
Research Article
Mechanical Characteristics of Fully Grouted and Antiseismic
Bolts considering Transverse Deformation in
Underground Caverns

Buyun Yang ,1,2 Ming Xiao ,1,2 Guoqing Liu ,3 and Juntao Chen1,2

1State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
2Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University,
Wuhan 430072, China
3China Institute of Water Resources and Hydropower Research, Beijing 100048, China

Correspondence should be addressed to Ming Xiao; mxiao@whu.edu.cn

Received 17 June 2019; Revised 10 September 2019; Accepted 15 October 2019; Published 3 November 2019

Academic Editor: Peter Dabnichki

Copyright © 2019 Buyun Yang et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

/e load transfer control equations under bolt-surrounding rock interaction are established on the basis of classical beam theory
and the trilinear shear slip model. /e axial stress and transverse shear force distributions of the anchorage body are obtained by
solving the equations. /e equivalent forces obtained by the transverse force and axial shear stress of the bolts are applied to rock
mass elements to simulate the support effect. A new dynamic algorithm for bolts is proposed in considering of the axial and
transverse deformation of the anchorage body. /e rationality of the algorithm is verified by comparing with laboratory pullout
and shear tests of bolts. A dynamic time-history case study of underground caverns is conducted using this algorithm. Results
indicate that (1) the algorithm may reflect the stress and deformation characteristics of bolts during an earthquake; (2) for the
antiseismic support effect of the surrounding rock at fault, the bolt algorithm in this study is more valid than the algorithm that
considered only the axial deformation of bolts; (3) in the support force of the bolt to the surrounding rock, transverse force is the
key to limit fault dislocation and reduce the dynamic damage of the rock at fault.

1. Introduction

Southwest China is rich in water resources and has several
hydropower stations. Restricted by geological conditions,
these hydropower stations are mainly built across un-
derground rock. /e region is located at plate boundaries
with a high probability of earthquakes; therefore, the
antiseismic performance of underground caverns is di-
rectly related to the operational safety of hydropower
stations [1]. As a flexible seismic reinforcement measure,
bolt support is widely used in mining, water conservancy,
and transportation industries due to its economic, simple,
and reliable advantages. A commonly used bolt type in
underground engineering is fully grouted rock bolt. Rock
mass is strengthened by the rigidity and strength of the
bolts, and the deformation of the surrounding rock is

limited by transferring shear stress at the interface between
the anchorage body and the surrounding rock [2]. Freeman
[3] first proposed neutral point theory, which effectively
describes the axial stress of a bolt in rock mass and has
become important for analyzing bolt-surrounding rock
interaction. Recent research on axial mechanical transform
mechanisms between the anchorage body and rock mass is
mainly based on pullout tests [4–6] and theoretical models
[7–9].

/e abovementioned studies only considered the effect
of axial stress on bolts. However, in an actual rock mass,
numerous faults and joint surfaces exist. /e bolts not only
reinforce the rock mass in the axial direction but also ef-
fectively stop or delay the displacement of the joint surface
in the transverse direction [10]. /erefore, bolt mecha-
nisms that consider transverse deformation require further

Hindawi
Mathematical Problems in Engineering
Volume 2019, Article ID 3762680, 15 pages
https://doi.org/10.1155/2019/3762680

mailto:mxiao@whu.edu.cn
https://orcid.org/0000-0003-0274-4073
https://orcid.org/0000-0003-4565-5580
https://orcid.org/0000-0003-4496-8200
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3762680


study. /e effects of material, dimension, inclination,
prestress, bolt profile, rock strength, and joint roughness on
the shear resistance of bolts have been studied through tests
[11–16]. Pellet and Egger [17] determined the relationships
between axial force and deformation and transverse shear
force and bolt deformation. Jalalifar and Aziz [18] studied
the force and deformation distribution of a shear-stressed
bolt in the elastic and plastic stages and showed the re-
lationship between the plastic hinge point and transverse
deformation of the bolt. Ge and Liu [19] proposed a the-
oretical formula for estimating the shear strength of bolted
rock joints. Zhang and Liu [20] comprehensively consid-
ered the axial and transverse deformability of bolts and
proposed a deformation model of bolts under transverse
shear load.

Several studies have presented static and dynamic
calculations for bolt data using numerical methods in
underground caverns [2, 21–23]. However, these studies
have considered only the axial effect and neglected the
transverse effect of bolts on the surrounding rock. Research
on transverse deformation and force of bolts is mainly
based on small-scale bolt shear tests and analytical
methods. /e mechanical characteristics of bolts consid-
ering axial and transverse deformation and their support
effect on the surrounding rock should be studied further.
/erefore, the current study takes underground caverns as
research background, considers the axial and transverse
deformation of bolts, and establishes the governing
equations of load transfer between bolts and the sur-
rounding rock. A new analytical algorithm for a fully
grouted bolt, which is suitable for seismic time-history
analysis under complex conditions, such as joints and fault,
is proposed. /e rationality of the algorithm is verified, and
a 3D finite element method (FEM) model of underground
caverns of a hydropower station is used to study the force
and deformation regularity and support effect of bolts
under seismic load.

2. Analytical Model for Bolt-Rock Interaction

In this study, the implicit bolt element, which is buried in
rock mass element and has no effect on the division of rock
mass is used for bolt simulation [24]. /is study is mainly
based on the following assumptions: (1) the bolt is made of a
homogeneous elastic material; (2) the perfect combination
between the bolt and mortar causes them to deform to-
gether; (3) the slip failure of the bolt only occurs at the
interface between mortar and rock; (4) the transverse de-
formation of anchorage body is consistent with that of the
rock.

2.1. Transverse Deformation and Force of Bolt. /e mutual
displacement between the joint surface of the rock causes
the axial displacement uo and transverse displacement vo of
the bolt, resulting in a similar “S” deformation of the bolt.
/e mechanical model is shown in Figure 1 [25]. Point O is

the intersection of the bolt and the joint surface. /e ro-
tation angle at point B is 0. /e shear force and rotation
angle are 0, and the bending moment is the largest at point
A [18]. AO is called plastic hinge segment, and A is the
plastic hinge point [17]. No and Qo are, respectively, the
axial force and transverse shear force generated at point O
when the bolt is transversely deformed.

Segment AO in Figure 1 is simplified to a static beam,
and the force analysis of this segment is conducted on the
basis of classical beam theory, as shown in Figure 2. qx is the
reaction force concentration of the rock on the compression
side of the bolt, and its distribution along the bolt is par-
abolic [10], i.e.,

qx �
qo

l2
x
2
, (1)

where l is the length of AO, and the expression of l is
semiempirical, l �

������������
σelπD3/(σcvo)

􏽰
[18]; σel is the yield

strength of the bolt; and σc is the compressive strength of the
surrounding rock. D is the diameter of anchorage body,
D � Db + 2t, where Db is the diameter of bolt, and t is the
thickness of mortar.

/e shear force at point A is 0; thus, the force balance
analysis of AO is performed as

􏽘 Fy � 0⟹Qo �
qol

3
. (2)

/e bending moment M(x) of AO is

M(x) � Qo(l − x) −
qox4

12l2
+
1
3
qolx −

1
4
qol

2
. (3)

On the basis of the differential equation of beam de-
flection curve, the approximate deflection curve expression
of AO can be obtained by the integral of equation (3) as

v(x) � 􏽚 􏽚 Qo(l − x) −
1
4

qol
2

+
1
3

qolx −
qox4

12l2
􏼢 􏼣 + C. (4)

/e rotation angle and deflection at point A are 0; hence,
equation (4) can be transformed as

v(x) �
Qo(l − x)3

6EI
−

qox6

360EIl2
+

qolx3

18EI
−

qol2x2

8EI
+

Qol2x

2EI
−

Qol3

6EI
.

(5)
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Figure 1: Bolt deformation.
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Transverse displacement vo at point O of the bolt can be
obtained by substituting x � l into equation (5) as

vo �
Qol3

3EI
−
13qol4

180EI
. (6)

/e transverse load-displacement-controlled equation
between the bolt and rock can be obtained by combining
equations (2) and (6) into

Qo �
60voEI

7l3
, (7)

where E is the equivalent elastic modulus of the anchorage
body; Eb and Em are the elastic moduli of the bolt and
mortar, respectively; E � (EbAb + EmAm)/Aa, where Aa, Ab,
and Am are the cross-sectional area of the anchorage body,
bolt, and mortar, respectively; I is the moment of inertia of
the anchorage body, I � πD4/64.

2.2. Axial Deformation and Stress of Bolt

2.2.1. Bond Slip Model for Interface. /e trilinear shear slip
model [26] shown in Figure 3 is adopted to describe the
relationship between shear stress and shear displacement at
the interface. Shear displacement u is the relative dis-
placement between the anchorage body and surrounding
rock, i.e.,

u � ur(x) − ua(x), (8)

where ur(x) and ua(x) are the respective axial displacements
of the surrounding rock and anchorage body at x.

(1) Elastic Stage 1. /e anchoring interface is in a linear-
elastic state, and the expression is

τ � K1u, (9)

where K1 is the shear stiffness of the interface during the
elastic stage, which is calculated by the following equation
[27]:

K1 �
KrKm

Kr + Km( 􏼁
, (10)

where Kr is the shear stiffness of the rock, which can be
valued in accordance with different rock masses; Kr is 5–10
and 1.5–3GPa/m for hard and soft rock, respectively [1]. Km
is the shear stiffness of mortar, which is calculated by the
following equation [28]:

Km �
2Gm

[D ln(1 + 2t/D)]
, (11)

where Gm is the shear modulus of mortar; generally,
Gm � 0.4Em.

(2) Plastic Softening Stage 2. Shear stress decreases when the
relative displacement increases, and the expression is

τ � τ1 − K2 u − u1( 􏼁, (12)

where K2 is the shear stiffness of the interface during the
plastic softening stage; τ1 is the peak shear stress; u1 is the
relative displacement corresponding to τ1. τ1 � ci + σr
tanφi, where ci and φi are the cohesive force and internal
frictional angle of the interface, respectively; and σr is the
hydrostatic confining pressure of the rock element per-
pendicular to the anchoring surface [22].

(3) Residual Strength Stage 3. /e interface is completely
damaged, and only residual shear stress τ2 exists, namely,

τ � τ2 � σr tanφi. (13)

2.2.2. Load Transfer Differential Equation. A microsegment
of the anchorage body, which has a coordinate of x and
length of dx, is considered for study. A 1D local coordinate
system is established along the axial direction of the an-
chorage body and has a positive direction from the anchor
head to the deep rock. /e force and deformation of this
anchorage body and rock are shown in Figure 4.

/e balanced differential equation of the microsegment
is

A O

y

x

l

Joint surface

α

qx

qo

Qo

No

Figure 2: Force of segment AO in the bolt.
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Figure 3: Trilinear shear slip model.
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N(x) + dN(x) − N(x) + τ(x)πD dx � 0. (14)

/e following equation can be derived using equation
(14):

d2N(x)

dx2 + πD
dτ(x)

dx
� 0. (15)

Equations (9) and (12) are derived and, respectively,
combined with equation (8), i.e.,

dτ(x)

dx
� K1 εr(x) − εa(x)􏼂 􏼃, (16)

dτ(x)

dx
� − K2 εr(x) − εa(x)􏼂 􏼃, (17)

where N(x) is the axial force of the anchorage body at x;
τ(x) is the shear stress of the anchoring interface; εr(x) and
εa(x) are the strains corresponding to ur(x) and ua(x),
respectively.

In the transverse deformation of the bolt (shown in
Figure 1), the axial displacement uo of the bolt in point O is
composed of the deformation caused by No and MA, which
can be derived from Hooke’s law and the formula of
maximum bending moment normal stress [10], i.e.,

uo �
Nol

EAa
+

MAl

EW
�

Nol

EAa
+

Qol2

4EW
. (18)

/emicrosegment shown in Figure 4 is supposed to be a
section of a transverse deformation bolt, and x corresponds
to point O in Figure 1. /e following equation can be de-
duced from equation (18) via the geometric method:

εa(x) �
l

EAa

dN(x)

dx
+

l2

4EW

dQ(x)

dx
, (19)

where W is the bending section modulus of the anchorage
body; W � πD3/32; Q(x) is the transverse force of the bolt at

x; Q(x) � 60v(x)EI/(7l3); v(x) is the transverse displace-
ment of the bolt at x.

/e axial controlled equation for the interaction between
the rock and anchorage body can be obtained by combining
equations (16) and (17) with equations (15) and (19). /e
unified expression is

d2N(x)

dx2 − α
dN(x)

dx
+ β

dur(x)

dx
− c

dQ(x)

dx
� 0, (20)

where α � πDKl/(EAa); β � πDK; and c � 8Kl2/(ED2). K

is replaced with K1 in the elastic stage and with − K2 in the
plastic softening stage.

3. Solution of the Controlled Equation

After the excavation of underground caverns, the dis-
placement of the surrounding rock is a series of element
node displacements in the directions of x, y, and z; the
calculated ur(x) andQ(x) are discrete values./e functional
expression of N(x) is difficult to obtain through the analytic
method. /us, the finite difference method is adopted to
solve equation (20), thereby obtaining the numerical solu-
tion of N(x).

Bolt length is denoted as L and equally divided into n

segments along the axial direction. Each segment length
is h � L/n. /e starting point of the bolt near the free
surface is x � 0, and the end point is x � L. /e segmented
points are numbered in order as 1, 2, . . ., n + 1. In ac-
cordance with the finite difference principle, the corre-
sponding derivatives are replaced with the difference
quotient of segmented points, and equation (20) is
transformed as

Ni+1 − 2Ni + Ni− 1

h2 − α
Ni+1 − Ni− 1

2h
+ β

ui+1
r − ui− 1

r
2h

− c
Qi+1 − Qi− 1

2h
� 0,

(21)

where Ni, ui
r, and Qi are the values of N(x), ur(x), and Q(x)

at the i-th segmented point, respectively. /e range of i in
equation (21) is 2≤ i≤ n. When i � 1 and i � n + 1, the
following boundary conditions are needed:

N1 � N0; Nn+1 � 0, (22)

where N0 is the prestress applied to the anchor head; if no
prestress exists, N0 � 0.
Δui

r � (ui+1
r − ui− 1

r )/2 and ΔQi � (Qi+1 − Qi− 1)/2 are
taken, and equation (21) can be rewritten in a matrix form as

[M][N] +[B] Δur􏼂 􏼃 +[G] � [C][ΔQ], (23)

where

N(x)
N(x) + dN(x)

0 x x + dx

t

Db

dx X

τ(x)

τ(x)

Bolt
Mortar
Ro�

ur
uau

Figure 4: Interaction between anchorage body and rock.
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[M] �

− 2 χ2
ω3 − 2 χ3
⋱ ⋱ ⋱

ωn− 1 − 2 χn− 1

ωn − 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[N] �

N2

N3

⋮

Nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[G] �

N0

0

⋮

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[B] �

hβ

hβ

⋱

hβ

hβ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Δur􏼂 􏼃 �

Δu2
r

Δu3
r

⋮

Δun
r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[C] �

hc2

hc3

⋱

hcn− 1

hcn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[ΔQ] �

ΔQ2

ΔQ3

⋮

ΔQn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

Equation (23) is a tridiagonal linear equation system for
n − 1 element unknown variable [N], which can be solved
using the Chase method. When the interface is in different
stages, the values of parameters in equation (23) are
different.

(1) Elastic stage 1:

χi � 1 −
αh

2
,ωi � 1 +

αh

2
, α �

πDK1li

EAa

,

β � πDK1, c �
8K1l

2
i

ED2 .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

(2) Plastic softening stage 2:

χi � 1 −
α′h
2

,ωi � 1 +
α′h
2

, α′ �
− πDK2li

EAa
,

β′ � − πDK2, c′ �
− 8K2l

2
i

ED2 .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(26)

(3) Residual strength stage 3:

τi � τ2, (27)

where li �
�����������
σelπD3/(σcvi)

􏽰
and vi is the transverse dis-

placement at the i-th segmented point of the bolt.
/e expression of τ(x) can be obtained by transforming

equation(14) into

τ(x) � −
1
πD

dN(x)

dx
. (28)

N0 � N1 and Nn+2 � Nn+1 are taken, and equation (28) is
discretized by the finite difference method. /e values of
τ(x) and σ(x) at different segmented points can be calcu-
lated by

τi �

−
1
πD

N2 − N1

h
, i � 1,

−
1

2πD

Ni+1 − Ni− 1

h
, 2≤ i≤ n,

−
1
πD

Nn+1 − Nn

h
, i � n + 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

σi �
4Ni

πD2.
(30)

4. Dynamic Calculation Theory with
Bolt Support

With regard to the dynamic finite element calculation of
underground caverns, the differential equation of motion by
the Lagrange method is established as [29].

M€a � fext − fint − C _a, (31)

where M and C are the lumped mass and damping matrices
of the model nodes, respectively; €a and _a are the acceleration
and velocity of the nodes, respectively; fext and fint are the
external and internal forces of the nodes, respectively.

4.1. Mechanism of Bolt Support. /e mechanical restraint of
the bolt to the surrounding rock is reflected by its support
reaction force fmg. /e dynamic calculation differential
equation under bolt support is obtained by substituting fmg
into equation (31) as

M€a � fext − fint − C _a + fmg. (32)
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/e axial shear stresses at the interface can be equiva-
lently transformed into concentrated loads at the segmented
points. /e loads are exerted on the rock elements in an
opposite direction, which can simulate the axial support
effect of bolts. /e shear stresses are supposed to be linearly
distributed on the anchoring interface, and the equivalent
load of each segmented point is expressed as

Ti �
πDh τi + τi+1( 􏼁

2
, 1≤ i≤ n, (33)

/e three components of Ti in the global coordinate
system of the model are given as

Tx
i T

y
i Tz

i􏼈 􏼉
T

� p s w􏼈 􏼉
T
Ti, (34)

where p, s, and w are the directional cosines of the bolt.
/e plastic hinge segment li at each segmented point

must be calculated in accordance with the σc of the rock
element where the segmented point is located. Qi at the
segmented point of bolt is calculated using equation (7),
which can be exerted on rock elements in an opposite di-
rection to simulate the transverse support effect of bolts. /e
three components of Qi in the global coordinate system are
given as

Q
x
i Q

y

i Q
z
i􏼈 􏼉

T
� pi si wi􏼈 􏼉

T
Qi, (35)

where pi, si, and wi are the directional cosines of transverse
deformation at segmented points of the bolt.

In accordance with interpolation theory of shape
function, the support reaction force exerted on the rock by
the i-th segmented point of the bolt is expressed as

fmg � − NjT
k
i − NjQ

k
i , (36)

where Nj is the value of the shape function at the j-th node
of the rock element at the segmented point of the bolt. Tk

i

and Qk
i are the components of Ti and Qi in the directions of

x, y, and z in the global coordinate system, respectively.

4.2. Calculation Procedure
(1) /e seismic response results with bolt support in the

n − 1-th time step are obtained, and the free de-
formation of the surrounding rock without support
in the n-th time step can be obtained by solving
equation (31). On the basis of rock displacement,
transverse displacement vi and axial displacement ui

r
at the segmented points of the bolt are obtained
using interpolation theory of finite element shape
function. /e Qi and τi of bolts are, respectively,
calculated by equations (7), (23), and (29), and the
support force fmg in the transverse and axial di-
rections is deduced.

(2) /e support force fmg is exerted on the surrounding
rock in the n-th time step./emodel is resolved with
equation (32), the displacement of the surrounding
rock in the n-th time step with bolt supports is
obtained, and this displacement is the real de-
formations of rock with bolts support during an
earthquake.

/e detailed calculation procedure is shown in Figure 5.

5. Verification of the Numerical Model of
the Bolt

5.1. Example 1. Zhao et al. [30] conducted a bolt pullout test
and studied the distribution of axial force and shear stress
along the axial direction of the bolt under different pullout
forces. In the three test groups, the tensile force N0 is 80, 160,
and 240 kN, respectively; the physical and mechanical pa-
rameters of the materials are shown in Table 1.

During the test, the bolt was not subjected to transverse
force, and li could be considered approximately equal to L of
the bolt. /erefore, equation (19) can be rewritten as

εa(x) �
N(x)

EAa
. (37)

Equation (37) is combined with equation (20), and the
differential equation is expressed as

d2N(x)

dx2 −
πDK

EAa
N(x) + πDK

dur(x)

dx
� 0. (38)

In the test, the bolt was buried in the fixed concrete, i.e.,
ur(x) � 0. /erefore, equation (38) can be written in a
matrix form as

M′􏼂 􏼃[N] +[G] � 0, (39)

where

M′􏼂 􏼃 �

− 2 + αeh2( 􏼁 1

1 − 2 + αeh2( 􏼁 1

⋱ ⋱ ⋱

1 − 2 + αeh2( 􏼁 1

1 − 2 + αeh2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

αe �
πDK1

EAa
.

(40)

/e anchoring interface is supposed to be in the elastic
stage, and K � K1. On the basis of the parameters of rock,
mortar, and bolt, K1 can be calculated using equations (10)
and (11); K1 � 5GPa/m. /e comparison of numerical
values with the test values of the axial force and stress of the
anchoring interface are shown in Figure 6. /e numerical
values of axial force and shear stress are nearly consistent
with those of the test values, indicating that the bolt algo-
rithm proposed in this study can accurately simulate bolt
force in a pullout test.

5.2. Example 2. A transverse shear test of bolts in jointed
rock mass [31] is conducted to study the mechanical
behavior of bolts. /e schematic of the test model is shown
in Figure 7 in which the transverse shear force Qo is 102,
128, and 154N, respectively. /e distribution of the axial
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strain of bolts is obtained by strain gauges 1–3, which are
fixed on the bolt, and strain gauge 2 is close to the joint
surface. /e parameters of the materials are provided in
Table 2.

/e bolt is divided into four equal segments and five
segmented points to calculate the axial strain of the bolt
using the proposed algorithm. /e positive direction is from
strain gauge 1 to strain gauge 3, and the segmented point 3 is
located on the joint surface./e value of plastic hinge section
l3 at segment point 3 is obtained. With the value of Qo, the
transverse displacement vo at the joint surface can be cal-
culated using (7). Supposing the anchoring interface is in the
elastic stage, the transverse displacement in segmented point
3 is v3 � vo and the transverse displacements at the other

four segmented points are 0./e mortar is not considered in
this test; therefore, the expression of K1 can be rewritten as
K1 � Kr/2. On the basis of the material parameters, K1 �

2.5GPa/m is taken, and the other parameters are consistent
with the test.

Axial force N1 –N5 at the segmented points can be
obtained by solving (23), and axial force Ni and transverse
shear force Qi are substituted into (18) to obtain the axial
displacements u1

a – u5
a at the segmented points. Axial strains

ε1a – ε5a of the bolt at segmented points are obtained by
geometric relations. /e comparison of numerical values
with the test values of the axial strain of the bolt is shown in
Figure 8.

/e distribution curves of the axial strain of the bolt,
which are obtained from the test and calculation, show a
trend of “large in the middle and small at both sides.” /e
closer the bolt is to the joint, the greater its axial strain. /e
axial strains of the bolt at the segmented points are obtained
by the numerical method in this study and consistent with
the strains measured by the test, indicating that the proposed
algorithm can accurately simulate bolt deformation in a
shear test.

�e n-th time-step start

�e n-th time-step end

Calculate without bolt support

Calculate ur
i Calculate vi

Calculate Qi

Calculate τi by using (23), (29), judge the yield state of
the point by τi

State1
using (25)

Regenerate [M], [B], [C] in (23)

State2
using (26)

State3
using (27)

Circulate bolts
Loop1: m = 1, mgnum

Circulate segmented points
Loop2: i = 1, mgfd + 1

End Loop2

End Loop1

No

Yes

No

Calculate support reaction force of single bolt

τ

Yes

Calculate with bolts support

Figure 5: Flowchart of seismic response in surrounding rock with bolts support.

Table 1: Physical and mechanical parameters.

Bolt Mortar Rock
L 3m t 55mm Er 50GPa
Db 28mm Em 18GPa
σel 400MPa
Eb 41GPa
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6. Engineering Case Study

6.1. EngineeringProfile. Figure 9 shows the FEMmodel of 3#
of an underground powerhouse. /e model is mainly
composed of the main powerhouse, main transformer
cavern, and surrounding rock. /e sizes of the main pow-
erhouse and main transformer cavern are
34.5m× 30.0m× 84.2m (length×width× height) and
34.5m× 18.5m× 34.2m, respectively. /e model consists of
25,839 nodes and 22,710 hexahedron elements (eight nodes).
/e maximum mesh size is 10m which meets the required
dynamic calculation accuracy. /e calculation ranges of the
x, y, and z directions are 289.3, 47.6, and 294.1m, re-
spectively. /e buried depth of the underground power-
house is approximately 150m. /e region where the project
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Figure 6: Distribution of the axial force and shear stress of the bolt.

Table 2: Physical and mechanical parameters.

Bolt Rock
L 250mm σc 40MPa
Db 8 mm
σel 400MPa
Eb 69GPa

0
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Figure 8: Distribution of the axial strain of the bolt.

300mm
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Rock

Joint surface

Strain gauge 1

Strain gauge 2

Strain gauge 3

Figure 7: Schematic of the shear test of bolts. (a) Calculation
model. (b) Excavation model.
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is located is earthquake prone, with a basic seismic intensity
of VII. /e initial geostress field is obtained via stress in-
version of the measured points. /e disturbing stress field
after the excavation of the underground caverns is con-
sidered the initial condition for dynamic calculation. /e
blue elements are rock 1, the red elements are rock 2, and the
green elements at the top arch of the cavern are fault. /e
middle section of the model is selected as the typical section,
in which six monitoring points on the surrounding rock of
the main powerhouse and main transfer cavern are taken as
research objects (shown in Figure 10) to study the stress and
deformation of bolts and the stress and displacement re-
sponse of the surrounding rock.

6.2. Calculation Conditions. /e elastic-plastic damage
constitutive relation based on the Mohr–Coulomb criterion
is adopted for surrounding rocks, and the scalar damage
coefficient D is expressed as [29].

D �

������������

D2
1 + D2

2 + D2
3

􏽱

,

Di � 1 − exp − R

���������

εp
i − εp

0􏼐 􏼑
2

􏽲

􏼠 􏼡, i � 1, 2, 3,

εp
0 �

εp
1 + εp

2 + εp
3􏼐 􏼑

3
,

(41)

where Di is the damage coefficient of each principal stress
direction, εp

i is the plastic bias strain in the i-th principal
strain direction, and R is the material damage constant.

/e bolts in the main caverns are arranged alternately in
accordance with @1.5m × 1.5m, L � 6m/9m. /e physical

and mechanical parameters of materials are shown in Ta-
ble 3. A few bolts at the top arch of the caverns span two
different rock mass materials, rock mass 1, and fault. /e
interfaces between all bolts and the surrounding rock are
supposed to be K1 � 3GPa/m, K2 � 2GPa/m, τ1 � 2.0MPa,
and τ2 � 1.4MPa to simplify the calculation. /e input
acceleration and displacement time history (shown in Fig-
ure 11) are synthesized in accordance with the seismic
ground motion criterion of 5% exceedance probability in
50 years. /e seismic wave is input from the bottom of the
model./e x direction seismic waves are shown in Figure 11,
and the z direction seismic waves are 2/3 that of the x

direction. /e viscoelastic artificial boundary is applied to
the bottom of the model, the top is the free surface, and the

Material type

Rock2

Rock1
Fault

XY

Z

(a)

Main powerhouse

Main transformer carvern

(b)

Figure 9: 3D FEM model of underground caverns. (a) Calculation model. (b) Excavation model.

A

B C

D

E

F

Figure 10: Layout of monitoring points.
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free field artificial boundary is applied at the other sides. /e
bolt dynamic algorithm proposed in this study is embedded
into a dynamic FEM numerical simulation platform [29] to
study seismic calculation with support bolts.

6.3. Seismic Response ofUndergroundCaverns underDifferent
Support Conditions. /e influence of bolts on the anti-
seismic reinforcement of the surrounding rock is studied
under three conditions: (1) without bolt, (2) considering
only the axial deformation of bolt (the axial bolt algorithm),
and (3) considering both the axial and transverse de-
formations of the bolt.

In condition (2), the transverse deformation of the bolt is
not considered; thus, transverse force can be considered to
be approximately 0, and li can be considered approximately
equal to the length of the bolt. /erefore, control equation
(20) can be transformed into equation (38), which can be
rewritten in a matrix form as

M″􏼂 􏼃[N] +[B] Δur􏼂 􏼃 +[G] � 0, (42)

where

M″􏼂 􏼃 �

− χ 1

1 − χ 1

⋱ ⋱ ⋱

1 − χ 1

1 − χ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

in stage 1, χ � 2 + (πDK1/EAa)h
2; in stage 2,

χ � 2 − (πDK2/EAa)h
2. /e other parameters are consistent

with those in Section 3.

6.3.1. Analysis on the Axial Force of Bolts. /e distribution
regularities of the normal and shear stress of bolts A and B
under conditions (2) and (3) conform to neutral point
theory. /e maximal normal stress appears at the neutral
point, whereas the shear stress at both sides of the bolts
reaches the maximum, as shown in Figure 12. Under
condition (3), the maximal normal stress of bolt A increases
considerably compared with that of condition (2), whereas
the maximal normal stress of the bolt B increases slightly.
Bolt A at fault has a large transverse deformation, whereas
the transverse deformation of bolt B at the sidewall is small.
/e axial and transverse deformation of the bolt both
contribute to the axial force for the algorithm in this study.
/erefore, using the proposed algorithm can improve the
support effect of bolts on the surrounding rock in the axial
direction.

6.3.2. Analysis on the Transverse Force of Bolts. Using the
bolt algorithm proposed in this study, Figure 13 shows
the distribution regularity of the transverse deformation
and force of bolts A, B, C, and D after an earthquake. Bolts
A and D located at fault have large transverse de-
formation and force near the interface between the fault
and rock 1, and bolts B and C at the sidewall have almost

Table 3: Physical and mechanical parameters.

Rock 1 Fault Rock 2 Mortar Bolt Interface
Er 15GPa Er 5 GPa Er 17.5 GPa Em 10GPa Eb 210GPa ci 0.8MPa
μr 0.25 μr 0.3 μr 0.25 μm 0.167 σel 360MPa φi 30°
cr 1.3MPa cr 0.3MPa cr 1.4MPa t 8mm Db 28mm
φr 47.5° φr 26.6° φr 48.2°
σt 2MPa σt 0.6MPa σt 2.4MPa
σc 60MPa σc 30MPa σc 70MPa
K1 3GPa/m K1 3 GPa/m
K2 2GPa/m K2 2 GPa/m
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Figure 11: Time-history of the input acceleration and displacement.
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no transverse deformation and force. A transverse de-
formation of bolts can produce transverse force, which is
the key to restraint dislocation between fault and rock
mass. /e bolts that pass through faults or joints undergo
large transverse deformation at joints under seismic
loads. /erefore, the axial bolt algorithm cannot fully
reflect the support effect in a complex rock mass envi-
ronment. /e dynamic bolt algorithm, which considers
both axial and transverse deformations, is necessary for
practical engineering.

6.3.3. Displacement Response of Surrounding Rock. In this
study, the relative displacement of monitoring points with
the corresponding center points (E and F) of the floor on the
typical section in the x direction is taken to reflect the
deformation law of surrounding rock. Figure 14(a) shows
the relative displacement time history of points A and B with
the corresponding center point E under three different
conditions. /e three time-history curves of point A are
different in amplitude, whereas the three curves of point B
are similar in waveform and wave distribution. /e relative
displacement peak of monitoring points (A, B, C, and D) is
shown in Figure 14(b). /e relative displacement peak of
points A and D under condition (3) is lower than that under
conditions (1) and (2), whereas the relative displacement
peak of points B and C at the sidewall has minimal difference
under the three conditions. /e bolt algorithm has an in-
considerable influence on the numerical results of sidewall
deformation, but considering the transverse deformation
and force of bolts can effectively reduce the deformation of
fault at the top arch.

6.3.4. Stress Response of Surrounding Rock. /e tensile
strength of rock is much smaller than its compressive

strength; thus, tension fracture is a common failure form
of rock material. /e maximum principal stress time
histories of point A under three conditions are taken for
analysis (as shown in Figure 15(a)). /e maximum
principal stresses are mainly compressive stresses, and the
fluctuation amplitudes of these curves are small in the
period of 0–1.8 s. From 1.8 s to 7.2 s, the curves fluctuate
violently, with their fluctuation ranging from − 0.46MPa
to 0.82MPa. In the period of 7.2–20 s, the fluctuation
tends to be steady. A comparison of Figures 11(a) and
15(a) shows that the time when the maximum principal
stress at point A occurs under the three conditions is
consistent with the time when maximum acceleration
occurs. /e maximum principal stress time-history
curves are similar to the input acceleration curve, in-
dicating that the stress response of the surrounding rock
is affected by the input seismic wave. /e stress responses
are greatly different for point A under three conditions.
/e fluctuations of maximum principal stress are most
intense under condition (1), and the fluctuations are
lowest under condition (3). /e effects of bolt support on
the peak values of maximum principal stresses are shown
in Figure 15(b). /e peak values of the maximum prin-
cipal stress decrease considerably when considering bolt
support. /e peaks of the maximum principal stress of the
top arches (points A and D) under condition (2) are larger
than those under condition (3), whereas the peaks of the
maximum principal stress of the sidewalls (points B and
C) are not much different under conditions (2) and (3).
Hence, the stress response of fault can be reduced ef-
fectively by using the bolt algorithm proposed in this
study.

6.3.5. Damage Coefficient of Surrounding Rock. /e damage
coefficient of surrounding rock can directly reflect its
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Figure 12: Stress distributions of monitoring bolts A and B. (a) Axial force stress. (b) Axial shear stress.
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seismic damage degree. /e distributions of damage co-
efficient on the typical section under three conditions after
the earthquake are plotted in Figure 16. /e damage zone
without bolt support is mainly distributed at the top arches
and sidewalls of the main powerhouse and main trans-
former cavern and the intersection of the main power-
house with tailrace tunnel, diversion tunnel, and main
electrical wire hall (as shown in Figure 16(a)). /e damage
coefficient for majority of the area is approximately 0.5.
Damage is most serious at the top of the caverns, which are
crossed by fault, and the maximum damage coefficient
exceeds 0.9. When considering the axial support of bolts,
the damage area and degree of surrounding rock are

considerably reduced, while the damage coefficient of
sidewalls and the intersections of caverns are reduced to
0.3. However, the damage coefficient of the top arches
remains large; the maximum of which is approximately 0.8
(as shown in Figure 16(b)). Compared with Figure 16(b),
Figure 16(c) depicts that the damage degree, which is
obtained by the proposed bolt algorithm, at the top arches
of the caverns is considerably reduced. /e damage co-
efficient for majority of the top arches is approximately 0.3,
and the maximum damage coefficient does not exceed 0.5.
/erefore, the transverse support of bolts can effectively
reduce the damage degree of the surrounding rock at the
fault under seismic load.
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Figure 14: Displacement response under different conditions. (a) Relative displacement time histories of monitoring points A and B in the x

direction. (b) Peak values of relative displacement for monitoring points in the x direction.
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Figure 13: Transverse deformation and force of monitoring bolts.
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7. Conclusions

On the basis of classical beam theory and the trilinear shear
slip model, a new dynamic algorithm that considers the axial
and transverse deformations of bolts is proposed. /e al-
gorithm is applied to the seismic support analysis of an
underground project, and the following conclusions are
drawn:

(1) /e proposed dynamic algorithm fully considers the
characteristic of slippage and yield of interface be-
tween the anchorage body and surrounding rock and
the transverse deformation characteristic of bolts.
/e algorithm can effectively simulate the stress and
deformation of bolts located at faults or joints under
seismic load. /e rationality and feasibility of the

dynamic algorithm are verified through comparison
using pullout data and a shear test of bolts.

(2) /e distribution of the axial normal and shear
stresses of bolts obtained by the proposed algorithm
is similar to the results calculated by the axial bolt
algorithm; both of which fit in with neutral point
theory. However, the proposed algorithm is more
effective in restraining the surrounding rock in the
axial direction of the bolts due to the contribution of
the transverse deformation to the axial force. /e
bolts located at the fault have large transverse de-
formation, whereas the bolts located at the rock
without joint or fault have no transverse de-
formation. /is result indicates that the transverse
deformation of bolts in complex rock environment
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Figure 16: Damage coefficient distribution of typical section under different conditions.
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Figure 15: Maximum principal stress under different conditions. (a) Stress time histories of point A. (b) Peak values of maximum principal
stress.
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conditions during an earthquake should be
considered.

(3) Bolt support can effectively reduce the x directional
deformation of the fault at the top arches of the
caverns, and exerts a minimal effect on the sidewalls.
/e x directional deformation of the top arches
under earthquake calculated by the proposed bolt
algorithm is lower than that calculated by the axial
bolt algorithm, which indicates that the transverse
force of bolts affects the restriction of the mutual slip
of rock masses at the fault. After considering bolt
support, the maximum principal stress of the sur-
rounding rock is considerably reduced under seismic
load, and the reduction extent of the maximum
principal stress of the fault calculated by the pro-
posed bolt algorithm is greater than that calculated
by the axial bolt algorithm. Considering bolt support
can effectively reduce the damage degree of the entire
underground caverns, and the reduction extent of
damage for the surrounding rock at the fault cal-
culated by the proposed bolt algorithm is more re-
markable than that calculated by the axial bolt
algorithm.
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