodes

(3) Topological complexity (Section 3.3)—3 networks,
each comprising 20 nodes (N� 15, M� 5) and a
different number of suppliers supporting each
controlled node: 2, 4, and 6 suppliers, respectively

.e other simulation parameters are set as follows:

(i) Planning horizon: T� 50 periods
(ii) Lead-time delay: assigned randomly from the in-
terval [1, 5]
(iii) Market demand: generated according to the
Gamma distribution with shape and scale coefficients
equal to 5 and 10, respectively
(iv) CGA: 10 individuals in a population, 2% mutation
probability, stop condition (104 generations evaluated),
or 3·103 generations without improvement

3.1. Network Size. .e first group of tests aims at assessing
the system performance, in particular HC, in relation to the
number of nodes subject to inventory management de-
cisions. All the examined topologies assume a fixed number
of sources (M� 5) and a growing number of controlled
nodes N, as illustrated in Figure 4. .e external demands are
imposed on every node throughout the entire simulation
interval [0, T]. .e computational complexity increases
according to ⌈N/3⌉. .e optimization procedure, involving
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CGA parametrized via α� 2 and β� 15, is assumed to
provide full customer satisfaction with minimum HC.

.e data gathered in Table 2 (and illustrated graphi-
cally in Figure 5) indicate that the bigger the number of
controlled nodes, the higher the savings obtained through
the application of NBS strategy instead of the CBS one. In
the case of simple network topology from Figure 4(a), HC
is reduced from 2.02 ·104 to 1.83 ·104 units, i.e., by 9%. For
the network with 10 controlled nodes (b), the reduction
amounts to 20%, and for the largest network from
Figure 4(c), the application of the NBS policy enables one
to bring HC down by 26% with respect to the CBS strategy.

3.2. Impact of Local Market. Another significant aspect of
logistic network performance relates to the interaction
with external market, i.e., the number of contact points
(or the number of controlled nodes affected directly by
external demand). In the tests reported in this section, an
interconnection structure comprising 20 nodes (N � 15
controlled nodes and M � 5 sources) depicted in Figure 6
has been selected. .e number of contact points (marked
in bold in Figure 6) equals to 5, 10, and 15, for cases
6(a)–6(c), respectively.

.e results are summarized in Table 3. .e first net-
work under consideration (a) assumes that the market
demand is imposed on 30% of the controlled nodes. .e
resource distribution according to the CBS policy gen-
erated HC � 1.47 ·104 units and 1.14 ·104 units in the case
of NBS policy. .e advantage in favor of the NBS policy
thus amounts to 23%. With the number of contact points
increased twice (in the same topology), the HC reduction
≈21%. Finally, when each controlled node serves as a
contact point answering the external demand, the cost
reduction owing to the application of NBS instead of CBS
policy increases up to 27% (which is consistent with the
cases considered in Section 3.1). .e obtained data show
that NBS strategy outperforms the classical one irre-
spective of the number of contact points, yet the actual
benefit does not necessarily follow an increasing trend.

3.3. Topological Complexity. In order to assess the influence
of topological complexity, three distribution systems are
investigated:

(i) Weakly connected network N1 (N� 15,M� 5, C� 2)
(ii) Medium complexity networkN2 (N� 15,M� 5,C� 4)
(iii) Strongly connected networkN3 (N� 15,M� 5,C� 6)

Recall that C denotes the number of node suppliers. .e
interconnection structures are sketched in Figure 7. For
network N1 illustrated in Figure 7(a), the initial xTIL vectors,
calculated according to (32) for the CBS policy and
according to (40) for the NBS one, lead to HC of 6.6 ·105
units. With the granularity of one unit, there are 7.8 ·1045
potential solutions in the search space for the brute-force
optimization approach. Hence, even for a low-complexity
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Figure 4: Interconnection structures with a growing number of controlled nodes: (a) 5, (b) 10, and (c) 15 nodes.

Table 2: .e impact of network size on the performance of CBS
and NBS policies.

N
HC (units)

Savings (%)
CBS NBS

5 20,245 18,349 9
10 31,121 24,816 20
15 36,662 27,145 26
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Figure 5: Holding cost vs. number of controlled nodes.
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network, one needs to recur to approximate solutions, here
CGA.

.e charts in Figure 8 depict xTIL obtained for full
customer satisfaction. For a majority of controlled nodes, the
determined target level is smaller for the NBS policy than for
the classical one. In the case of network N1, this difference
translates to 33% cost reduction in favor of the networked
policy (5.2 ·104 units for the CBS policy vs. 3.5 ·104 units for
the NBS one). .e plots in Figures 8(b) and 8(c) reveal
similar tendency for networks N2 and N3.

Figure 9 illustrates how the holding cost changes in
relation to different levels of intended customer satisfaction.
.e profitability in applying the NBS policy rises with the
increase in the desired satisfaction level. While for low

service levels, e.g., 50%, the costs generated by both
policies are similar, in the typical settings of CS > 70%, the
networked policy generates significantly smaller holding
costs. Comparing the plots from Figures 9(a)–9(c), one
can notice a positive impact of enlarged internode linkage
on decreasing the holding costs for a given service level.
.e benefits are more substantial in the case of networked
policy, which generates smaller costs in all the in-
vestigated scenarios. .is observation is confirmed by the
data grouped in Table 4, which show that the savings
(CBS− CNS)/CBS for a given topology and the same de-
mand imposed on the controlled nodes can reach the level
of 60%. In the table, the cases of achieving full customer
satisfaction (CS � 100%) are marked in bold.
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Figure 6: Interconnection structures with growing impact of local market: (a) 5, (b) 10, and (c) 15 contact points.

Table 3: .e impact of market impact on the performance of CBS and NBS policies.

Number of contact points
HC (units)

Savings (%)
CBS NBS

5 14,733 11,382 23
10 45,450 35,881 21
15 47,043 34,295 27
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Figure 7: Interconnection structures with growing topological complexity: (a) 2, (b) 4, and (c) 6 node suppliers.
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.e conducted tests show a clear benefit of employing
the network structural information into the ordering de-
cision scheme. For network N2, the optimal cost equals
3.8 ·104 units (CBS) and 2.1 · 104 units (NBS), respectively.
.e reduction of holding cost is more profound than in the
case of network N1 for all the customer satisfaction levels. In
network N2, similarly to network N1, the higher the
intended CS, the bigger the benefits from using the NBS
strategy. .ese observations are confirmed for the strongly
connected network N3.

4. Summary and Conclusions

.is paper examines the use of base-stock inventory
policies in goods distribution networks with nontrivial
interconnection structures. .e nodes form links with
other nodes in the system in an arbitrary way. .e goods
redistribution process is subject to positive lead-time delay,
potentially different at each internode link, and uncertain
demand may be placed at any controlled node. .e paper
evaluates analytically the classical base-stock policy under
demand uncertainty in a robust control framework. It is
formally shown that despite the delay in goods transshipment,
the CBS policy always generates nonnegative (thus feasible)

ordering signal and finite, precisely determined stock level for
any demand pattern from a given interval. Only the upper
estimate of demand is required. Next, using the implications
from the classical policy behavior, a new base-stock policy is
established. .is networked policy, by incorporating basic
topological information, is shown to generate smaller holding
costs while maintaining all the essential properties of the
classical one.

As evaluated in extensive numerical tests, involving
genetic algorithms for policy parameter tuning, the net-
worked policy generates smaller costs than the classical one.
.ree aspects of system performance have been given em-
phasis: network size (quantified through the number of
nodes subject to ordering decisions), relations with external
actors (quantified through the number of contact points),
and complexity (quantified through the linkage density).
Depending on the service-level setting, the benefits may
range from 9% to as much as 60%. .e cost savings have
been observed in all the test cases. With full customer
satisfaction as a target, the cost savings increase from 9%,
through 21%, up to 27% with the network size growing from
5, through 10, up to 15 controlled nodes. A similar trend,
though not strictly increasing, is observed for varying the
number of nodes on which the external demand is imposed.
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Figure 8: xTIL for CBS and NBS policies with growing topological complexity: (a) 2, (b) 4, and (c) 6 node suppliers.
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Figure 9: Holding cost vs. customer satisfaction for networks: (a) N1, (b) N2, and (c) N3.

Table 4: Performance of CBS and NBS policies.

Network Desired CS (%)
HC (units)

Savings (%)
CBS NBS

N1 50 4,867 1,577 68
N1 60 6,985 2,517 64
N1 70 10,510 4,447 58
N1 80 13,312 6,412 52
N1 90 24,587 10,824 56
N1 100 52,014 34,918 33
N2 50 2,518 920 63
N2 60 4,047 1,329 67
N2 70 5,923 2,140 64
N2 80 8,959 3,714 59
N2 90 13,481 6,817 49
N2 100 38,434 21,259 45
N3 50 2,137 721 66
N3 60 3,305 1,224 63
N3 70 4,574 1,748 62
N3 80 6,420 2,899 55
N3 90 11,048 4,551 59
N3 100 24,538 11,169 54
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.e biggest advantage of using the networked policy has
been observed in the tests measuring the impact of topo-
logical complexity (Section 3.3). When full customer sat-
isfaction (under minimum holding costs) is to be obtained,
the savings can reach 60%.

While introducing minor computational change (the
value scaled by a constant matrix), the networked policy
provides substantial economic advantage over the classical
order-up-to policy. However, it assumes centralized oper-
ation under the auspices of an organization sharing common
topological information. By contrast, the classical policy can
be deployed in a distributed way, independently at each
node. .erefore, the networked policy is recommended for
organizations with well-defined, reliable information
channels. .e influence of information distortion requires
deeper evaluation as a subject of further study.
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