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Water pollution control is currently an important development strategy for China. Analysis and forecasting of wastewaterdischarge
and the energy consumption are critical for this strategy. In this paper, we proposed the two time series models, namely, improved
GM(0,n)model (IGM(0,n)) and optimized FGM(1,1)model (OFGM(1,1)). Two numerical experimentswere used to test the validity
of these models. It was indicated that the forecasting ability of two models had remarkably improved, compared to traditional
FGM(1,1) and GM(0,n), respectively. We applied the two models to forecast wastewater discharge and energy consumption in
China. The forecasting results have shown that the current growth rate in treated wastewater could meet the planning target of the
13th Five-Year Plan. The wastewater discharge and the energy consumption would reach 77.39 billion tons and 22.75 billion kWh,
respectively, in 2020.

1. Introduction

With the rapid development of the Chinese economy,
wastewater discharge has increased dramatically during the
past decades, and China is currently the largest sewage
producer. Since 2005 to 2015 the wastewater discharge has up
to 73.53 billion tons from 52.45 billion tons. A large amount
of wastewater has negative effects on the environment and
human health [1–3]. The government attaches great impor-
tance to water pollution. The daily wastewater treatment
capacity of China increased dramatically during the past
decade. The administration of water pollution control and
energy conservation is a significant development strategy for
China [4, 5]. As of September 30, 2016, China had built
3552 WWTPs, with a total capacity of 1.7946×108m3/d [6].
About 72.39% of wastewater was treated. A large amount of
wastewater would be treated in the future. Wastewater treat-
ment plant (WWTP) is one of the energy-intensive industries
[7, 8]. The energy demand for wastewater treatment would
increase substantially. Therefore, accurate prediction of the
wastewater discharge and energy consumption constitutes a
vital part of water pollution control policy of China.

Several studies focused on wastewater discharge and
energy demand in China. Wang et al. applied an optimized

NGBM(1,1) model for predicting the qualified discharge rate
of industrial wastewater in China [9]. Liu et al. employed an
indicator system to forecast the amount of domestic wastewa-
ter discharge in Jiangsu Province [10]. Li et al. used stochastic
gradient regression to predictwastewater discharge of Tianjin
and analyze its influence factors. The results showed that
the model has higher precision than the support vector
machine method and adaptive regression splines method
[11]. Chen et al. investigated the overall status of wastewater
discharge in China to analyze its driving factors [12]. Yin et
al. developed a neural network model to forecast and analyze
urban water-energy demand in China [13]. Xie and Wang
examined the challenge of energy consumption inwastewater
treatment plants [14]. Jian et al. applied the various methods
to survey the energy consumption status and its influencing
factors in 1441 municipal wastewater treatment plants [15].
Currently, the efforts to improve wastewater treatment are
not keeping pace with economic development. At the same
time, the average electricity consumption per cubic meter for
wastewater was higher than developed country [14, 15].

The present work attempted to forecast wastewater dis-
charge and energy consumption in China. Various predic-
tion methods including ARIMA, artificial neural network
(ANN), and nonparametric regression used to predict the
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system’s future behavior [11, 16–18]. The forecasting results of
ARIMA, ANN, and nonparametric regression depend on the
number of training data and the availability of data. These
limitations have not yet been overcome. The advantage of
grey forecasting model is that we only need small amounts
of data to predict the system’s future behavior [19]. It can
overcome the problem that the observed data available are
very small. Just a few data are sufficient to characterize the
system’s behavior. It ismore suitable for short-termprediction
than a medium-term and long-term prediction. Different
grey forecasting models were suited for data sequence with
different characteristics. The grey Bernoulli model was suit-
able for fluctuant data. Grey Verhulst model was suitable for
the historical data with ‘S’ distributing. Grey GM(1,1) model
was suitable for historical data with exponential distributing.
Grey forecasting model has been widely used in economics,
finance, and other fields and has achieved lots of good
results [20–25]. A grey forecasting model may yield large
forecasting errors. Types of research concentrated on grey
forecastingmodels to improve the forecasting precision. Xu et
al. presented an approach to the least squares to grey Verhulst
model. The model achieves reliable and precise results [26].
Jin et al. proposed a new grey model to avoid the error
amplification resulting from the improper choice of the initial
condition [27]. Wang developed a grey dynamic model of
GMC (1,n) and proposed the Nash equilibrium idea-based
optimization method to solve the model parameters. The
results showed that the model was with higher accuracy
than traditional model [28]. Wang and Hao constructed a
nonlinear optimization model of GMC (1,n) and optimized
the parameters of background. The results showed that the
method could minimize the modeling error [29]. Wang et al.
proposed an approach called DGGM (1,1) to predict quarterly
hydropower production in China. The results indicated that
DGGM (1,1) has a higher prediction accuracy than traditional
GM (1,1) and SARIMAmodels [30]. Hsu andWang presented
Bayesian grey forecast models and used the technique of
Markov Chain Monte Carlo to estimate the parameters for
grey differential function [31]. Chen et al. improved nonlinear
grey Bernoulli model (NGBM) by the Nash equilibrium
concept. They found that the prediction by the method was
better than the NGBM [32]. Lee and Tong combined residual
modification with genetic programming sign estimation to
improve the grey forecasting model [33].

In this paper, we presented two grey forecasting models
an optimized FGM(1,1) (OFGM(1,1)) model and improved
GM(0,n) (IGM(0,n)) to forecast wastewater discharge and
energy consumption in China. The GM(0,n) model was a
special form of GM(1,n) model with no derivatives [34, 35].
A new method was used to improve the accuracy of the
traditional GM(0,n) model. The empirical results showed
that IGM(0,n) model has a better performance than the
traditional model. Tien proposed the FGM(1,1) model and
showed that the model had higher prediction accuracy than
GM(1,1) model [36]. To improve the forecasting accuracy
of FGM(1,1) model, an optimized FGM(1,1) model was
proposed. The particle swarm optimization algorithm was
used to optimize the generating coefficient of the model.
FGM(1,1) model and GM(1,1) were employed to compare

the effectiveness of OFGM(1,1) model. The mean absolute
percentage error (MAPE) was chosen to minimize the error
between actual values and forecasting values [37, 38]. The
results demonstrate that OFGM(1,1) model had higher fore-
casting accuracy than the other forecasting model. So, the
paper adopted IGM(0,n) model and OFGM(1,1) model to
forecast the wastewater discharge and energy consumption
in China. It would provide a profitable reference for the
economic and environmental benefits of sewage treatment.

2. Methodology and Data

2.1.TheOFGM(1,1)Model. GM(1,1) model is a single-variable
grey forecasting model. To improve its performance, Tien
put forward a new prediction model FGM(1,1) model. For
the GM(1,1) model, the forecasting values of this model are
independent of the first data of time series. So an arbitrary
number could be inserted in front of the time series [34].
By doing so, it only requires three data values to forecast
the system’s future behavior. Empirical results show that
this model has a higher prediction accuracy than GM(1,1)
model. The existing model FGM(1,1) has several defects.
It is inaccurate to set generating coefficient as a constant.
The constant could affect the prediction accuracy of the
model. To improve its performance, the article introduces
an unknown interpolation coefficient 𝛾 to calculate the
generating coefficient of FGM(1,1).

The procedures of the new method can be concluded as
follows.

An arbitrary number would be inserted in front of series𝑋0 = (𝑥0(1), 𝑥0(2), . . . , 𝑥0(𝑛)). The new series is

𝑋0 = (𝑥0 (0) , 𝑥0 (1) , 𝑥0 (2) , . . . , 𝑥0 (𝑛) (1)

where 𝑥0(0) is arbitrary number; to keep life simple, we
assume 𝑥0(0) = 0. Consequently, the 1-GAO of𝑋0 is given by

𝑥1 (𝑘) = 𝑘∑
𝑖=0

𝑥0 (𝑘) (2)

The new series is written as

𝑋1 = (𝑥1 (0) , 𝑥1 (1) , 𝑥1 (2) , . . . , 𝑥1 (𝑛)) (3)

Hence, grey model FGM(1,1) based on series 𝑋1 can be
written as

𝑥0 (𝑘) + 𝑎𝑧1 (𝑘) = 𝑏 (4)

where 𝑧1(𝑘) = 0.5𝑥1(𝑘) + 0.5𝑥1(𝑘 − 1) (𝑘 = 1, 2, 3, . . . , 𝑛).
The grey differential equation of Eq. (4) is

𝑑𝑥1
𝑑𝑡 + 𝑎𝑥1 = 𝑏 (5)

where 𝑎 and 𝑏 are the interim parameters.The parameters are

[𝑎𝑏] = (𝐵𝑇𝐵)
−1 𝐵𝑇𝑌 (6)
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where

𝐵 =
[[[[[[[
[

− (𝛾𝑥1 (0) + (1 − 𝛾) 𝑥1 (1)) 1
− (𝛾𝑥1 (1) + (1 − 𝛾) 𝑥1 (2)) 1

... ...
− (𝛾𝑥1 (𝑛 − 1) + (1 − 𝛾) 𝑥10 (𝑛)) 1

]]]]]]]
]
,

𝑌 =
[[[[[[
[

𝑥0 (1)
𝑥0 (2)...
𝑥0 (𝑛)

]]]]]]
]

(7)

If 𝛾 = 0.5, the model is transformed into FGM(1,1) model.
The time response function is

𝑥1 (𝑘) = (𝑥0 (1) − 𝑏𝑎) 𝑒𝑘−1 −
𝑏
𝑎 (𝑘 = 1, 2, 3, . . . , 𝑛) (8)

Applying the 1-GAOto Eq. (8), we have the modeling
value 𝑥0(𝑘) as forecasts
𝑥0 (𝑘) = (𝑥0 (1) − 𝑏𝑎) (1 − 𝑒𝑎) 𝑒−𝑎(𝑘−1)

(𝑘 = 1, 2, 3, . . . , 𝑛)
(9)

2.2. The Improved Grey Multivariable Model IGM(0,n). The
GM(0,n) is a multivariable grey forecasting model, which is
a particular case of the GM(1,n) model [29]. To improve the
modeling and forecasting precision of the system, we used the
secondary approximation model to enhance the adaptability
of IGM(0,n) on real data. The procedures of IGM(0,n) could
be indicated as follows.

Suppose the set of a primitive data sequence is

𝑋(0)1 , 𝑋(0)2 , . . . , 𝑋(0)𝑛 (10)

where 𝑋(0)
𝑘
= (𝑥(0)
𝑘
(1), 𝑥(0)
𝑘
(2), . . . , 𝑥(0)

𝑘
(𝑚)) and 𝑋(0)𝑗 (𝑖) is the𝑗th value of 𝑋(0)𝑗 at equispaced interval of 𝑖 time. 𝑋(0)1 is the

feature sequence of system, and the others are the influence
factors sequences of system.

The first order accumulation generation operator (1-
GAO) for 𝑋(0)𝑖 is given as

𝑋(1)1 , 𝑋(1)2 , . . . , 𝑋(1)𝑛 (11)

where 𝑋(1)
𝑘

= (𝑥(1)
𝑘
(1), 𝑥(1)
𝑘
(2), . . . , 𝑥(1)

𝑘
(𝑚)) and 𝑥(1)

𝑘
(𝑖) =

∑𝑖𝑗=1 𝑥(0)𝑘 (𝑗), 𝑖 = 1, 2, . . . , 𝑚.
Then, the GM(0,n) model is written as

𝑥(1)1 (𝑘) = 𝑎 + 𝑏2𝑥(1)2 (𝑘) + 𝑏3𝑥(1)3 (𝑘) + ⋅ ⋅ ⋅ + 𝑏𝑛𝑥(1)𝑛 (𝑘)
𝑘 = 2, ⋅ ⋅ ⋅ , 𝑚 (12)

The least-squares solution of the parameters of GM(0,n)
is

�̂� = (𝐵𝑇𝐵)−1 𝐵𝑇𝑌 (13)

where �̂� = (𝑎, 𝑏2, . . . , 𝑏𝑛)𝑇, Y = (𝑥(1)𝑘 (2), . . . , 𝑥(1)𝑘 (𝑚))𝑇, and

𝐵 =
[[[[[[[
[

1 𝑥(1)2 (2) . . . 𝑥(1)𝑛−1 (2) 𝑥(1)𝑛 (2)
1 𝑥(1)2 (3) . . . 𝑥(1)𝑛−1 (3) 𝑥(1)𝑛 (3)... ... d

... ...
1 𝑥(1)2 (𝑚) . . . 𝑥(1)𝑛−1 (𝑚) 𝑥(1)𝑛 (𝑚)

]]]]]]]
]
. (14)

The time response of Eq. (12) is

𝑥(1)1 (𝑘) = 𝑎+𝑏2𝑥(1)2 (𝑘) + 𝑏3𝑥(1)3 (𝑘) + ⋅ ⋅ ⋅ + 𝑏𝑛𝑥(1)𝑛 (𝑘) (15)

After inversely accumulating generation operation from
Eq. (11), the grey forecasting model of the original sequence
is defined as

𝑥(0)1 (𝑘) = 𝑥(1)1 (𝑘) − 𝑥(1)1 (𝑘 − 1) 𝑘 = 2, 3, . . . , 𝑛. (16)

To improve the modelling and prediction precision of
the GM(0,n), this paper inputs quadratic polynomials of the
influence factors sequence in GM(0,n). On this basis, the
improved GM(0,n) (IGM(0,n)) is defined as

𝑥(1)1 (𝑘) = 𝑎 + 𝑏2𝑥(1)2 (𝑘) + 𝑏12 (𝑥(1)2 (𝑘))2 + ⋅ ⋅ ⋅
+ 𝑏𝑛𝑥(1)𝑛 (𝑘) + 𝑏1𝑛 (𝑥(1)𝑛 (𝑘))2

(17)

The least-squares solution of the parameters of IGM(0,n)
is

�̃� = (𝐵𝑇𝐵)𝑇𝑌 (18)

where �̃� = (𝑎, 𝑏2, 𝑏12 , . . . , 𝑏𝑛, 𝑏1𝑛 )𝑇, Y = (𝑥(1)𝑘 (2), . . . , 𝑥(1)𝑘 (𝑚))𝑇,
and

𝐵

=
[[[[[[[[
[

1 𝑥(1)2 (2) 𝑥(1)2 (2)2 ⋅ ⋅ ⋅ 𝑥(1)𝑛 (2) 𝑥(1)𝑛 (2)2
1 𝑥(1)2 (3) 𝑥(1)2 (3)2 ⋅ ⋅ ⋅ 𝑥(1)𝑛 (3) 𝑥(1)𝑛 (3)2... ... ... d

... ...
1 𝑥(1)2 (𝑚) 𝑥(1)2 (𝑚)2 ⋅ ⋅ ⋅ 𝑥(1)𝑛 (𝑚) 𝑥(1)𝑛 (𝑚)2

]]]]]]]]
]

. (19)

The time response of Eq. (17) is

𝑥(1)1 (𝑘) = 𝑎 + 𝑏2𝑥(1)2 (𝑘) + 𝑏12 (𝑥(1)2 (𝑘))2 + ⋅ ⋅ ⋅
+ 𝑏𝑛𝑥(1)𝑛 (𝑘) + 𝑏1𝑛 (𝑥(1)𝑛 (𝑘))2

(20)

By performing the inverse accumulation generation oper-
ator fromEq. (10), the grey forecasting model of the primitive
data sequences is finally obtained as

𝑥(0)1 (𝑘) = 𝑥(1)1 (𝑘) − 𝑥(1)1 (𝑘 − 1) 𝑘 = 2, 3, . . . , 𝑛. (21)
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2.3. Particle Swarm Optimization (PSO) Algorithm. PSO
algorithm was proposed by Kennedy and Eberhart [39]. As
one of the intelligent optimization algorithms, the method
was simple implementation [40, 41]. It had better efficiency
than other evolutionary computations to obtain the optimal
solution. To solve the generating coefficient problem, PSO
was employed to calculate the generating coefficient of
FGM(1,1).

In this article, the velocity and particle iteration followed
the equations

V𝑘+1𝑖𝑗 = 𝜔V𝑘𝑖𝑗 + 𝑐1𝑟1 (𝑝𝑘𝑖𝑗 − 𝑥𝑘𝑖𝑗) + 𝑐2𝑟2 (𝑔𝑘𝑖𝑗 − 𝑥𝑘𝑖𝑗) (22)

𝑥𝑘+1𝑖𝑗 = 𝑥𝑘𝑖𝑗 + V𝑘𝑖𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 40) (23)

where inertia weight 𝜔 was 1; 𝑐1 and 𝑐2 were acceleration
factors that were 0.85; 𝑟1 and 𝑟2 were random numbers in the
interval between 0 and 1; maximum number of iterations was
200; population was 𝐷 = 40.
2.4. Assessment of the Modelling and Forecasting Precision.
Mean absolute percentage error (MAPE), mean absolute
error (MAE), and mean square error (MSE) were used to
test the accuracy of the forecast models. Generally, the lower
deviation indexes meant higher accuracy. The calculation
formulas were defined as

𝑀𝐴𝑃𝐸 = 1𝑘
𝑘∑
𝑖=1


𝑥1 (𝑖) − 𝑥0 (𝑖)𝑥0 (𝑖)

 × 100% (24)

𝑀𝐴𝐸 = 1𝑘
𝑘∑
𝑖=1

𝑥1 (𝑖) − 𝑥0 (𝑖) (25)

𝑀𝑆𝐸 = 1𝑘
𝑘∑
𝑖=1

(𝑥1 (𝑖) − 𝑥0 (𝑖))2 (26)

The fitness function was defined as

min 𝑀𝐴𝑃𝐸 = 1𝑘
𝑘∑
𝑖=1


𝑥1 (𝑖) − 𝑥0 (𝑖)𝑥0 (𝑖)

 × 100% (27)

where 𝑥0(𝑖) and 𝑥1(𝑖)were the 𝑖th actual value and prediction
value, respectively, and 𝑘 was the number of predictions.

2.5. Validation of the OFGM(1, 1) Model and IGM(0,n) Model

2.5.1. OFGM(1, 1) Model. In this section, data sequence A
was used to verify the performance of OFGM(1,1) model
[39]. For this data sequence, the first five data were used
for training data, while the other data were used to evaluate
the forecasting performance. The evolution of fitness of the
OFGM(1,1) model was shown in Figure 1. It can be seen
in Figure 1 that the fitness value converges very fast to the
stagnation point. This algorithm is very effective in solving
the parameter optimization problem.

The actual and forecast values of data sequence A using
FGM(1,1) and OFGM(1,1) were shown in Table 1 and Figure 2.
There deviation indexes were shown in Tables 2 and 3. It can
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Figure 1: Evolution of fitness of OFGM(1,1) model.
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Figure 2: Forecasting values by FGM(1,1) and of OFGM(1,1).

be seen from Table 2 that the training accuracies of FGM(1,1)
andOFGM(1,1) were 2.42% and 1.92%, respectively.The other
deviation indexes also showed that he optimized FGM(1,1)
had higher training accuracy than FGM(1,1). According to
Table 3, deviation indexes of OFGM(1,1) were the smallest.
Results showed that OFGM(1,1) model had a better perfor-
mance than FGM(1,1) model. The OFGM(1,1) model would
be used to predict the energy consumption in China.

2.5.2. IGM(0,n) Model. In this section, the data sequences𝑋(0)1 and 𝑋(0)2 [30] were used to evaluate the performance of
improved IGM(0,2) model. The simulation results of these
data sequences using GM(0,2) model and IGM(0,2) model
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Table 1: Actual and forecast values of data sequence A.

Sequence X1 FGM(1,1) model OFGM(1, 1) model
Model value Relative error (%) Model value Relative error (%)

9.4 9.4 0 9.4 0
12.5 11.6 6.9 11.77 5.80
14.0 13.70 2.16 13.88 0.84
15.9 16.12 1.39 16.37 2.95
19.3 18.97 1.68 19.30 0
24.1 22.33 7.33 22.76 5.57
25.8 26.29 1.89 26.83 4.00
28.7 30.94 7.81 31.64 10.23
39.6 36.42 8.03 37.30 5.80
42.2 42.87 15.82 43.98 4.22
58.3 50.46 13.45 51.86 11.05
77.5 59.39 23.37 61.15 21.10
89.6 69.90 21.98 72.09 19.54
98.0 82.28 16.04 85.01 13.26
106.4 96.84 8.99 100.23 5.80

Table 2: Deviation indexes of simulation results for different forecasting methods.

Method MAPE(%) MAE MSE
FGM(1,1) model 2.42 0.3500 0.2115
OFGM(1, 1) model 1.92 0.2640 0.1536
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Figure 3: Forecasting values by GM(0,2) and IGM(0,2).

were depicted in Table 4 and Figure 3. To show the superiority
of IGM(0,2) model, the deviation indexes of GM(0,2) and
IGM(0,2) model were compared in Table 5. As can be seen
in Tables 4 and 5, the relative errors of GM(0,2) were ranging
from 0.7% to 3.8%. The relative errors of IGM(0,2) were

ranging from 0.4% to 2.5%. The MAPEs for GM(0,2) and
IGM(0,2) were 2.48% and 1.53%, respectively. Meanwhile,
the MAE and MSE of IGM(0,2) model were smaller than
the GM(0,2) model. The performance comparisons showed
that the IGM(0,2) had the best fitting effect with minimum
deviation indexes. The IGM(0,2) model would be used to
forecast the wastewater discharge of China.

2.6. Data Sources. This article collected annual data on
wastewater discharged and the energy consumption in China
for 2005-2015. The IGM(0,2) was used to predict wastewater
discharge. The OFGM(1,1) method was employed to forecast
energy consumption. The data sequences of wastewater
discharge and real GDP were feature sequence and influence
factor sequence of a system, respectively.

Water pollution and energy shortage would become
tumbling block of China’s economic growth.With the acceler-
ated industrialization and urbanization, wastewater discharge
would continue to increase in the future. From 2005 to 2015,
real GDP had risen from 18.7319 trillion yuan to 68.9052
yuan. Based on economic development target, the country’s
per capita GDP will probably reach 20 thousand yuan in
2020, assuming that China’s average annual economic growth
rate is 7% in 2016-2020 [42]. Treated wastewater had up
to 72.39% from 60.8% since 2012 to 2015. Energy demand
for sewer had increased remarkably. So far, the average
electricity consumption per cubic meter for wastewater was
0.2927kWh/m3 in China [14, 15] and would not be changed
in the short term. It means that the energy consumption of
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Table 3: Deviation indexes of forecasting results for different forecasting methods.

Method MAPE(%) MAE MSE
FGM(1,1) model 11.05 7.928 113.49
OFGM(1, 1) model 10.58 6.8850 84.2164

Table 4: Forecasting values by GM(0,2) and IGM(0,2).

Sequence number Actual value GM(0,2) model IGM(0, 2) model
Model value Relative error (%) Model value Relative error (%)

2 3.278 3.153 3.8 3.293 0.4
3 3.307 3.331 0.7 3.248 1.7
4 3.390 3.518 3.8 3.476 2.5
5 3.679 3.619 1.6 3.623 1.5
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Figure 4: Simulation and forecasting of treated wastewater and
wastewater discharge in China (2012 to 2020).

wastewater treatment system had up to 15.58 billion kWh in
2015. Energy demand for wastewater in the recent year was
listed in Table 6 (2012 to 2015).

3. Results and Discussion

Wastewater discharge and energy consumption in China
were chosen as the goals of this study. As the trend of each
series may be changing quickly over time, the data from 2011
to 2015 were applied for in-sample simulation, while data
from 2016 to 2020 were utilized for out-of-sample prediction.
The data were collected from the published documents and
the Ministry of Environmental Protection of the People’s
Republic of China.

3.1. Forecasting Energy Consumption for Wastewater Treat-
ment. The forecasting results of wastewater discharge using
OFGM(1,1) were depicted in Table 7 and Figure 4. According
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Figure 5: Simulation and forecasting energy demand in China.

to Table 7, the wastewater discharge in China would increase
to 78.02 billion tons in 2019, before decreasing to 77.39 in
2020. All the wastewater would be treated in 2020. According
to the planning target of the Chinese waste-water treatment
industry in the period of the 13th Five-Year Plan, more than
95% wastewater would be treated by the end of 2020. These
results showed that the current growth rate in wastewater
treatment could meet the planning target. The government
should formulate more effective incentive and policies for
water efficiency to reduce sewage discharge.

The forecasting results of energy consumption using
IGM(0,2) were depicted in Table 7 and Figure 5. According to
Table 7, the energy consumption for wastewater treatment is
expected to increase to 22.75 billion kWh in 2020. Currently,
low energy efficiency is one of the significant issues faced by
most WWTPs in China. The energy efficiency measure and
treatment process modification could significantly reduce
energy consumption. In addition, energy recovery from
wastewater treatment could offset the electricity consump-
tion for the wastewater treatment. Therefore, the government
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Table 5: Deviation indexes of forecasting results for different forecasting methods.

Method MAPE(%) MAE MSE
GM(0,2) model 2.48 0.0842 0.0540
IGM(0, 2) model 1.53 0.0090 0.0036

Table 6: The wastewater discharge and energy consumption in China (2012 to 2015).

Year 2012 2013 2014 2015
Wastewater discharge (billion tons) 68.43 69.49 71.56 73.53
Treated wastewater (billion tons) 41.62 45.61 49.43 53.23
Energy consumption (billion kWh) 12.18 13.35 14.47 15.58

Table 7: Forecasting of wastewater discharge, treated wastewater, and energy consumption in China.

Year 2016 2017 2018 2019 2020
Total wastewater discharge (billion tons) 75.87 77.13 77.89 78.02 77.39
Treated wastewater (billion tons) 58.01 62.93 68.27 74.06 77.39
Power consumption (billion kWh) 17.04 18.49 20.06 21.77 22.75

should increase investment into energy efficiency measure to
reduce the energy consumption in the coming year.

4. Conclusions

In this article, we attempted to model and predict wastewater
discharge and energy consumption in China based on the
grey model. Using the historical data, the OFGM(1,1) model
obtained excellent results regarding MAPE, when compared
with FGM(1,1) and GM(1,1). The MAPEs of the OFGM(1,1)
for training data and test predictions are 1.92% and 10.58%.
Actual examples clearly show that the new forecasting model
has the higher forecasting precision than traditional grey
forecasting model FGM(1,1). The model was used to forecast
the energy consumption in wastewater treatment. On the
other hand, IGM(0,n) model was employed to forecast the
wastewater discharge in China. The numerical experiment
indicates that the model has a higher accuracy than GM(0,n)
model. The MAPEs of this model are 1.85%. Performance
assessment results clearly indicate that IGM(0,n) model
can be employed for future projection of the wastewater
discharge.The results show that China’s wastewater discharge
will increase 78.02 billion tons in 2019, before decreasing
to 77.39 in 2020. The energy consumption for wastewater
treatment is expected to increase to 22.75 billion kWh in 2020.
These results show that the current growth rate in treated
wastewater could meet the target of the Chinese wastewater
treatment industry in the period of the 13th Five-Year Plan.

However, with the strict effluent limitations, wastewater
treatment plants are likely to become more energy-intensive.
Energy demand for WWTPs will increase significantly in
the future. The government should provide more support
in finance and credit policies for improving the processing
and general techniques in wastewater treatment and encour-
age technological innovations to recover energy from the

WWTPs. The appropriate use of electricity production from
sludge incineration and anaerobic digester could transform
from considering wastewater as an issue to considering it as
a renewable energy resource. The results shown here could
offer references to policy makers in setting energy strategies
and protecting water resource.
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