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Interference or competition among predators (CAP) has often been ruled out in depredation models, although there are varied
mathematical forms to describe and incorporate it into this interaction. In this work, we present the most known of these
descriptions and one of them will be used in a modified Volterra model. Moreover, of this ecological phenomenon, a simple and
strong Allee effect affecting the prey population will be considered in the relationship. An important feature of the new model is
to have until two positive equilibrium points, to the difference with the Volterra model (without Allee effect); hence different and
interesting dynamic situations appear in the system. Conditions for the existence and local stability of equilibria are determined.
The boundedness of solutions, the existence of a limit cycle and a separatrix curve are also proven. Besides, the main properties of
the model are examined from an ecological point of view. To make a comparative discussion of our results, an Appendix is added
with the main properties of models, in which neither the Allee effect nor the competition among predators is considered. Some
simulations are shown to endorse our results.

1. Introduction

Usually, the analysis of predator-prey models considers dif-
ferent ecological phenomena affecting either one population
or both populations. These phenomena can have strong con-
sequences in the relationship between them and modifying
the dynamical properties of a system describing it [1, 2].

Such is the case of an Allee effect affecting the prey
population or else, the competition among predators (CAP)
[3]; nonetheless, there are not enough studies to determine
the real impact of these two phenomena in that dynamical
relationship, when both act simultaneously in the interaction.

Moreover, differentmathematical formulations have been
given for each of these phenomena; as it has been shown in
previous works [3], diverse mathematical forms for the same
phenomenon can produce changes in the properties of the
system describing the interaction [1]. Then, a comparative

study using another modeling for these phenomena must be
also realized in the future. To determine the influence of these
mathematical expressions in the dynamics of the systems is an
interesting objective to the modelers.

So, in this work amodified Volterramodel [4] is analyzed,
in which the functional response is linear, assuming that (i)
the prey growth rate is affected by a strong Allee effect [5] and
(ii) there exists self-interference (interference) or competition
among predators (CAP) [6].

1.1. Interference or Competition among Predators. The strug-
gle among living things, for food, space, etc., is well known
(competition in the survival of the fittest [7]); particularly, the
competition among predators for prey or other resources [6]
is one of them.

Obviously, intraspecific competitive interactions between
individual predators can affect the birth and death rates
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of their whole population [4]. Furthermore, antagonistic
interactions may also affect predator efficiency in finding and
killing prey [4], which can imply the modification of the
predator functional response on the models.

Different behaviors of predator influencing the interrela-
tion between prey and predator can be assumed, for example,
behavior typical of territorial animals where individuals
“waste time” in direct contests, thereby decreasing the time
each could otherwise devote to foraging (searching for or
handling prey); spatially aggregated predators and prey and
so on [8].

Diverse mathematical forms to express the competition
(or interference) among predators (CAP) have beenproposed
in the ecological literature and described in the followingway:

(I)The early expression forCAPwas formulated indepen-
dently in 1975 by J. A. Beddington [9] and D. DeAngelis and
coworkers [10], proposing a new functional response. They
modify the hyperbolic Holling type II functional response, by
adding a term in the denominator, obtaining a new functional
response, dependent of two interacting populations and given
by ℎ (𝑥, 𝑦) = 𝑞𝑥𝑎 + 𝑏𝑥 + 𝑐𝑦 , with 𝑞, 𝑎, 𝑏, 𝑐 > 0, (1)

where 𝑥 and 𝑦 stand for the prey population size and
the predator population size, respectively. The term 𝑐𝑦 in
the denominator expresses the mutual interference among
predators [11].

Although this function combines the hyperbolic response
with self-interference among predators, [12] made a deduc-
tion involving prey refuges use instead of the CAP.

(II) A second form to express the competence among
predatorswas formulated byHerbert I. Freedman in 1979 [13],
modifying the assumption of the usual models that the total
prey death rate is the predator functional response times the
number of predators [13]. He proposed the functionℎ (𝑥, 𝑦) = ℎ (𝑥) 𝑦𝑛, (2)

with 𝑛 being the mutual interference constant such that0 < 𝑛 ≤ 1, and ℎ(𝑥) is the prey-dependent functional
response of predator.

Following C. W. Clark [14], the function 𝐵(𝑦) = 𝑦𝑛
expresses the congestion among fishing vessels (the men as
predators) harvesting a fish school, resulting in decreasing of
catch-rates.

(III) The third form to describe the CAP is given by
a negative quadratic term added into the predator growth
equation [6]. Hence, the function takes the form𝜙 (𝑦) = −𝑐𝑦 − 𝑒𝑦2, with 𝑐, and 𝑒 > 0. (3)

In this case, it is assumed that the predator population be
reduced by other causes as the size of the habitat suitable for
the predator to live and reproduce there [6].

In our work, we model the CAP with this last form
presented in the Bazykin’s book [6]; moreover, we consider
the linear functional response independent of predator den-
sity (i.e., only prey dependent), which means that any single

predator affects the prey population growth rate indepen-
dently of its conspecifics [15].

We note that if in the function 𝜙 is added a quadratic
positive term, i.e., 𝜙(𝑦) = −𝑐𝑦 + 𝑒𝑦2, with 𝑐 and 𝑒 > 0, it
has the description of the cooperation or collaboration among
predators [16]. This is also a frequent social behavior in
nature, used by some predators to enhance their efficiency in
the consumption of prey [16].

1.2. The Allee Effect. It is well known that any mechanism
describing a positive correlation between a component of
individual fitness and the population size of conspecifics can
be named as an Allee effect [17–19].

This phenomenon, called after the American ecologist
Warder Clayde Allee (1885-1955), is also known under dif-
ferent names; it has also been named as density dependence
or positive density dependence and other names in Population
Dynamics [17, 20] or depensation in Fisheries Sciences [14,
20].

Populations can exhibit Allee effect dynamics due to a
wide range of biological phenomena, for example, reduced
antipredator vigilance, social thermoregulation, genetic drift,
mating difficulty, reduced antipredator defense, and deficient
feeding at low densities; however, several other causes may
lead to this phenomenon (see [21] or [5]).

This ecological phenomenon can be classified into three
main types called strongAllee effect [22] or critical depensation
[14, 20], weak Allee effect [19] or noncritical depensation [14,
20], and special weak Allee effect.

Thestrong Allee effect implies the existence of a threshold
population level 𝑚 > 0 [6, 23, 24], under which the
population becomes extinct.This requires that the population
growth rate be negative for population sizes minor than 𝑚.

Many continuous time equations have been used to
model the Allee effect [23], although most of them are
topologically equivalent [25]; i.e., solutions have the same
qualitative behavior.

The most familiar equation is described by𝑑𝑥𝑑𝑡 = 𝑟 (1 − 𝑥𝐾) (𝑥 − 𝑚)𝑥 (4)

where 𝑥 = 𝑥(𝑡) indicates the population size of a
species in an environmental [24].The parameters 𝑟 and𝐾 are
positives; meanwhile 𝑚 can be positive, negative or zero. It
has, respectively, a strong (𝑚 > 0), a weak (𝑚 < 0), or special
(𝑚 = 0) weak Allee effect.

By ecological reason 𝑚 ≪ 𝐾 since is a population
threshold under the growth population rate is negative [17,
18]. We note that if𝑚 < −𝐾 there is not an Allee effect.

Diverse ecological research suggests that two or more
Allee effects can lead to mechanisms acting simultaneously
on a single population (see [21]); the combined influence of
some of these phenomena is known asmultiple (double) Allee
effect [21]. In these cases, most complicated equations are
proposed [3, 26], such as𝑑𝑥𝑑𝑡 = 𝑟 (1 − 𝑥𝐾)(1 − 𝑚 + 𝑛𝑥 + 𝑛 ) 𝑥,
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Figure 1: Intersection of isoclines of the prey V = (1 − 𝑢)(𝑢 − 𝑀) (in blue) and of the predators V = (𝑢 − 𝐶)/𝐸 (in green), according the
different values of 𝐸,𝑀 and 𝐶. We note there exist two positive equilibrium points if 𝐶 < 𝑀/(1 +𝑀).

𝑑𝑥𝑑𝑡 = 𝑟 (1 − 𝑥𝐾)𝑥 − 𝑛𝑥𝑥 + 𝑏 ,
(5)

which was presented in [23].
However, when they are considered in predator-prey

models can produce changes in the dynamical of the system,
particularly on the number of limit cycles of the system [3,
26], and the existence of separatrix curves for the trajectories.

This article is organized as follows:Themodel and general
settings are presented in Section 2; in Section 3 we obtain
the main results on the boundedness of trajectories, the local
nature of equilibrium points and in the last Section the
ecological implications of our findings are given.

The obtained results will be compared with the predator-
prey model in which competition among predators is not
considered, partially studied in the book by Kot [24]; also
it will be compared with the model considering double
Allee effect [5, 21], without self-interference among predators
analyzed in [1, 2].

2. The Model

Using the simplest way to describe the Allee effect and
expressing the action of many predators in the interaction,
considering CAP (self-interference) as in the logistic growth
rate. Thus, the model is described by the bidimensional
system of Kolmogorov type [27]:

𝑋𝜇 : {{{{{
𝑑𝑥𝑑𝑡 = 𝑟 (1 − 𝑥𝐾) (𝑥 − 𝑚)𝑥 − 𝑞𝑥𝑦𝑑𝑦𝑑𝑡 = (𝑝𝑥 − 𝑐 − 𝑒𝑦) 𝑦, (6)

where 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡) represent the prey and
predator population size, respectively for 𝑡 ≥ 0 (measured
in number of individuals, density by area or volume unit
or biomass); the parameters are all positives, i.e., 𝜇 =(𝑟,𝐾, 𝑞, 𝑝, 𝑐, 𝑒, 𝑚) ∈ R7+, with −𝐾 < 𝑚 ≪ 𝐾.

In this work, we consider only 𝑚 > 0, i.e., the prey
population is affected by a strong Allee effect.

The parameters have the following ecological meanings:𝑟 is the intrinsic prey growth rate or biotic potential𝐾 is the prey environmental carrying capacity𝑚 > 0 is the strong Allee effect threshold or theminimum
of viable prey population𝑞 is the quantity of prey that can be eaten by a predator in
each time unit𝑝 is the efficiency with which predators convert con-
sumed prey into new predators𝑐 is the natural death rate of predators𝑒 is the level of the struggle among predators.

Particularly, the term −𝑒𝑦2 represents interspecific
density-restricted effects on the predators [6, 28].

System (6) describes a generalized Gause-type predator-
prey model [27], which does not obey the mass action
principle [29]. It is of Kolmogorov type [27], defined onΩ = {(𝑥, 𝑦) ∈ R2/0 ≤ 𝑥, 0 ≤ 𝑦} . (7)

The equilibrium points are (0, 0), (𝐾, 0) and the points(𝑥𝑒, 𝑦𝑒) lie on the isoclines 𝑟(1 − 𝑥/𝐾)(𝑥 − 𝑚) − 𝑞𝑦 = 0 and𝑝𝑥 − 𝑐 − 𝑒𝑦 = 0.
It must be remembered that if 𝑒 = 0, the obtained system

is partially studied in the book by M. Kot [24]. Assuming
that the prey is affected simoustanly by two Allee effects, the
modified system is analyzed in [1], showing a richer dynamics
than the model studied in Kot [24].

Setting 𝑑𝑦/𝑑𝑡 = 0, we find that equation (6) generates
a slanted predator isocline that passes through the point(0, −𝑐/𝑒), out of the first quadrant. With a predator isocline
of this type, two positive equilibrium points can appear, one
of multiplicity two or none (see Figure 1).

The positive slope of the predator isocline reflects direct
density dependence and could have a stabilizing influence.
Nonetheless, we prove the unique positive equilibrium point
may be unstable, generating a stable limit cycle.
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With the objective of to make a comparative study, we
summarize in the Appendix, the properties of two related
models with the model described by the system (6).

(i) Volterra model with competition among predators is
studied in [6] and given by

𝑋𝜌 : {{{{{
𝑑𝑥𝑑𝑡 = 𝑟 (1 − 𝑥𝐾)𝑥 − 𝑞𝑥𝑦𝑑𝑦𝑑𝑡 = (𝑝𝑥 − 𝑐 − 𝑒𝑦) 𝑦 (8)

with 𝜌 = (𝑟, 𝐾, 𝑞, 𝑝, 𝑐, 𝑒) ∈ R6+.
(ii)TheVolterra model with Allee effect on prey is studied

in [24], described by

𝑋𝜎 : {{{{{
𝑑𝑥𝑑𝑡 = 𝑟 (1 − 𝑥𝐾) (𝑥 − 𝑚)𝑥 − 𝑞𝑥𝑦𝑑𝑦𝑑𝑡 = (𝑝𝑥 − 𝑐) 𝑦 (9)

with 𝜎 = (𝑟, 𝐾, 𝑞, 𝑝, 𝑐,𝑚) ∈ R5+×] − 𝐾,𝐾[.
3. Main Results

To simplify the calculations, following the methodology of [1,
2, 26], we make a reparameterization of the vector field 𝑋𝜇
considering the change of variables and a time rescaling given
by a diffeomorphism [30, 31]𝜑 : Ω×R 󳨀→ Ω×R, withΩ = {(𝑢, V) ∈ R2/𝑢 ≥ 0, V ≥ 0},
such that 𝜑 (𝑢, V, 𝜏) = (𝐾𝑢, 𝑟𝐾𝑞 V, 1𝑟𝐾𝜏) = (𝑥, 𝑦, 𝑡) . (10)

Proposition 1. Topologically equivalent systems
System (6) is topologically equivalent to

𝑌𝜂 : {{{{{
𝑑𝑢𝑑𝜏 = ((1 − 𝑢) (𝑢 −𝑀) − V) 𝑢𝑑V𝑑𝜏 = 𝐵 (𝑢 − 𝐶 − 𝐸V) V (11)

defined in the set Ω = {(𝑢, V) ∈ R2/𝑢 ≥ 0, V ≥ 0}, with𝜂 = (𝑀,𝐵, 𝐶, 𝐸) ∈] − 1, 1[×R3+ where 𝑀 = 𝑚/𝐾, 𝐵 = 𝑝/𝑟,𝐶 = 𝑐/𝑝𝐾 and 𝐸 = 𝑒𝑟/𝑝𝑞.
Proof. Using the change of variables given by 𝑥 = 𝐾𝑢 and𝑦 = (𝑟𝐾/𝑞)V, replacing in (6), we have 𝑑𝑥/𝑑𝑡 = 𝐾(𝑑𝑢/𝑑𝑡)
and 𝑑𝑦/𝑑𝑡 = (𝑟𝐾/𝑞)(𝑑V/𝑑𝑡) obtaining a new system given by

𝑈𝜇 : {{{{{{{
𝑑𝑢𝑑𝑡 = (𝑟𝐾 (1 − 𝑢) (𝑢 − 𝑚𝐾) − 𝑟𝐾V)𝑢𝑑V𝑑𝑡 = 𝑝𝐾(𝑢 − 𝑐𝑝𝐾 − 𝑒𝑟𝑝𝑞V) V (12)

or,

𝑈𝜇 : {{{{{{{
𝑑𝑢𝑑𝑡 = 𝑟𝐾((1 − 𝑢) (𝑢 − 𝑚𝐾) − V) 𝑢𝑑V𝑑𝑡 = 𝑝𝐾(𝑢 − 𝑐𝑝𝐾 − 𝑒𝑟𝑝𝑞V) V (13)

By means of the time rescaling given by 𝜏 = 𝑟𝐾𝑡 and by
using the chain rule, it follows that

𝑉𝜇 : {{{{{{{
𝑑𝑢𝑑𝜏 = ((1 − 𝑢) (𝑢 − 𝑚𝐾) − V) 𝑢𝑑V𝑑𝜏 = 𝑝𝑟 (𝑢 − 𝑐𝑝𝐾 − 𝑒𝑟𝑝𝑞V) V (14)

Renaming the parameters by𝑀 = 𝑚/𝐾, 𝐵 = 𝑝/𝑟, 𝐶 =𝑐/𝑝𝐾 and 𝐸 = 𝑒𝑟/𝑝𝑞 this becomes system (8).

Remark 2. The Jacobian matrix of 𝜑 is
𝐷𝜑 (𝑢, V, 𝜏) = (𝐾 0 00 𝑟𝐾𝑞 00 0 1𝑟𝐾) (15)

and det𝐷𝜑(𝑢, V, 𝜏) = 𝐾/𝑞 > 0.
Then, the diffeomorphism 𝜑 is a smooth change of

variables with a rescaling of the time preserving the time
orientation. Hence, from (6) we obtain a qualitatively (topo-
logically) equivalent vector field 𝑌𝜂 = 𝜑 ∘ 𝑋𝜇, which has the
form 𝑌𝜂 = 𝑃(𝑢, V)(𝜕/𝜕𝑢) + 𝑄(𝑢, V)(𝜕/𝜕V) [31], where 𝑃(𝑢, V)
and 𝑄(𝑢, V) are the right sides of system (11). Clearly, the
associated second order differential equations system is the
Kolmogorov type polynomial (11) [27].

Our study is divided into three cases: when𝑀 ∈]0, 1[, the
special case𝑀 = 0 and when𝑀 < 0.
3.1. Number of Positive Equilibria. The equilibrium points of
system (11) or singularities of vector field 𝑌𝜂 are (0, 0), (1, 0),
and (𝑀, 0) if𝑀 > 0; the positive equilibrium points lie in the
intersection of the null clinic, which are the parabolic curve
V = (1−𝑢)(𝑢 −𝑀) and the slanted straight line V = (𝑢−𝐶)/𝐸
(see Figure 1).

It is clear that the straight line V = (𝑢 − 𝐶)/𝐸 has slope𝜇 = 1/𝐸 and it intercepts the 𝑥 and 𝑦 − 𝑎𝑥𝑖𝑠 at the points(0, −𝐶/𝐸) and (𝐶, 0), respectively. The number of the positive
equilibrium points depends on the relation between 𝑀 and𝐶 and the slope 𝜇.

Furthermore, the abscise 𝑢 of positive equilibrium points
satisfies the equation of second degree:𝑝 (𝑢) = 𝐸𝑢2 − ((𝑀 + 1)𝐸 − 1) 𝑢 + (𝑀𝐸 − 𝐶) = 0. (16)

(a) If 𝑀 > 0, and according to the Descartes’s sign
Rule, equation (16) can have two real positive roots, one
of multiplicity 2, or none positive. So, (𝑢𝑒, V𝑒) is a positive
equilibrium point, if and only if 𝑢𝑒 − 𝐶 > 0 and (1 − 𝑢𝑒)(𝑢𝑒 −𝑀) > 0, i.e., 0 < max{𝐶,𝑀} < 𝑢𝑒 < 1.

A particular case is obtained when 𝐸 = 1; equation (16)
becomes 𝑝 (𝑢) = 𝑢2 −𝑀𝑢 + (𝑀 − 𝐶) = 0. (17)

which can has two real positive roots, if𝑀 > 𝐶.
(b) If𝑀 = 0, equation (16) becomes𝑝 (𝑢) = 𝐸𝑢2 − (𝐸 − 1) 𝑢 − 𝐶 = 0, (∗)
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which has a unique real positive root, for any value of the
parameter 𝐸.

(c) If𝑀 < 0, the factor𝑀𝐸−𝐶 of equation (16) is negative.
Then, any being the sign of the factor (𝑀 + 1)𝐸 − 1, equation
(9) has a unique positive solution 𝑢𝑒.This implies a significant
difference between the cases of strong and weak Allee effect.

Besides, we note that there is a difference in the dynamics
of system (11) with the case in which𝐸 = 0, i.e., when the CAP
does not exist [24].

The number of the positive equilibria of equation (16) can
be resumed in the following proposition.

Lemma 3. Number of positive equilibria considering strong
Allee effect

Assuming that𝑀 > 0, let us Δ = ((𝑀+1)𝐸−1)2−4(𝑀𝐸−𝐶)𝐸. For equation (16) we have the following classification:
(A) Supposing𝑀𝐸 + 𝐸 − 1 > 0 and𝑀𝐸 − 𝐶 > 0, then:
(A1) If Δ > 0, there exist two real positive solutions𝑢1 = 12𝐸 (𝑀𝐸 + 𝐸 − 1 − √Δ) ,𝑢2 = 12𝐸 (𝑀𝐸 + 𝐸 − 1 + √Δ) . (18)

with, 0 < 𝑢1 < 𝑢2 < 1. Notice that 𝑢1 and 𝑢2 do not depend
on the parameter 𝐵.

(A2) If Δ = 0, there exists a unique real positive solution𝑢∗ = 12𝐸 (𝑀𝐸 + 𝐸 − 1) (19)

collapse of 𝑢1 and 𝑢2.
(A3) If Δ < 0, there do not exist real solutions.
(B)𝑀𝐸 + 𝐸 − 1 > 0 and𝑀𝐸 − 𝐶 = 0, it has𝑢3 = 𝑀𝐸 + 𝐸 − 1𝐸 ,𝑢4 = 0. (20)

(C) Assuming that𝑀𝐸+𝐸−1 > 0 and𝑀𝐸−𝐶 < 0, it has𝑢1 < 0 < 𝑢2 = 12𝐸 (𝐸 (𝑀 + 1) − 1 + √Δ) . (21)

(D)𝑀𝐸 + 𝐸 − 1 = 0 and𝑀𝐸 − 𝐶 > 0, there do not exist
real solutions.

(E)𝑀𝐸+𝐸− 1 = 0 and𝑀𝐸−𝐶 < 0, there exists a unique
real positive solution,

𝑢1 < 0 < 𝑢2 = √𝑀𝐸 − 𝐶𝐸 . (22)

(F)𝑀𝐸 + 𝐸 − 1 < 0 and𝑀𝐸 − 𝐶 = 0, there do not exist
real solutions.

(G)𝑀𝐸+𝐸−1 < 0 and𝑀𝐸−𝐶 < 0, there exists a unique
real positive solution,𝑢2 = 12𝐸 (𝐸 (𝑀 + 1) − 1 + √Δ) . (23)

Table 1: Number of positive real roots of equation (16).

Case 𝑀𝐸 + 𝐸 − 1 𝑀𝐸 − 𝐶 Δ Positive real roots
(A1) + + + 2
(A2) + + 0 1
(A3) + + − 0
(B) + 0 + 1
(C) + − + 1
(D) 0 + − 0
(E) 0 − + 1
(F) − 0 + 0
(G) − − + 1
(H) 0 0 0 0

(H)𝑀𝐸+𝐸−1 = 0 and𝑀𝐸−𝐶 = 0, there exists a unique
real solution 𝑢 = 0, of multiplicity 2.

Proof. It is immediate.

Therefore, the number of positive equilibrium points
follows from the lemma above, and the different cases
obtained are displayed in Table 1.

So, in the cases (𝐴3), (𝐷), (𝐹) and (𝐻), the points (0, 0)
and (𝑀, 0) are the equilibrium points of system.

The distinct positions in the plane (𝑀,𝐸) of the factors𝑀𝐸+𝐸− 1 = 0 and𝑀𝐸−𝐶 = 0 of equation (16) are given in
the Figure 2, for different values of 𝐶.
Remark 4. We note that

(i) if 𝑀 = 0, then Δ = 4𝐶𝐸 + (𝐸 − 1)2, confirming the
existence of a unique solution.

(ii) if𝑀 < 0, then√Δ = √(𝑀𝐸 + 𝐸 − 1)2 − 4 (𝑀𝐸 − 𝐶) 𝐸> (𝑀𝐸 + 𝐸 − 1) (24)

and it exists a unique solution of (9).

To determine the nature local of the equilibrium points
we will use the Jacobian matrix given by𝐷𝑌𝜂 (𝑢, V)= (−3𝑢2 + 2𝑢 (1 +𝑀) −𝑀 − V −𝑢𝐵V 𝐵 (𝑢 − 𝐶 − 2𝐸V)) (25)

For system (11) we have the following results:

Lemma 5. Existence of a invariant region
The set Γ = {(𝑢, V) ∈ Ω/0 ≤ 𝑢 ≤ 1, 0 ≤ V} is a positively

invariant region.

Proof. As system (11) is of the Kolmogorov type, the axes 𝑢 =0 and V = 0 are invariant set.
If 𝑢 = 1, we have that 𝑑𝑢/𝑑𝜏 = −V𝑢 < 0, and for any sign

of 𝑑V/𝑑𝜏 = 𝐵(1 − 𝐶 − 𝐸V)V, the trajectories enter the regionΓ.
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Figure 2: Distinct positions of the curves 𝐸 = 1/(𝑀 + 1) and 𝐸 = 𝐶/𝑀, for different values of 𝐶. It is clear that if 𝐶 < 1/2, there exists an
intersection point between both curves.

In system (6), the set Γ = {(𝑥, 𝑦) ∈ Ω/0 ≤ 𝑥 ≤ 𝐾, 0 ≤ 𝑦}
is a positively invariant region.

Lemma 6. Boundedness of trajectories
The solutions are bounded.

Proof. The first equation of topological system (11) is𝑑𝑢𝑑𝜏 = ((1 − 𝑢) (𝑢 −𝑀) − V) 𝑢 (26)

In absent of predators it becomes𝑑𝑢𝑑𝜏 = (1 − 𝑢) (𝑢 −𝑀)𝑢, (27)

since 𝑑𝑢𝑑𝜏 ≤ (1 − 𝑢) (𝑢 − 𝑀)𝑢, ∀V ∈ R2+, (∗b)
having that𝑢 (𝜏) 󳨀→ 1, when 𝜏 󳨀→ ∞, 𝑢 > 𝑀.𝑢 (𝜏) 󳨀→ 0, when 𝜏 󳨀→ ∞, 𝑢 < 𝑀. (28)

Furthermore,𝑢 (𝜏) 󳨀→ 1, when 𝜏 󳨀→ ∞, 𝑢 > 1. (29)

Considering 𝐿 = max{𝑢(0), 1}, from inequality (∗b) we
have 𝑢 (𝜏) ≤ 𝐿, ∀𝜏 ≥ 0. (30)

Let𝑊(𝜏) = 𝑢 + (1/𝐵)V. Clearly 0 < 𝑊(𝜏), ∀𝜏 ≥ 0.
Deriving𝑊(𝜏) respect to 𝜏 we obtain𝑑𝑊 (𝜏)𝑑𝜏 = ((1 − 𝑢) (𝑢 − 𝑀) − V) 𝑢 + (𝑢 − 𝐶 − 𝐸V) V𝑑𝑊 (𝜏)𝑑𝜏 = −𝑢3 + (𝑀 + 1) 𝑢2 + (−𝑀)𝑢 − (𝐶 + V𝐸) V (31)

Therefore,𝑑𝑊 (𝜏)𝑑𝜏 +𝑊 (𝜏) = −𝑢3 + (𝑀 + 1) 𝑢2 −𝑀𝑢
− (𝐶 + V𝐸) V + (𝑢 + 1𝐵V) . (32)

After some algebraic manipulations it becomes𝑑𝑊(𝜏)𝑑𝜏 + 𝑊(𝜏) = −𝑢(𝑢 − (𝑀 + 1)2 )2 + (𝑀 + 1)24 𝑢+ (1 −𝑀)𝑢− 𝐸(V − 12𝐸 ( 1𝐵 − 𝐶))2+ 14𝐸 ( 1𝐵 − 𝐶)2≤ (𝑀 + 1)24 + (1 −𝑀)𝑢
+ 14𝐸 ( 1𝐵 − 𝐶)2 .

(33)

Remembering that if𝑀 < 𝑢, then 𝑢 󳨀→ 1, when 𝜏 󳨀→∞, it becomes𝑑𝑊 (𝜏)𝑑𝜏 +𝑊 (𝜏) ≤ (𝑀 + 1)24 + (1 − 𝑀)
+ 14𝐸 ( 1𝐵 − 𝐶)2 . (34)

Let us𝑄 = (𝑀+ 1)2/4 + (1 −𝑀) + (1/4𝐸)(1/𝐵 − 𝐶)2 > 0,
for any value of𝑀, such that −1 < 𝑀 ≪ 1; then𝑑𝑊 (𝜏)𝑑𝜏 +𝑊 (𝜏) ≤ 𝑄, (35)
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being a first order linear inequality. Applying the theorem of
Comparison Theorem for differential inequality (Page 30 in
[32]), we obtain0 < 𝑊 (𝑢 (𝜏) , V (𝜏)) ≤ 𝑄 + 𝐶𝑒−𝜏. (36)

Moreover,0 < 𝑊(𝑢 (𝜏) , V (𝜏)) ≤ 𝑄 + (𝑊(𝑢 (0) , V (0)) − 𝑄) 𝑒−𝜏. (37)

Clearly, when 𝜏 󳨀→ ∞, then 0 < 𝑊(𝑢, V) ≤ 𝑄, for any
sign of (𝑊(𝑢(0), V(0)) − 𝑄).

So, the solutions of system (11) are bounded.
Furthermore, there exists the set𝑆 = {(𝑢, V) ∈ R2+ : 0 ≤ 𝑢 + 1𝐵V ≤ 𝑄} (38)

which is an invariant region, where all the solutions of the
system (11) starting in Ω are confined.

Remark 7. (1) The result established in the above lemma
implies the model is well posed [29], i.e., when the prey
population size tends to zero, the predator population also
tends to zero, since the prey is the unique source of food for
predators.

(2) On the other hand,

If 𝑢 −𝐶 − 𝐸V > 0, i.e., 𝑑V/𝑑𝜏 > 0; thus, V < (𝑢 − 𝐶)/𝐸.
If 𝑢 −𝐶 − 𝐸V < 0, i.e., 𝑑V/𝑑𝜏 < 0; thus, V > (𝑢 − 𝐶)/𝐸.

Then, the subregionΓ = {(𝑢, V) ∈ Ω/0 ≤ 𝑢 ≤ 1, 0 ≤ V ≤ 𝑢 − 𝐶𝐸 } (39)

is a bounded and closed region; i.e., it is a compact region
and the Poincaré-Bendixon Theorem applies.

3.2. Strong Allee Effect. In the follow, we assume 0 < 𝑀 ≪ 1.
3.2.1. Nature of Equilibrium Point over the Axis

Lemma 8. Nature of the point (0, 0).
The point (0, 0) is an attractor stable for all parameter

values.

Proof. Evaluating the Jacobian matrix we have that
At (0, 0) it has

𝐷𝑌𝜂 (0, 0) = (−𝑀 00 −𝐵𝐶) . (40)

Then, (0, 0) is an attractor equilibrium point.

Lemma 9. Nature of the point (1, 0).
The point (1, 0) is
(i) a hyperbolic saddle point, if and only if, 𝐶 < 1,
(ii) a hyperbolic attractor point, if and only if, 𝐶 > 1,
(iii) a saddle-node (non-hyperbolic), if and only if, 𝐶 = 1.

Proof. At (1, 0) we have
𝐷𝑌𝜂 (1, 0) = (− (1 −𝑀) −10 𝐵 (1 − 𝐶)) . (41)

Then, according the sign of factor 1−𝐶, we have the thesis.
Lemma 10. Nature of the point (𝑀, 0).

The point (𝑀, 0) is
(i) a repeller, if and only if,𝑀 > 𝐶.
(ii) a saddle point, if and only if,𝑀 < 𝐶.
(iii) a saddle-node, if and only if,𝑀 = 𝐶.

Proof. The Jacobian matrix is

𝐷𝑌𝜂 (𝑀, 0) = (𝑀 (1 −𝑀) −𝑀0 𝐵 (𝑀 − 𝐶)) (42)

Therefore, according the sign of factor𝑀−𝐶, we have the
lemma.

3.2.2. Nature of Positive Equilibrium Points. As there are
many cases to study, in the following we consider only a few
cases.

Case A. First we consider𝑀𝐸+𝐸− 1 > 0 and𝑀𝐸−𝐶 > 0 and Δ = 𝐸2𝑀2 − 2𝐸(𝐸+1)𝑀 + (4𝐶𝐸 + (𝐸 − 1)2) > 0.
Then, in this case there exist two positive equilibrium

points, (𝑢1, (𝑢1 − 𝐶)/𝐸) and (𝑢2, (𝑢2 − 𝐶)/𝐸), where 0 < 𝑢1 <𝑢2 are the solutions of equation (9). These points lie at the
interior of the first quadrant, if and only if, 𝑢1 − 𝐶 > 0 and𝑢2 − 𝐶 > 0.

The Jacobian matrix in the points (𝑢, (𝑢 − 𝐶)/𝐸) is given
by

𝐷𝑌𝜂 (𝑢, 𝑢 − 𝐶𝐸 )
= (−3𝐸𝑢2 + (2𝐸 + 2𝑀𝐸 − 1) 𝑢 + (𝐶 −𝑀𝐸)𝐸 −𝑢𝐵𝐸 (𝑢 − 𝐶) −𝐵 (𝑢 − 𝐶)) . (43)

Then,

det𝐷𝑌𝜂 (𝑢, V) = 𝐵𝐸 (𝑢 − 𝐶)⋅ (3𝐸𝑢2 − 2 ((𝑀 + 1) 𝐸 − 1) 𝑢 + (𝑀𝐸 − 𝐶)) , (44)

which sign depends on the sign of𝑇 = 3𝐸𝑢2 − 2 ((𝑀 + 1)𝐸 − 1) 𝑢 + (𝑀𝐸 − 𝐶) . (45)

Using equation (16) we have𝑇 = (𝐸 (𝑀 + 1) − 1) 𝑢 − 2 (𝑀𝐸 − 𝐶) . (46)

We note that 𝑇 is independent of 𝐵.
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Theorem 11. Nature of the point (𝑢1, (𝑢1 − 𝐶)/𝐸).
Assuming 𝑢1−𝐶 > 0, the equilibriumpoint (𝑢1, (𝑢1−𝐶)/𝐸)

is a saddle point.

Proof. Substituting 𝑢1 in 𝑇 we have,𝑇 = (𝐸 (𝑀 + 1) − 1) ( 12𝐸 (𝐸 (𝑀 + 1) − 1 − √Δ))− 2 (𝑀𝐸 − 𝐶) = 12𝐸 ((𝐸 (𝑀 + 1) − 1)2− (𝐸 (𝑀 + 1) − 1)√Δ) − 2 (𝑀𝐸 − 𝐶)= 12𝐸 ((𝐸 (𝑀 + 1) − 1)2 − 4𝐸 (𝑀𝐸 − 𝐶)− (𝐸 (𝑀 + 1) − 1)√Δ) . = 12𝐸 (Δ− (𝐸 (𝑀 + 1) − 1)√Δ) = 12𝐸 (√Δ− (𝐸 (𝑀 + 1) − 1))√Δ = −𝑢1√Δ < 0.

(47)

Then, det𝐷𝑌𝜂 det𝐷𝑌𝜂(𝑢, V) < 0.

Theorem 12. Nature of the point (𝑢2, (𝑢2 − 𝐶)/𝐸).
Assuming 𝐶 < 𝑢2 < 1, the equilibrium point (𝑢2, (𝑢2 −𝐶)/𝐸) is
(i) an attractor, if and only if,𝐵 < ((2−𝑀𝐸−𝐸)𝑢2+2(𝑀𝐸−𝐶))/𝐸(𝑢2 − 𝐶).
(ii) a repeller, if and only if, 𝐵 > ((2−𝑀𝐸−𝐸)𝑢2+2(𝑀𝐸−𝐶))/𝐸(𝑢2 − 𝐶).
(iii) a weak focus, if and only if, 𝐵 = ((2 − 𝑀𝐸 − 𝐸)𝑢2 +2(𝑀𝐸 − 𝐶))/𝐸(𝑢2 − 𝐶).

Proof. Analogously the above proof we can demonstrate that𝑇 > 0; so, the nature of (𝑢2, (𝑢2 − 𝐶)/𝐸) depends on the sign
of

tr𝐷𝑌𝜂 (𝑢2, V2)= −3𝐸 (𝑢2)2 + (2𝐸 + 2𝑀𝐸 − 1) 𝑢2 + (𝐶 −𝑀𝐸)𝐸− 𝐵 (𝑢2 − 𝐶) .
(48)

Using the expression for 𝑢2 from equation (16) we have

tr𝐷𝑌𝜂 (𝑢2, V2) = −3𝐸 ((1/𝐸) (((𝑀 + 1) 𝐸 − 1) 𝑢2 − (𝑀𝐸 − 𝐶))) + (2𝐸 + 2𝑀𝐸 − 1) 𝑢2 + (𝐶 −𝑀𝐸)𝐸 − 𝐵 (𝑢2 − 𝐶)
= −𝐸 (𝑢2 − 𝐶) 𝐵 + (2 − 𝑀𝐸 − 𝐸) 𝑢2 + 2 (𝑀𝐸 − 𝐶)𝐸 . (49)

Then, the sign of tr𝐷𝑌𝜂(𝑢, V) depends on the sign of𝑉 = −𝐸 (𝑢2 − 𝐶) 𝐵 − ((𝑀 + 1)𝐸 − 2) 𝑢2+ 2 (𝑀𝐸 − 𝐶) . (50)

According the sign of 𝑉 the results follow from Routh-
Hurwitz criterion.

Corollary 13. Transversality condition
The system undergoes a Hopf bifurcation with respect to

bifurcation parameter 𝐵 around the equilibrium point (𝑢2, V2)
if 𝐵 = ((2 − 𝑀𝐸 − 𝐸)𝑢2 + 2(𝑀𝐸 − 𝐶))/𝐸(𝑢2 − 𝐶).
Proof. If tr𝐷𝑌𝜂(𝑢2, V2) = 0, then both eigenvalues will be
purely imaginary provided det𝐷𝑌𝜂(𝑢2, V2) > 0. Therefore,
the Implicit functionTheorem assures that aHopf bifurcation
occurs where a periodic orbit is created as the stability of the
equilibrium point (𝑢2, V2) changes.

As (𝜕/𝜕𝐵)(tr𝐷𝑌𝜂(𝑢2, V2)) = −𝐸(𝑢2 − 𝐶) < 0, this
guarantees the existence of Hopf bifurcation around (𝑢2, V2)
and a stable limit cycle is generated from this point.

Theorem 14. Existence of a homoclinic curve and stability of
the limit cycle.

There are conditions on the parameter values for which
(a) A homoclinic curve exists, which is determined by the

stable and unstable manifold of point (𝑢1, V1).

(b) There is a non-infinitesimal limit cycle bifurcating from
the homoclinic [35] surrounding point (𝑢2, V2), which is

(b1) unstable, if and only if, 𝐵 < ((−(𝐸(𝑀 + 1) − 1)𝑢1 +2(𝑀𝐸 − 𝐶)) + 𝑢1)/𝐸(𝑢1 − 𝐶).
(b2) stable, if and only if, 𝐵 > ((−(𝐸(𝑀+1)−1)𝑢1+2(𝑀𝐸−𝐶)) + 𝑢1)/𝐸(𝑢1 − 𝐶).

Proof. Let 𝑊𝑢+ (𝑢1, V1) and 𝑊𝑠+(𝑢1, V1) be the right unstable
manifold and the superior stable manifold of equilibrium
point (𝑢1, V1).

(a) As Γ is an invariant region, the orbits cannot cross
the straight line 𝑢 = 1 towards the right. By Existence
and Uniqueness Theorem, the trajectory determined by the
right unstable manifold𝑊𝑢+ (𝑢1, V1) cannot meet or intersect
the trajectory determined by the superior stable manifold𝑊𝑠+(𝑢1, V1).

Moreover, the 𝛼 − 𝑙𝑖𝑚𝑖𝑡 of the𝑊𝑠+(𝑢1, V1) can lie at point(𝑀, 0) by the Boundedness Lemma or at infinity in the
direction of 𝑢 − 𝑎𝑥𝑖𝑠.

On the other hand, the 𝜔 − 𝑙𝑖𝑚𝑖𝑡 of the right unstable
manifold𝑊𝑢+ (𝑢1, V1) can be either

(i) the point (𝑢2, V2), when this is an attractor,
(ii) a stable limit cycle, if (𝑢2, V2) is a repeller, or
(iii) the point (0, 0).
Hence, there is a subset of the parameter space for which𝑊𝑢+ (𝑢1, V1) intersects 𝑊𝑠+(𝑢1, V1) and a homoclinic curve is
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obtained. In this case, the same point (𝑢1, V1) is the 𝜔 − 𝑙𝑖𝑚𝑖𝑡
of the right unstable manifold𝑊𝑢+ (𝑢1, V1).

(b) We will analyze the stability of the homoclinic cycle
obtained by the breaking of the homoclinic curve determined
by the stable manifold𝑊𝑠+(𝑢1, V1) and the unstable manifold𝑊𝑢+ (𝑢1, V1), of the point𝑊𝑠+(𝑢1, V1).

Denoting 𝜆+1(𝑢1, V1) and 𝜆−1(𝑢1, V1) the eigenvalues asso-
ciated to point (𝑢1, V1), where the upper indices correspond
to the sign of the respective eigenvalue. We determine the
neutrality of the homoclinic cycle considering 𝑅 = 1 [3, 6];
then,

𝑅 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆−1 (𝑢1, V1)𝜆+1 (𝑢1, V1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

tr𝐷𝑌𝜂 (𝑢1, V1) − √(tr𝐷𝑌𝜂 (𝑢1, V1))2 − 4det𝐷𝑌𝜂 (𝑢1, V1)
tr𝐷𝑌𝜂 (𝑢1, V1) + √(tr𝐷𝑌𝜂 (𝑢1, V1))2 − 4det𝐷𝑌𝜂 (𝑢1, V1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,
(51)

implies 𝑅 = tr𝐷𝑌𝜂 (𝑢1, V1) = 0, (52)

i.e., 𝑅 = −3𝐸𝑢21 + (2𝐸 + 2𝑀𝐸 − 1) 𝑢1 + (𝐶 −𝑀𝐸)𝐸− 𝐵 (𝑢1 − 𝐶) = 0. (53)

Replacing 𝑢21 = (((𝑀 + 1)𝐸 − 1)𝑢1 − (𝑀𝐸 − 𝐶))/𝐸, we
obtain

𝑅 = − (𝑢1 − 𝐶) 𝐵 − 𝐸 (𝑀 + 1) − 2𝐸 𝑢1 + 2 (𝑀𝐸 − 𝐶)𝐸= 0. (54)

Then, 𝐵 = − (𝐸 (𝑀 + 1) − 2) 𝑢1 + 2 (𝑀𝐸 − 𝐶)𝐸 (𝑢1 − 𝐶) . (55)

So, the non-infinitesimal limit cycle generated by the
breaking of the homoclinic curve and surrounding the
equilibrium point (𝑢2, V2) is

(b1) unstable, if and only if, 𝐵 < ((−(𝐸(𝑀 + 1) − 1)𝑢1 +2(𝑀𝐸 − 𝐶)) + 𝑢1)/𝐸(𝑢1 − 𝐶).
(b2) stable, if and only if,𝐵 > ((−(𝐸(𝑀+1)−1)𝑢1+2(𝑀𝐸−𝐶)) + 𝑢1)/𝐸(𝑢1 − 𝐶).

Theorem 15. Collapse of the positive equilibrium points
When coinciding the singularities (𝑢1, V1) and (𝑢2, V2),

there exists a unique equilibrium point at the interior of the
first quadrant, denoted by (𝑢𝑐, V𝑐) = (𝑢𝑐, (𝑢𝑐 − 𝐶)/𝐸) which is

(i) a non-hyperbolic attractor node, if and only if, 𝐵 > ((2−𝑀𝐸 − 𝐸)𝑢𝑐 + 2(𝑀𝐸 − 𝐶))/𝐸(𝑢𝑐 − 𝐶)
(ii) a non-hyperbolic repeller node, if and only if, 𝐵 < ((2 −𝑀𝐸 − 𝐸)𝑢𝑐 + 2(𝑀𝐸 − 𝐶))/𝐸(𝑢𝑐 − 𝐶) and the point (0, 0) is a

almost global attractor [33, 34].
(iii) a cusp point, if and only if, 𝐵 = ((2 − 𝑀𝐸 − 𝐸)𝑢𝑐 +2(𝑀𝐸 − 𝐶))/𝐸(𝑢𝑐 − 𝐶).
In this case, there exists a unique trajectory which attains

the point (𝑢𝑐, (𝑢𝑐 − 𝐶)/𝐸).
Proof. The Jacobian matrix at (𝑢𝑐, V𝑐) is

𝐷𝑌𝜂 (𝑢𝑐, 𝑢𝑐 − 𝐶𝐸 ) = (−3𝐸 (𝑢𝑐)2 + (2𝐸 + 2𝑀𝐸 − 1) 𝑢𝑐 + (𝐶 −𝑀𝐸)𝐸 −𝑢𝑐𝐵𝐸 (𝑢𝑐 − 𝐶) −𝐵 (𝑢𝑐 − 𝐶)) . (56)

To determine the sign of det𝐷𝑌𝜂(𝑢𝑐, (𝑢𝑐 − 𝐶)/𝐸), we
consider again the factor 𝑇 from the above Theorem.

Replacing 𝑢𝑐 = (1/2𝐸)(𝐸(𝑀 + 1) − 1), we have
𝑇 = (𝐸 (𝑀 + 1) − 1) ( 12𝐸 (𝐸 (𝑀 + 1) − 1))− 2 (𝑀𝐸 − 𝐶) = (𝐸 (𝑀 + 1) − 1)22𝐸 − 2 (𝑀𝐸 − 𝐶)
= (𝐸 (𝑀 + 1) − 1)2 − 4 (𝑀𝐸 − 𝐶) 𝐸2𝐸 = 0.

(57)

since Δ = (𝐸(𝑀 + 1) − 1)2 − 4(𝑀𝐸 − 𝐶)𝐸 = 0.
Then, the sign of det𝐷𝑌𝜂(𝑢𝑐, (𝑢𝑐 − 𝐶)/𝐸) depends on the

sign of the factor𝑇1 = (1 −𝑀)2 𝐸2 − 2 (1 +𝑀 − 2𝐶) 𝐸 + 1. (58)

Thus, the tr𝑌𝜂(𝑢𝑐, (𝑢𝑐 − 𝐶)/𝐸) depends on the sign of𝑉 = −𝐸 (𝑢𝑐 − 𝐶) 𝐵 + (2 −𝑀𝐸 − 𝐸) 𝑢𝑐 + 2 (𝑀𝐸 − 𝐶) . (59)

Considering different alternatives for 𝑉, we obtain the
thesis.

Remark 16. The point (𝑢𝑐, (𝑢𝑐 − 𝐶)/𝐸) is the collapse of the
equilibrium (𝑢1, V1) and (𝑢2, V2).Then,

det𝐷𝑌𝜂 (𝑢𝑐, 𝑢𝑐 − 𝐶𝐸 ) = 0, (60)

that is, 𝐶 = 14𝐸 (4𝑀𝐸 − (𝐸 (𝑀 + 1) − 1)2) . (61)

When, tr𝐷𝑌𝜂(𝑢𝑐, (𝑢𝑐 − 𝐶)/𝐸) = 0, it has the 𝐵 = ((2 −𝑀𝐸−𝐸)𝑢𝑐+2(𝑀𝐸−𝐶))/𝐸(𝑢𝑐−𝐶), then, a Bogdanov-Takens
bifurcation is obtained.
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The point (0, 0) is a almost global attractor [33, 34]
since all the trajectories, except (𝑢𝑐, (𝑢𝑐 − 𝐶)/𝐸) have that
equilibrium as their 𝜔 − 𝑙𝑖𝑚𝑖𝑡.
Case B. Supposing that𝑀𝐸 + 𝐸 − 1 > 0 and𝑀𝐸 − 𝐶 = 0.

Thus, 𝐶 = 𝑀𝐸, 𝐸 > 1/(1 +𝑀) and the system becomes

𝑌] : {{{{{
𝑑𝑢𝑑𝜏 = ((1 − 𝑢) (𝑢 −𝑀) − V) 𝑢𝑑V𝑑𝜏 = 𝐵 (𝑢 −𝑀𝐸 − 𝐸V) V (62)

where ] = (𝐵, 𝐸,𝑀) ∈ R2+×]0, 1[. The equilibrium points
are (0, 0), (𝑀, 0), (1, 0), and the equilibrium (𝑢3, (𝑢3−𝑀𝐸)/𝐸)
with 𝑢3 = (𝑀𝐸+𝐸− 1)/𝐸. The equilibrium over the 𝑥 − 𝑎𝑥𝑖𝑠
has the same nature expressed in the above lemmas.

Theorem 17. Assuming that 𝑢3 − 𝑀𝐸 > 0, the equilibrium
point (𝑢3, (𝑢3 − 𝑀𝐸)/𝐸) is at the interior of the first quadrant
and it is

(i) an attractor, if and only if, 𝐵 < −(𝑀𝐸 + 𝐸 − 1)(𝑀𝐸 +𝐸 − 2)/𝐸(𝑀𝐸 − 1)(1 − 𝐸),
(ii) a repeller, if and only if, 𝐵 > −(𝑀𝐸+ 𝐸 − 1)(𝑀𝐸+ 𝐸 −2)/𝐸(𝑀𝐸 − 1)(1 − 𝐸). Moreover, a stable limit cycle can exist.
(iii) a weak focus, if and only if, 𝐵 = −(𝑀𝐸+𝐸 − 1)(𝑀𝐸+𝐸 − 2)/𝐸(𝑀𝐸 − 1)(1 − 𝐸).

Proof. TheJacobianmatrix in the unique positive equilibrium
point (𝑢3, (𝑢3 −𝑀𝐸)/𝐸) is given by

𝐷𝑌] (𝑢3, 𝑢3 −𝑀𝐸𝐸 )
= ((−3𝐸𝑢3 + (2𝐸 + 2𝑀𝐸 − 1)) 𝑢3𝐸 −𝑢3𝐵𝐸 (𝑢3 −𝑀𝐸) −𝐵 (𝑢3 −𝑀𝐸)) .

(63)

We have that det𝐷𝑌](𝑢3, (𝑢3 − 𝑀𝐸)/𝐸) = 𝐵𝑢3(𝑢3 −𝑀𝐸)((3𝑢3 − 2𝑀 − 2)𝐸 + 2)/𝐸,
As 𝑢3−𝑀𝐸 = (𝑀𝐸+𝐸−1)/𝐸−𝑀𝐸 = (𝑀𝐸−1)(1−𝐸)/𝐸 >0,
then 1/(1 +𝑀) < 1/𝑀 < 𝐸 < 1.
The sign of det𝐷𝑌𝜂(𝑢3, (𝑢3 − 𝑀𝐸)/𝐸) depends on the

factor:𝑇 = (3𝑢3 − 2𝑀 − 2)𝐸 + 2 = 𝐸 + 𝑀𝐸 − 1 > 0, since1/(1 +𝑀) < 𝐸 < 1.
Thus, the nature of (𝑢3, (𝑢3−𝑀𝐸)/𝐸) depends on the sign

of the trace, i.e.,

tr𝐷𝑌] (𝑢3, 𝑢3 −𝑀𝐸𝐸 )
= (−3𝐸𝑢3 + (2𝐸 + 2𝑀𝐸 − 1)) 𝑢3𝐸 − 𝐵 (𝑢3 −𝑀𝐸)

= − 1𝐸2 (𝐸 +𝑀𝐸 − 1) (𝐸 + 𝑀𝐸 − 2)− 𝐵(𝑀𝐸 − 1) (1 − 𝐸)𝐸 .
(64)

We note that (𝐸 +𝑀𝐸 − 2)/𝐸 = (𝐸 +𝑀𝐸 − 1 − 1)/𝐸 < 0.
tr𝐷𝑌](𝑢3, (𝑢3 − 𝑀𝐸)/𝐸) = 0, if and only if, 𝐵 = −(𝐸 +𝑀𝐸 − 1)(𝐸 +𝑀𝐸 − 2)/𝐸(𝑀𝐸 − 1)(1 − 𝐸)
and the other cases are obtained considering tr𝐷𝑌](𝑢3,(𝑢3 −𝑀𝐸)/𝐸) positive or negative.
Moreover, the transversality condition is fulfilled since𝜕𝜕𝐵 (tr𝐷𝑌] (𝑢3, 𝑢3 −𝑀𝐸𝐸 )) = −(𝑀𝐸 − 1) (1 − 𝐸)𝐸< 0, (65)

implying the existence of a Poincaré–Andronov–Hopf
bifurcation.

Case E. Supposing that𝑀𝐸 + 𝐸 − 1 = 0 and𝑀𝐸 − 𝐶 < 0.
Therefore, 𝐸 = 1/(1 +𝑀) and the system becomes

𝑌𝜆 : {{{{{
𝑑𝑢𝑑𝜏 = ((1 − 𝑢) (𝑢 −𝑀) − V) 𝑢𝑑V𝑑𝜏 = 𝐵(𝑢 − 𝐶 − 11 +𝑀V) V (66)

where 𝜆 = (𝐵, 𝐶,𝑀) ∈ R2+×]0, 1[. The equilibrium points
are (0, 0), (𝑀, 0), (1, 0), having the same nature expressed
in the above lemmas and (𝑢5, (𝑢5 − 𝐶)(1 + 𝑀)) with 𝑢5 =√(𝐶 −𝑀𝐸)/𝐸 = √𝐶 −𝑀 + 𝐶𝑀.

Theorem 18. Nature of the point (𝑢5, (𝑢5 − 𝐶)(1 +𝑀))
Assuming that 𝑢5 − 𝐶 > 0, the equilibrium point (𝑢5, (𝑢5 −𝐶)(1 +𝑀)) is at the interior of the first quadrant and it is
(i) an attractor, if and only if, 𝐵 > ((1 + 𝑀) −2√𝐶 −𝑀 + 𝐶𝑀)√𝐶 −𝑀 + 𝐶𝑀/(√𝐶 −𝑀 + 𝐶𝑀 − 𝐶),
(ii) a repeller, if and only if, 𝐵 < ((1 + 𝑀) −2√𝐶 −𝑀 + 𝐶𝑀)√𝐶 −𝑀 + 𝐶𝑀/(√𝐶 −𝑀 + 𝐶𝑀 − 𝐶).

Moreover, a stable limit cycle can exist.
(iii) a weak focus, if and only if, 𝐵 = ((1 + 𝑀) −2√𝐶 −𝑀 + 𝐶𝑀)√𝐶 −𝑀 + 𝐶𝑀/(√𝐶 −𝑀 + 𝐶𝑀 − 𝐶)

Proof. Now, the Jacobian matrix is given by𝐷𝑌𝜆 (𝑢5, V5)= (−3𝑢25 + 𝑢5 (1 + 𝑀) + (𝐶 (𝑀 + 1) −𝑀) −𝑢5𝐵 (𝑢5 − 𝐶) (1 +𝑀) −𝐵 (𝑢5 − 𝐶)) , (67)

with V5 = (𝑢5 − 𝐶)(1 +𝑀).
Then,

det𝐷𝑌𝜆 ((𝑢5 − 𝐶) (1 + 𝑀))= 𝐵 (𝑢5 − 𝐶) (3𝑢25 − 𝐶𝑀 − 𝐶 +𝑀)= 2𝐵 (𝑢5 − 𝐶) (𝐶 −𝑀 + 𝐶𝑀) > 0. (68)
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So, the nature of (𝑢5, (𝑢5 − 𝐶)(1 + 𝑀)) depends only on
the sign of the tr𝐷𝑌𝜆, given by 𝐶 −𝑀 + 𝐶𝑀

tr𝐷𝑌𝜆 ((𝑢5 − 𝐶) (1 +𝑀))= −3𝑢25 + 𝑢5 (1 +𝑀) + (𝐶 (𝑀 + 1) − 𝑀)− 𝐵 (𝑢5 − 𝐶)= −3 (𝐶 −𝑀 + 𝐶𝑀) + (𝐶 (𝑀 + 1) −𝑀)− 𝐵 (𝑢5 − 𝐶) + 𝑢5 (1 +𝑀)= −2 (𝐶 −𝑀 + 𝐶𝑀) − 𝐵 (𝑢5 − 𝐶) + 𝑢5 (1 +𝑀)= −2 (𝐶 −𝑀 + 𝐶𝑀) + (1 + 𝑀)√𝐶 −𝑀 + 𝐶𝑀− 𝐵 (√𝐶 −𝑀 + 𝐶𝑀 − 𝐶)

(69)

Then, tr𝐷𝑌𝜆((𝑢5 − 𝐶)(1 +𝑀)) = 0 implies

𝐵 = ((1 +𝑀) − 2√𝐶 −𝑀 + 𝐶𝑀)√C −𝑀 + 𝐶𝑀√𝐶 −𝑀 + 𝐶𝑀 − 𝐶 . (70)

The denominator √𝐶 −𝑀 + 𝐶𝑀 − 𝐶 > 0, if and only if,𝑀 < 𝐶 < 1 (conditions for the existence of the a positive
equilibrium); the numerator is positive, if and only if,(1 + 𝑀) − 2√𝐶 −𝑀 + 𝐶𝑀, (71)

i.e., (1 +𝑀)2 − 4 (𝐶 −𝑀 + 𝐶M) > 0, (72)

or 𝐶 < (1 + 𝑀)2 + 4𝑀4 (𝑀 + 1) . (73)

As 𝐶 < 1, the constraint ((1 + 𝑀)2 + 4𝑀)/4(𝑀 + 1) < 1,
holds for all𝑀 < 1.

Analogously to the above case, the transversality condi-
tion is fulfilled since𝜕𝜕𝐵 (tr𝐷𝑌] (𝑢5, 𝑢5 −𝑀𝐸𝐸 )) = − (𝑢5 − 𝐶) < 0. (74)

Let us 𝑃 = (tr D𝑌𝜆((𝑢5 − 𝐶)(1 +𝑀)))2 − 4 det𝐷𝑌𝜆((𝑢5 −𝐶)(1 +𝑀)) = (−2(𝐶−𝑀+𝐶𝑀)−𝐵(𝑢5 −𝐶) + 𝑢5(1 +𝑀))2 −8𝐵(𝑢5 − 𝐶)(𝐶 −𝑀 + 𝐶𝑀)
We remember that if𝑃 > 0, it has a node, andwhen𝑃 > 0,

it has a focus. Similarly in the other cases above.

Remark 19. If 𝐶 = ((1 + 𝑀)2 + 4𝑀)/4(𝑀 + 1), we have that
tr𝐷𝑌𝜆((𝑢5 − 𝐶)(1 + 𝑀)) = −𝐵(1/4)((1 − 𝑀)2/(𝑀 + 1)) < 0
and the point is a local attractor.

The same happens when 𝐶 > ((1 +𝑀)2 + 4𝑀)/4(𝑀+ 1).
Cases C and G. In this case there exists a unique positive
equilibrium point when and𝑀𝐸+𝐸−1 > 0 and𝑀𝐸−𝐶 < 0,
or𝑀𝐸 + 𝐸 − 1 < 0 and𝑀𝐸 − 𝐶 < 0, respectively,

In both cases, the equilibrium points over the 𝑥−𝑎𝑥𝑖𝑠 are(0, 0), (𝑀, 0), (1, 0), having the same nature described in the
above lemmas.

The Jacobian matrix in the points (𝑢2, (𝑢2−𝐶)/𝐸) is given
by𝐷𝑌𝜂 (𝑢2, 𝑢2 − 𝐶𝐸 )
= (−3𝐸𝑢22 + (2𝐸 + 2𝑀𝐸 − 1) 𝑢2 + (𝐶 −𝑀𝐸)𝐸 −𝑢2𝐵𝐸 (𝑢2 − 𝐶) −𝐵 (𝑢2 − 𝐶)) . (75)
Then, according to above results (using 𝐸𝑢2 from equa-

tion (16))

det𝐷𝑌𝜂 (𝑢2, 𝑢2 − 𝐶𝐸 ) = 𝐵𝐸 (𝑢2 − 𝐶)𝑇, (76)

with 𝑇 = (𝐸(𝑀 + 1) − 1)𝑢2 − 2(𝑀𝐸 − 𝐶).
Clearly 𝑇 > 0, if and only if, 𝐸(𝑀 + 1) − 1 ≥ 0.
Supposing 𝑇 < 0, that is, 𝐸(𝑀 + 1) − 1 < 0 and (𝐸(𝑀 +1) − 1)𝑢2 − 2(𝑀𝐸 − 𝐶) < 0, this leads to a contradiction (see

proof below, for the case𝑀 < 0).
Then, the nature of (𝑢2, (𝑢2 − 𝐶)/𝐸) depends on the sign

of 𝑉 = −𝐸 (𝑢2 − 𝐶) 𝐵 − ((𝑀 + 1)𝐸 − 2) 𝑢2+ 2 (𝑀𝐸 − 𝐶) . (77)

So, we have

Theorem 20. Nature of point (𝑢2, (𝑢2 − 𝐶)/𝐸)
The equilibrium point (𝑢2, (𝑢2 − 𝐶)/𝐸) is
(i) out of the first quadrant, if and only if, 𝑢2 < 𝐶,
(ii) coincident with the point (1, 0), if and ony if, 𝑢2 = 𝐶;

thus, (𝑢2, (1 − 𝑢2)𝑢2) is a saddle-node attractor.
(iii) in the interior the first quadrant, if and only if, 𝐶 <𝑢2 < 1; furthermore, is
(iiia) a hyperbolic attractor, if and only if, 𝐵 < ((2 −𝑀𝐸 −𝐸)𝑢2 + 2(𝑀𝐸 − 𝐶))/𝐸(𝑢2 − 𝐶).
(iiib) a hyperbolic repeller, if and only if, 𝐵 > ((2 − 𝑀𝐸 −𝐸)𝑢2+2(𝑀𝐸−𝐶))/𝐸(𝑢2−𝐶). Furthermore, a stable limit cycle

can exist, surrounding the positive equilibrium point, by Hopf
bifurcation.

(iiic) a weak focus, if and only if, 𝐵 = ((2 − 𝑀𝐸 − 𝐸)𝑢2 +2(𝑀𝐸 − 𝐶))/𝐸(𝑢2 − 𝐶).
Proof. Immediate since 𝑇 > 0 and the sign of tr𝐷𝑌𝜂(𝑢, V)
depends on the sign of𝑉 = −𝐸 (𝑢2 − 𝐶) 𝐵 − ((𝑀 + 1)𝐸 − 2) 𝑢2+ 2 (𝑀𝐸 − 𝐶) . (78)

According the sign of 𝑉 the results follow from Routh-
Hurwitz criterion.

Moreover, 𝜕𝑉/𝜕𝐵 = −𝐸(𝑢2 − 𝐶) < 0.
Then, the transversality condition is obtained.

In both cases the systems have at least a unique limit
cycle surrounding the unique positive equilibrium point (see
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Figure 6). Moreover, the points (𝑀, 0) and (1, 0) are saddle
points.

Theorem 21. Existence of a heteroclinic curve
There exists a heteroclinic curve joining the points (1, 0) and(𝑀, 0) (see Figure 7).

Proof. Let us𝑊𝑠+(𝑀, 0) the upper stable manifold of the equi-
librium (𝑀, 0) and the upper unstable manifold𝑊𝑢+ (1, 0), of
the point (1, 0).

The 𝛼 − 𝑙𝑖𝑚𝑖𝑡 of the𝑊𝑠+(𝑀, 0) can be
(i) the point (∞, 0) (infinity in the direction of 𝑢 − 𝑎𝑥𝑖𝑠),
(ii) an unstable limit cycles surrounding the positive

equilibrium (𝑢2, V2), when this is an attractor.
(iii) the point (𝑢2, V2), when this is a repeller.
At once, the𝜔−𝑙𝑖𝑚𝑖𝑡 of𝑊𝑢+ (1, 0) cannot at infinity on the

direction of V − 𝑎𝑥𝑖𝑠 due to the boundedness of solutions. It
can be either:

(i) the point (𝑢2, V2), when this is an attractor,
(ii) a stable limit cycle, if (𝑢2, V2) is a repeller, or
(iii) the equilibrium (0, 0).
Then, there are points (𝑢∗, V𝑠) ∈ 𝑊𝑠+(𝑀, 0) and (𝑢∗, V𝑢) ∈𝑊𝑢+ (1, 0) where V𝑠 and V𝑢 are functions of the parameters𝑀,𝐵, 𝐶 and 𝐸, that is, V𝑠 = 𝑓1(𝑀, 𝐵, 𝐶, 𝐸) and V𝑢 =𝑓2(𝑀, 𝐵, 𝐶, 𝐸).
Clearly, if 0 < 𝑢∗ ≪ 1, then, V𝑠 < V𝑢; if 0 ≪ 𝑢∗ < 1, then

V𝑠 > V𝑢. Since the vector field𝑌𝜂 is continuous with respect to
the parameter values, there is a subset of the parameter space
for which 𝑊𝑠+(𝑀, 0) intersects 𝑊𝑢+ (1, 0) and a heteroclinic
curve exists.

Moreover, there exists a point (𝑢∗, V∗) in the invariant
region, i.e., (𝑢∗, V∗) ∈ Γ, such as V∗ = V𝑠 = V𝑢.

This equation defines a surface in the parameter space for
which the heteroclinic curve exists.

Remark 22. (1) We note that a non-infinitesimal limit cycle
can be generated by the breaking of the heteroclinic curve
[35], which could coincide with the infinitesimal limit cycle
generated by the Hopf bifurcation.

(2) The infinitesimal limit cycle generated by the Hopf
bifurcation increases until attain the saddle point (𝑀, 0) and
after it disappears, when the parameters change a little. Then,
the equilibriumpoint (0, 0) is a almost global attractor [33, 34]
since all the trajectories, except (𝑢2, V2) have that equilibrium
as their 𝜔 − 𝑙𝑖𝑚𝑖𝑡.
3.3. Special Weak Allee Effect. Assuming 𝑀 = 0 (𝑚 = 0)
system (11) becomes

𝑌𝛾 : {{{{{
𝑑𝑢𝑑𝜏 = ((1 − 𝑢) 𝑢 − V) 𝑢𝑑V𝑑𝜏 = 𝐵 (𝑢 − 𝐶 − 𝐸V) V (79)

with 𝛾 = (𝐵, 𝐶, 𝐸) ∈ R3+.The equilibrium points are (0, 0),(1, 0), and (𝑢∗, (1−𝑢∗)𝑢∗) = (𝑢∗, (𝑢∗−𝐶)/𝐸), where 𝑢∗ satisfy
the equation 𝑝 (𝑢) = 𝐸𝑢2 − (𝐸 − 1) 𝑢 − 𝐶 = 0; (80)

thus, any being the sign of (𝐸 − 1) it has𝑢∗ = 12𝐸 (𝐸 − 1 + √Δ)
with Δ = ((𝐸 − 1))2 + 4𝐸𝐶 > 0. (81)

Moreover, if V∗ = (𝑢∗ − 𝐶)/𝐸 = (1 − 𝑢∗)𝑢∗ > 0, thus,0 < 𝐶 < 𝑢∗ < 1.
We note that when 𝐸 = 1, a particular case is obtained;

thus, it has 𝑢∗ = √𝐶 and V∗ = √𝐶 − 𝐶 and 𝑑V/𝑑𝜏 = 0, in the
equilibrium (√𝐶,√𝐶 − 𝐶).

The Jacobian matrix of system (79) is

𝐷𝑌𝛾 (𝑢, V) = (−3𝑢2 + 2𝑢 − V −𝑢𝐵V −𝐵 (𝐶 − 𝑢 + 2V𝐸)) (82)

3.3.1. Main Properties of System (79). In this case it has that
the equilibriums

(a) (1, 0)has the same properties of the case𝑀 > 0 (above
Lemma).

(b) (0, 0) is the collapse between (𝑀, 0) and (0, 0) system
(8). Then, the equilibrium (0, 0) is a non-hyperbolic equilib-
rium.

Lemma 23. Nature of the equilibrium (0, 0) when𝑀 = 0.
The equilibrium (0, 0) has hyperbolic and parabolic sectors,

determined by the stable manifold𝑊𝑠(0, 0).
Proof. It is immediate since when 𝑀 > 0, the equilibrium(0, 0) is an attractor and the equilibrium (𝑀, 0) is a saddle
point, if and only if,𝑀 < 𝐶.

The nature of the unique positive equilibrium point(𝑢∗, (1 − 𝑢∗)𝑢∗) is given in the following theorem.

Theorem 24. The positive equilibrium (𝑢∗, (𝑢∗ − 𝐶)/𝐸):
(i) is out of the first quadrant, if and only if, 𝑢∗ < 𝐶,
(ii) coincides with the point (1, 0), if and only if, 𝑢∗ = 𝐶;

thus, (𝑢∗, (1 − 𝑢∗)𝑢∗) is a saddle-node attractor.
(iii) Assuming 0 < 𝐶 < 𝑢∗ < 1, it has
(iiia) a hyperbolic attractor, if and only if, 𝐵 > ((2−𝐸)𝑢∗ −2𝐶)/(𝑢∗ − 𝐶)𝐸.
(iiib) a hyperbolic repeller, if and only if, 𝐵 < ((2 − 𝐸)𝑢∗ −2𝐶)/(𝑢∗ − 𝐶)𝐸.
(iiic) a weak focus, if and only if, 𝐵 = ((2−𝐸)𝑢∗−2𝐶)/(𝑢∗−𝐶)𝐸.

Proof. (i) and (ii) are immediate
(iii)The Jacobian matrix evaluated in the positive equilib-

rium point is

𝐷𝑌𝛾 (𝑢∗, 𝑢∗ − 𝐶𝐸 )
= (−3 (𝑢∗)2 + 2𝑢∗ − 𝑢∗ − 𝐶𝐸 −𝑢∗𝐵𝑢∗ − 𝐶𝐸 −𝐵 (𝑢∗ − 𝐶)) . (83)
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Then,

det𝐷𝑌𝛾 (𝑢∗, 𝑢∗ − 𝐶𝐸 )
= 𝐵 (𝑢∗ − 𝐶) 2𝑢∗ − 𝐶 + 3𝐸 (𝑢∗)2 − 2𝐸𝑢∗𝐸 , (84)

which depends on the factor 2𝑢∗ − 𝐶 + 3𝐸(𝑢∗)2 − 2𝐸𝑢∗.
Considering equation (9) it has 𝐸(𝑢∗)2 = 𝐶 − (1 − 𝐸)𝑢∗;

this becomes

det𝐷𝑌𝛾 (𝑢∗, 𝑢∗ − 𝐶𝐸 )
= 𝐵 (𝑢∗ − 𝐶) ((𝐸 − 1) 𝑢∗ + 2𝐶)𝐸 . (85)

As 𝑢∗ = (1/2𝐸)(𝐸 − 1 + √Δ), it has(𝐸 − 1)𝑢∗ + 2𝐶 = ((𝐸 − 1)2 + 4𝐶𝐸 + √Δ(𝐸 − 1))/2𝐸 =(Δ +√Δ(𝐸 − 1))/2𝐸 > 0, any be the sign of 𝐸 − 1, with 𝐸 ̸= 1.
Then, the nature of the equilibrium (𝑢∗, (𝑢∗ − 𝐶)/𝐸)

depends on the sign of the trace.
It has

tr𝐷𝑌𝛾 (𝑢∗, 𝑢∗ − 𝐶𝐸 ) = −3 (𝑢∗)2 + 2𝑢∗ − 𝑢∗ − 𝐶𝐸− 𝐵 (𝑢∗ − 𝐶) . (86)

If tr𝐷𝑌𝛾(𝑢∗, (𝑢∗−𝐶)/𝐸) = 0, then𝐵 = (−3𝐸(𝑢∗)2+2𝐸𝑢∗−𝑢∗ + 𝐶)/(𝑢∗ − 𝐶)𝐸.
Using the relation for 𝐸(𝑢∗)2, we have 𝐵 = ((2 − 𝐸)𝑢∗ −2𝐶)/(𝑢∗ − 𝐶)𝐸.
The other cases are obtained considering the sign of

tr𝐷𝑌𝛾(𝑢∗, (𝑢∗ − 𝐶)/𝐸).
3.4. The Case𝑀 < 0 (𝑚 < 0). In this case system (11) has the
equilibrium points (0, 0), (1, 0) and (𝑢𝑒, (1 − 𝑢𝑒)𝑢𝑒), where 𝑢𝑒
satisfy equation (9).

In that equation,𝑀𝐸 − 𝐶 < 0, with any being the sign of𝑀𝐸 + 𝐸 − 1, it has a unique solution given as𝑢𝑒 = 12𝐸 (𝑀𝐸 + 𝐸 − 1 + √Δ) . (87)

withΔ = (𝐸(𝑀+ 1) − 1)2 − 4(𝑀𝐸−𝐶)𝐸 > 0, which is fulfilled
for all 𝐶, 𝐸 > 0 and𝑀 < 0.

Then, there exists a unique positive equilibrium point(𝑢𝑒, (𝑢𝑒 − 𝐶)/𝐸) = (𝑢𝑒, (1 − 𝑢𝑒)𝑢𝑒).
Lemma 25. Nature of the equilibrium (0, 0) when𝑀 < 0.

The equilibrium (0, 0) is a saddle point for all parameter
values.

Proof. By the evaluating the Jacobian matrix in (0, 0) it has
det𝐷𝑌𝜂 (0, 0) = 𝑀𝐵𝐶 < 0. (88)

Lemma 26. Nature of the equilibrium (1, 0) when𝑀 < 0.
The point (1, 0) is a
(i) hyperbolic saddle point, if and only if, 𝐶 < 1,
(ii) hyperbolic attractor point, if and only if, 𝐶 > 1, and
(iii) a saddle-node (non-hyperbolic), if and only if, 𝐶 = 1.

Proof. Point (1, 0) has the same dynamics of the case𝑀 > 0,
according to the evaluation of the Jacobian matrix.

Theorem 27. Nature of the equilibrium (𝑢𝑒, (𝑢𝑒 − 𝐶)/𝐸).
The positive equilibrium (𝑢𝑒, (1−𝑢𝑒)𝑢𝑒) = (𝑢𝑒, (𝑢𝑒−𝐶)/𝐸):
(i) is out of the first quadrant, if and only if, 𝑢𝑒 < 𝐶 < 1,
(ii) coincides with the point (1, 0), if and only if, 𝑢𝑒 = 𝐶;

thus, (𝑢𝑒, (1 − 𝑢𝑒)𝑢𝑒) is a saddle-node attractor.
(iii) The equilibrium (𝑢𝑒, (1 − 𝑢𝑒)𝑢𝑒) is positive, if and only

if, 0 < 𝐶 < 𝑢𝑒 < 1. Moreover,
(iiia) a hyperbolic attractor, if and only if, 𝐵 < ((2 − (𝑀 +1)𝐸)𝑢𝑒 − 2(𝐶 −𝑀𝐸))/𝐸(𝑢𝑒 − 𝐶),
(iiib) a hyperbolic repeller, if and only if, 𝐵 > ((2 − (𝑀 +1)𝐸)𝑢𝑒 − 2(𝐶 − 𝑀𝐸))/𝐸(𝑢𝑒 − 𝐶). Furthermore, there exist a

limit cycle surrounded the positive equilibrium point.
(iiic) a weak focus, if and only if, 𝐵 = ((2 − (𝑀 + 1)𝐸)𝑢𝑒 −2(𝐶 −𝑀𝐸))/𝐸(𝑢𝑒 − 𝐶).

Proof. (i) and (ii) are immediates.
(iii) The Jacobian matrix at the point (𝑢𝑒, (𝑢𝑒−𝐶)/𝐸) after

replacements is given by𝐷𝑌𝜂 (𝑢𝑒, 𝑢𝑒 − 𝐶𝐸 )
= (− ((𝑀 + 1) 𝐸 − 2) 𝑢𝑒 + 2 (𝑀𝐸 − 𝐶)𝐸 −𝑢𝐵𝐸 (𝑢 − 𝐶) −𝐵 (𝑢 − 𝐶)) . (89)

Then, det𝐷𝑌𝜂(𝑢𝑒, (𝑢𝑒 − 𝐶)/𝐸) = (𝐵/𝐸)(𝑢𝑒 − 𝐶)𝑇,
with 𝑇 = (𝐸(𝑀 + 1) − 1)𝑢𝑒 − 2(𝑀𝐸 − 𝐶),
obtained in the theorem above.
Clearly 𝑇 > 0, if and only if, 𝐸(𝑀 + 1) − 1 ≥ 0.
Supposing 𝑇 < 0, that is, 𝐸(𝑀 + 1) − 1 < 0 and(𝐸 (𝑀 + 1) − 1) 𝑢𝑒 − 2 (𝑀𝐸 − 𝐶) < 0. (90)

It implies, (𝐸(𝑀 + 1) − 1)𝑢𝑒 < 2(𝑀𝐸 − 𝐶) < 0.
i.e., (1 − 𝐸(𝑀 + 1))𝑢𝑒 > −2(𝑀𝐸 − 𝐶) > 0; thus𝑢𝑒 > −2 (𝑀𝐸 − 𝐶)1 − 𝐸 (𝑀 + 1) . (91)

After some algebraic manipulations, we obtain√Δ > (−2 (𝑀𝐸 − 𝐶)) 2𝐸(1 − 𝐸 (𝑀 + 1)) + (1 − 𝐸 (𝑀 + 1)) > 0, (92)

or

Δ 2 = Δ − ((1 − 𝐸 (𝑀 + 1))2 + (−2 (𝑀𝐸 − 𝐶)) 2𝐸(1 − 𝐸 (𝑀 + 1)) )2> 0. (93)
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Figure 3: For 𝐵 = 0.4,𝑀 = 0.15, 𝐶 = 0.25 and 𝐸 = 1.33825 there exists a unique unstable limit cycle surrounding the unique equilibrium
point (𝑢2, V2) which is local attractor and the point (0, 0) is also a local attractor. This limit cycle is the frontier of the basin of attraction of(𝑢2, V2).

Replacing and simplifying this becomesΔ 2 = −4𝐸 (𝐶 −𝑀𝐸)⋅ −𝐸2𝑀2 − 2𝐸 (𝐸 + 1)𝑀 + (4𝐶𝐸 + (𝐸 − 1)2)(𝐸 +𝑀𝐸 − 1)2< 0, (94)

and a contradiction is obtained.
Then, the nature of the equilibrium (𝑢𝑒, (𝑢𝑒 − 𝐶)/𝐸)

depends on the sign of𝑉 = −𝐸 (𝑢𝑒 − 𝐶) 𝐵 − ((𝑀 + 1)𝐸 − 2) 𝑢𝑒− 2 (𝐶 −𝑀𝐸) , (95)

corrected to the theorem above.
Again, according to the sign of 𝑉, the results follow from

Routh-Hurwitz criterion.
When (𝑢𝑒, (𝑢𝑒 − 𝐶)/𝐸) is a repeller it has𝜕𝑉𝜕𝐵 = −𝐸 (𝑢𝑒 − 𝐶) < 0. (96)

Then, the transversality condition is fulfilled.

4. Some Numerical Simulations

In order to reinforce our analytical results, here we present
some simulations, for the case𝑀 > 0. In Figures 3–9 some of
different studied cases will be presented, mainly when there
exists a unique positive equilibrium.

(A) Existence of a Unique Positive Equilibrium Point
(1) Existence of a unique unstable limit cycle and bi-

stability phenomenon (Figure 3).
(2) The point (0, 0) is an almost global attractor [33, 34]

(Figure 4).

(3) Existence of two local attractors and the bi-stability
phenomenon (Figure 5).

(4) Existence of a stable limit cycle (Figure 6).
(5) Existence of heteroclinic curve (Figure 7).
(6) Existence of a unstable imit cycle (Figure 8)

(B) Existence of Two Positive Equilibrium Points
(7) Existence of a unstable limit cycle and two equilibrium

points (Figure 9).

5. Conclusions

In this work, we have analyzed a model considering com-
petition among predators (CAP) and the prey population is
affected by an Allee effect. According to the intensity of Allee
effect, three cases were studied.

By means of a diffeomorphism [30], we analyzed the
topologically equivalent system (11) to the original one,
depending only on four parameters; conditions for the
existence of positive equilibrium points and their nature were
established in some cases.

When 𝑀 > 0 (𝑚 > 0), it has a strong Allee effect; one
of the main mathematical consequences of the assumption of
the existence of CAP is the apparition of a slanted isocline;
this straight line can generate up to two positive equilibrium
points when it intersects with the prey isocline.

Because it is assumed that the prey population be affected
by the Allee effect, it can be proved that the equilibrium
point (0, 0) is always an attractor for all parameter values;
meanwhile the nature of equilibria (𝑀, 0) and (1, 0) depends
on the relation between 𝐶 with 1 and𝑀 (𝑐, 𝐾 and 𝑚 in the
original system).

The point (𝑀, 0) associated with the Allee effect deter-
mines a separatrix curveΣ , determined by the stablemanifold𝑊𝑠+(𝑀, 0), which divides the phase plane into two regions.
The trajectories having initial conditions above this curve
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Figure 4: For 𝐵 = 0.4,𝑀 = 0.15, 𝐶 = 0.25 and 𝐸 = 1.25, the point (𝑢2, V2) is repeller focus and (0, 0) is an almost global attractor [33, 34],
since point (𝑢2, V2) is the unique solution that does not attain (0, 0).
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Figure 5: For 𝐵 = 0.4,𝑀 = 0.15, 𝐶 = 0.25, 𝐸 = 1.45, point (𝑢2, V2) is a local attractor focus and (0, 0) is a local node attractor.
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Figure 6: For 𝐵 = 0.4,𝑀 = 0.05, 𝐶 = 0.25, 𝐸 = 0.85, point (𝑢2, V2) is repeller focus, surrounding by a stable limit cycle and (0, 0) is local
attractor.
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Figure 7: For𝐵 = 0.4,𝑀 = 0.05,𝐶 = 0.25,𝐸 = 0.6915, point (𝑢2, V2) is repeller focus surrounding of a stable limit cycle (near of a heteroclinic)
and (0, 0) is a local attractor.
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Figure 8: For 𝐵 = 2.5,𝑀 = 0.1, 𝐶 = 0.12475 and 𝐸 = 0.85, there exist a unique equilibrium point (𝑢2, V2), a unstable imit cycle surrounded
this point; moreover point (0, 0) is local attractor.
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Figure 9: For 𝐵 = 0.334,𝑀 = 0.1, 𝐶 = 0.045, 𝐸 = 2.0, point (𝑢2, V2) is a attractor focus, surrounded of a unstable limit cycle; point (𝑢1, V1) is
saddle and (0, 0) is a local attractor.
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have the point (0, 0) as their 𝜔 − 𝑙𝑖𝑚𝑖𝑡; meanwhile, those that
lie below the separatrix can have a positive equilibrium point
or a stable limit cycle as their 𝜔 − 𝑙𝑖𝑚𝑖𝑡.

This implies that there exists a great possibility of the
prey population going to extinction, although the ratio prey-
predator is high (many preys and few predators); thus, for
the same set of parameter values, both populations can
coexist, oscillating around specific population sizes or prey
population can be depleted.

An important result was the determination of a subset
of the parameter values, for which there exist two positive
equilibrium points (𝑢1, V1) and (𝑢2, V2), the first of them
being always a saddle point. The other equilibrium can be an
attractor, a repeller or a weak focus, depending on the sign
of the trace of the Jacobian matrix evaluated there, since its
determinant is positive.

Then, the existence of a homoclinic curve determined
by the stable and unstable manifolds of the positive saddle
point (𝑢1, V1), encircling the second positive equilibrium
point (𝑢2, V2), was proved.Thismeans that the existence of the
bi-stability phenomenon and population sizes can oscillate
surround of the point (𝑢2, V2) or they can go to extinction,
since the equilibrium (0, 0) is a local attractor.

Furthermore, both equilibrium points can collapse,
obtaining a cusp point (Bogdanov-Takens bifurcation or
codimension 2 bifurcation) [2, 36].

The studied system when𝑀 > 0 is undoubtedly rather
sensitive to disturbances to others proposed in the ecological
literature as the Rosenzweig-MacArthur model [4, 15], being
an important question to ecologists and requiring a careful
management in applied contexts of conservation and fisheries
[14, 20]. The assumption that competition among predators
originates a model with amore complex dynamics is fulfilled;
as we have seen the interaction can have two or more
attractors for the same set of parameter values, even existing
the possibility of extinction of both populations.

When𝑀 = 0 (𝑚 = 0), it has a special weak Allee effect;
in system (11) the equilibriums (0, 0) and (𝑀, 0) are coinci-
dent; the collapsed equilibrium has parabolic and hyperbolic
sectors, generated by a separatrix curve Σ0, dividing the
trajectories in the phase plane.

As in the case𝑀 > 0, there also exists a great possibility
of the two populations going to extinction. This is because
point (0, 0) is an attractor for a wide set of trajectories, but
for other it acts as a saddle point. For a same parameter
constraint, depending on the predator population sizes, both
populations go to extinction or coexist on a long time, as
happens with the strong Allee effect.

When −1 < 𝑀 < 0 (−𝐾 < 𝑚 < 0) the system has
dynamics more simple that the case with strong Allee effect,
existing a unique positive equilibrium point. There no exists
a separatrix curve and the equilibrium (0, 0) is saddle point,
implying that the interacting species coexist either in a fix
population sizes or in oscillating population sizes.

Unlike what happens with other models in which there
is a marked difference between cases of strong and weak
Allee effect [3], in the model studied here there exist minor
differences among both cases.

Furthermore, all the obtained results imply a great dif-
ference with the well-known Volterra model, which has
a unique global attractor equilibrium point at the first
quadrant [3]. Also, system (6) has a different dynamic with
the Volterra model incorporating only Allee effect on prey,
analyzed partially in the Kot’s book [24] (in which CAP is
not considered); in that model the vertical predator isocline
intersects the respective prey isocline in a unique positive
equilibrium point.

An open problem after the obtained results in this work is
to determine the uniqueness or non-uniqueness of the stable
limit cycle shown in the different cases.

In short, the model considering self-interference among
predators or CAP reveals a rich dynamic, which must be
taken into account for the conservation of species and the
modelers.

Appendix

With the objective of making a comparative analysis, we
present the main properties of the system (8) and (9).

A. Common Properties for Both
Systems (8) and (9)

(A.1) They are defined onΩ = {(𝑥, 𝑦) ∈ R2/0 ≤ 𝑥, 0 ≤ 𝑦} . (A.1)

(A.2) The setΓ = {(𝑥, 𝑦) ∈ Ω/0 ≤ 𝑥 ≤ 𝐾, 0 ≤ 𝑦} is an invariant
region.

(A.3) The solutions are bounded.
(A.4) The equilibrium points over the axis are (0, 0) and(𝐾, 0).
(A.5) There exists a unique positive equilibrium point(𝑥𝑒, 𝑦𝑒).

B. Particular Properties

For system (8) it has:

(2.1) There exists a unique positive equilibrium point(𝑥𝑒, 𝑦𝑒), if and only if,𝐾𝑝 − 𝑐 > 0.
(2.2) The point (0, 0) is a saddle point for all parameter

values.
(2.3) The point (𝐾, 0) is:

(i) is a saddle point, if and only if,𝐾𝑝 − 𝑐 > 0,
(ii) is an attractor node, if and only if,𝐾𝑝 − 𝑐 < 0,
(iii) is a saddle-node, if and only if,𝐾𝑝 − 𝑐 = 0.

(2.4) The unique positive equilibrium point (𝑥𝑒, 𝑦𝑒) =(𝐾(𝑟𝑒 + 𝑐𝑞)/(𝑟𝑒 + 𝐾𝑝𝑞), 𝑟(𝐾𝑝 − 𝑐)/(𝑟𝑒 + 𝐾𝑝𝑞)) is
(i) an attractor, if and only if,𝐾𝑝 − 𝑐 > 0,
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(ii) a saddle-node, if and only if,𝐾𝑝 − 𝑐 = 0.
(iii) out of the first quadrant, if and only if,𝐾𝑝−𝑐 < 0.

(2.5) When 𝐾𝑝 − 𝑐 > 0, there no exist limit cycles. It
can be proved applying the Dulac criterion, using the
function 𝐺(𝑥, 𝑦) = 1/𝑥𝑦.

When 0 < 𝑚 for system (9) it get [24]:

(3.1) There exists a unique positive equilibrium point(𝑥𝑒, 𝑦𝑒), if and only if, 0 < 𝑚 < 𝑥𝑒 < 𝐾.
(3.2) There exists the equilibrium point (𝑚, 0), if and only

if, 0 < 𝑚 ≪ 𝐾.
(3.3) The point (0, 0) is an attractor stable for all parameter

values.
(3.4) The point (1, 0) is:

(i) a saddle point, if and only if, 𝑝𝐾 > 𝑐,
(ii) an attractor point, if and only if, 𝑝𝐾 < 𝑐,
(iii) a saddle-node, if and only if, 𝑝𝐾 = 𝑐.

(3.5) When𝑚 > 0, the point (𝑚, 0) is:
(i) a repeller, if and only if,𝑚 > 𝑐/𝑝.
(ii) a saddle point, if and only if,𝑚 < 𝑐/𝑝.
(iii) a saddle-node, if and only if,𝑚 = 𝑐/𝑝.

(3.6) The point (𝑥𝑒, 𝑦𝑒) is:
(i) an attractor, if and only if, −2𝑐 + 𝐾𝑝 + 𝑚𝑝 > 0,
(ii) a repeller, if and only if, −2𝑐 + 𝐾𝑝 + 𝑚𝑝 < 0,
(iii) an order one weak focus, if and only if, −2𝑐 +𝐾𝑝 + 𝑚𝑝 = 0 [1].

(3.7) If 𝑚 = 0 or 𝑚 < 0, in the respective systems
derived from (9), a unique limit cycle surrounding
the unique positive equilibrium point, determined by
Hopf bifurcation. The second Lyapunov quantity [30]
is independent of 𝑚, when tr𝐷𝑋𝜎(𝑥𝑒, 𝑦𝑒) = −2𝑐 +𝐾𝑝 + 𝑚𝑝 = 0 [1].

(3.8) When𝑚 < 0, system (9) has a similar behavior to the
well-known Rosenzweig-MacArthur model (without
Allee effect) [2]. Both systems have a unique limit
cycle surrounding the unique positive equilibrium
point. Thus, the oscillatory behavior may be due to
either the nonlinear functional response or to the prey
growth equation.
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